TMA225 Differential Equations and Scientific
Computing, part A

Solutions to Problems Week 6

October 10, 2002



Week 6:

Problem 1. Calculate ||f||7.. () where Q = [0,1] x [0,1] and

(a) f(z1, z2) = 23 (21 — 2/3)%. Hint: To compute max(,, z.)eq |f(21, 2)|, maximize the
absolute value of each factor of f separately.

(b) f(z1, z2) = 11/36 — 27 + z1 — 23 + 8z5/3. Hint: Compute both max(s, z.)eqn f (21, 22)
and min(m,wz)eﬂ f(xla -772)'

Solution:

(a) Since || f|| Lo () = MaX (g, zy)cq | f (21, 22)| we want to find the maximum of the absolute
value |f(x1,29)| of f(x1,22). From the hint we start by maximising the xo-dependent factor
over the interval [0, 1]: The result is trivially 1 (for zo = 1). The maximum of the absolute
value of the z;-dependent factor is 8/27 for #; = 0. This means that || f||z.. ) = 8/27.
(b) We complete the squares to get:

f(zy,m9) =11/36 — 2] + 11 — 25 + 822/3 = 7/3 — (x1 — 1/2)* — (x5 — 4/3)?

We can now determine the maximum by minimising the two negative terms over 2: Maxi-
mum of f thus occurs for #; = 1/2 and x = 1 which gives us that max(,, g,)cq f(71,2) =
7/3—1/9 =20/9. In the same way minimum occurs when the last two terms are maximal,
ie., for 2y =0 or ; =1 and 2, = 0. Hence ming, z.)cq f(21,22) = 7/3 —1/4—16/9 =
11/36. Since the minimum is positive, f(x1, x2) = |f(z1, 22)| in ©, and we conclude that
[ fll o) = maX(zy, z5)e0 f (21, 22) = 20/9. [

Problem 2. Calculate || f||12(q) where Q= [0,1] x [0,1] and

(a) f(x1, x9) = 21 235

(b) f(x1, x2) = sin(nmxy) sin(mmzy) with n and m arbitrary integers.
Hint: sin®u = 1_%8(2“)

Solution: The L?(Q2)-norm of f is defined by: || f|lz2) = ([ [, f(@1, %2)? day das)?.
(a)

1 p1 1 1
1
e = [ [ tebdndes= [ atdn [ obde = L/sh- /sl = 5

SO ||f||L2(Q) = ﬁ
(b) If n and/or m is equal to zero then f is identically equal to zero implying that || f||,2) =
0. Otherwise we get:

101
||f||%2(9) = /0 /o sin?(nmz,) sin® (mnrzy) doy dr,

_ /1 1 — cos(2nmzy) iz, - /1 1 — cos(2mmzs) drs
0 0

2 2
_ [x1/2 B sin(2n7r:v1)] ! _ [x2/2 _ sin(2mma,) !
dnm 0 dmm 0



= (1/2— %) . <1/2

and thus || f[[z2) = 1/2 if n # 0 and m # 0.

Problem 3. Let P(K) = {v(z) = ¢o + 121 + cox2, ¢; € R, 1 =1,2,3; = = (1,22) € K}
be the space of linear polynomials defined on a triangle K with corners a', a2, and a3.
Derive explicit expressions (in terms of the corner coordinates a' = (a}, a}), a®> = (a2, a3),
and a® = (a3, a3)) for the basis functions \;, Ay, A3 € P(K) defined by

Aa) = {(1)

with 4,5 = 1,2,3. Hint: set up the linear system of equations which relates ¢y, ¢1, and ¢
to the values at the corners v(a'), v(a?), and v(a®) of a function v € P(K). Solve for the
coefficients corresponding to corner values of the basis functions.

Solution: Look at the basis function A; first. Since )\ is linear on K we make the Ansatz
M(z1, 2) = co + 121 + cox9. According to the definition A; has the value one in a' and
zero in a? and a3. (See Figure 1.) Hence, we have in these corners respectively:

)

Admm

i =
1
L F 7, W

_ 1 1
1=1cy+cra; + caa;

— 2 2
0 =co+ cra] + ca;

0=cy+ c1a3 + ca’

Or in matrix form:

We have three equations and three unknowns (cy, ¢; and ¢y). We can solve the linear
system of equations above by Gaussian elimination. The result is

Co
C1
Co

where det A = adal + a?a3 — a?al — o}

2.3 3,2

a709 — G710y

det A

2 3
ay — Qg

det A
aj — a?

det A

Co
C1
Co

c

a2 — atad + alal.

For the basis function Ay we get the same matrix A as above, but here b = (0, 1, 0)”
(since \p is one in the node a? and zero in the other two nodes). Solving the system of
equations gives



atay — aja;

Ch, = ——F———F—
det A

a3 — ay
cT =

det A

al — a’
Cy =

det A

And similarly for A3 with b = (0, 0, 1)T gives the coefficients

a}a3 — ala)
@ T T etA
ay — a’
a = det A
_al—aqf
2 T et A

Remark. Note that det A equals 2 u(K) where p(K) is the area of K. See Problem 4 (Week
6). Note further that it might not be necessary to actually compute Ay and A3. Given the
expression for A; it is possible to make a permutation of the node indices.

U
Problem 4. Derive an expression for the area of the triangle K in Problem 3 (Week 6)

: : U (ol 1Y 12 — (n2 2 3 _ (o3 3
in terms of the corner coordinates a' = (ay, a5), a® = (a3, a3) and a° = (af, a3).
Solution:

al a a?

Figure 1: Problem 3 and Problem 4 (Week 6).

From Figure 1 we calculate the area p(K) as follows.

u(K) = 5 lalh = 3la||b|sinf = 7|a x b| (2)



Now, clearly the vectors a and b are given by

a=a’—a' = (a —a;, a5 — ay), (3
b=2d—d' = (a} —a}, d - a)) (4

Explicitly the area is thus given by

_1 _
M(K)—2|a><b| ‘al—a} ag—aé

= (% — ab)(a3 — a}) — (@3 — ad)(a — ab)]. (©)

Note that the cross-product between vectors in two dimensions is a number.

az—a} ag—a;‘|

Remark. With a and b oriented as in Figure 1 the cross-product a x b is positive and thus
u(I) = Ha x b).

0
Problem 5. Consider the triangulation of Q = [0, 2] x [0, 1] into 3 triangles drawn in
Figure 2.

K
K,

N, 1 Mo 9 N3 %

Figure 2: Problem 5 (Week 6). The triangulation of (.

(a) Compute the mass matrix M with elements m;; = [, ¢;(z, y) pi(z, y) dzdy, i,j =
1,...,5.

Hint: The easiest way is to use the quadrature formula based on the value of the
integrand, ¢,(z, y) ¢i(z, y), at the mid-points on the triangle sides, since this formula
is exact for polynomials of degree 2. It is also possible to write down explicit analytical
expressions for the “tent-functions” on each triangle (cf. Problem 3 (Week 6)) and integrate
the products analytically. This, however, is a much harder way. Observe that, using
quadrature, we don’t need to know the analytical expressions, only the values at some
given points which are much easier to compute.
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(b) Compute the “lumped” mass matrix M , which is the diagonal matrix with the diagonal
element in each row being the sum of the elements in the corresponding row of M.
(c*) Prove that, using nodal quadrature, the approximate mass matrix you get is actually
the “lumped” mass matrix.

Hint: Z?Zl vz, y) =1
Solution:
(a) We start to compute the area p(K;) of the triangles, i = 1,2, 3:

1-1 1
K)=—-=-=
lu’( 1) 2 2’

1-1 1
Ky) = —— ==

2-1

Then, we compute a few elements of M: my;, mi2, mi3, and mos. Note that the integrands
w1 1 and @y ¢, are non-zero only over K7, and @5 (9 is non-zero over K; and Ks. On the
other hand 3 ¢ is nowhere non-zero and therefore m3 = 0.

iy ://Q(p1 o dzdy = (¢1(5,0))° + (£1(0,3))* + (¢1(5,5)) (KL

3
1.1 ,1.1
Llyl.li0.0 1
_ 22733 K = = WK = —
1.1, 1 1
L.lyl.g40-1 1 1
— (M tricl) = my;, = 22 2 2 (K = — p(Ky) = —
miz = (M symmetric!) = mgy; 3 p(Kq) 12#( 1) 21’
1.1, 1.1 101,11
Llyl.1ag Llyl140 1
Mgy = EE e G + 22— u(IG) = o (u() + p(Ks)) = ¢
Continuing analogously gives:
5 oa 0 0 3
11 1 %
24§ 24
M=10 5 37 13 3
00 5 ¢ 1
1 1 1 1 1
24 12 8 12 3
(b) From mii:Z?zlmij, i=1,...,5, we compute:
1 1 1 1
= — 4 — 40+ 04— = .
mi1 12+24+ + +24 6

Analogously:
1 1 1 2

A

Moo = g; mga3 = 5; mgy4 = g; Mss = g



Thus:
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(c*) Hint: Adding the elements in row number i gives:

m=//Q (iw(x, y)) ei(z, y) dxdy://Q vi(z, y) dv dy.

Now use the formula for the volume of a pyramid, and compare the result to what you get
when using nodal quadrature. O



