TMA225 Differential Equations and Scientific
Computing, part A

Solutions to Problems Week 7
Note: Complete except for the *-problems.

October 15, 2002



Week 7:

Problem 1. Compute Vu, n - Vu, and Au for

(a) u(z, y) =zy; n=(1,0),

(b) u(z, y) =sin(z)cos(y); n=(1,1),

(c) u(z, y) = log(r) where r = /22 +y%2 (r#0); n=(z,y).

Solution:

(a )Vu—(%,‘gZ) (y,z), son-Vu=y, andAu—ai‘;—f—%:%—i-g—Z:O.

(b) Vu = (%, g—:) (cos(x) cos(y), — sin(z) sin(y)), so

n - Vu = cos(z) cos(y) — sin(z) sin(y) = cos(z + y), and

Ay = e gxcos(y)) B(Sm(;ca)ysm(y)) — sin(z) cos(y) — sin(z) cos(y) = —2sin(z) cos(y).

(© V= (8. 2) = (5ms ) = 35,0, 01+ Vu = 36 +47) = 1, and

o= (i) + 4 () -0 m

Problem 2. Consider the triangulation of Q = [0, 2] x [0, 1] into 3 triangles drawn in
Figure 1. (It is the same triangulation as in Problem 5 (Week 6).)

)
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Figure 1: Problem 1 and Problem 4 (Week 7). The triangulation of €.

Compute by hand the stiffness matrix A with elements a;; = [, Vo, - Vo, dady, i,j =
1,...,5.

Hint: Since @;(z, y) is linear on each triangle, the gradient V; will be a constant vector

on each triangle. As an example, consider triangle K;. On this triangle, it is easy to show
that ¢1(z, y) = 1— (z +y), p2(z, y) = z, and ¢s(z, y) = y (cf. how you did in Problem
2(a) (Week 5)). Therefore, on Ki: Vo; = (=1, —1), Vs = (1, 0), and Vs = (0, 1).
Thus, a1 = [[, Vi1 Ve dedy = fle Vo, -Vordody = fle 2dx dy = 1. Observe that
some matrix elements will get contributions from more than one triangle.
Solution: The matrix A with elements a;; = [[ Vy;- V; dzdy is clearly symmetric. One
easily sees which elements in A that are zero. For example, since ¢; only is non-zero on
triangle K; and ¢, only is non-zero on triangle K3, we know that a4 = a4; = 0. Similarly
we see that a;3 = a3; = @91 = aq9 = 0.



Since ;(z,y) is linear on each triangle, the gradient V; will be a constant vector on
each triangle.

We now calculate ass. The function @5 is non-zero on all triangles. By solving a linear
system of equations on each triangle (cf. Problem 2(a) (Week 5)), we get that ¢5(x,y) =y
on triangles K and Ky, and ¢5(z,y) = 1—2/2 on triangle K3. So Vs = (0, 1) on triangles
K, and Ky, and Vs = (—1/2,0) on triangle Kj3. Thus,

a55:// Vgog,-chg,dxdy:// 1dxdy+// 1/4 dzdy
Q K1UK» K3

1
= n(EL U Ks) + u(Ks) =1+1/4=5/4,

where u(K; U K3) =1 and p(K3) = 1 denote the areas of K7 U Ky and K3 respectively.

We now calculate a;s = ag;. Since @1 (z,y) only is non-zero on triangle K; it is enough
to integrate over triangle Ky, where Vo, = (=1, —1) and Vi, = (1,0) (see the given Hint
in the exercise):

G129 = Q91 = // Vg - Vo dedy = / Vo - Vi dxdy
Q K

- //Kl —ldzdy = —p(Ky) = —1/2.

Similarly we now calculate asy. Since @o(z,y) only is non-zero on triangles K; and Ky
it is enough to integrate over these triangles. On K, @s(z,y) = x so there Vo = (1,0),
and on Ky, ps(x,y) = 2 — (x + 2y) so there Vs = (—1,—2). This gives that

= / Vs - Vo drdy +/ Vi, - Vg dady
K; K>

:// 1d:vdy+// Sdrdy =1/2+5/2 = 3.
K1 K2

In the same way as above one gets that a;; = 1, azs = 2, ay = %, O43 = Q34 = —1,
15 = 451 = —%, Qg5 = Gsp = —1, a3 = azg = —%, ags = Q53 = % and a5 = a5y = —i-
Thus:

1 —1/2 0 0 —1/2

-1/2 3 -3/2 0 -1

A= 0 -3/2 2 -1 1/2

0 0 -1 5/4 —1/4

-1/2 -1 1/2 —-1/4 5/4
O
Problem 3. Let P(K) = {v(z) = ¢y + 121 + 222, ¢; € R, 1 =1,2,3; x = (21,22) € K}
be the space of linear polynomials defined on a triangle K with corners a', a?, and a3.

Derive explicit expressions (in terms of the corner coordinates a' = (al, a), a® = (a2, a2),



and a® = (a3, a3)) for the gradients VA1, Vg, V3 of the basis functions A;, Ay, A3 € P(K)

defined by
M) =4
0 t#7,
with 7,7 = 1,2,3. Compare with the corresponding expressions in your Matlab-function
MyFirst2DPoissonAssembler.
Hint: Use the result from Problem 3 (Week 6).
Solution: Since v(x) = ¢o + 121 + cox2, we have Vv(z) = (c1,¢2). All we have to do

to determine the gradients is then to identify the coefficients ¢; and ¢o. From Problem 8
(Week 6), we get

1

V)‘l = detA(ag - aga a? - a%)a
1

V)‘Q = detA(a’g - a’%a a} - LL?),
1

VAQ = detA(a%_a’gﬁ a’%_a’%)a

where det A = a3aj + aad — alas — a3a3 —ajad +aja3 = 2 u(K), where p(K) is the area of

K. (Cf. Problem 4 (Week 6).) Note that the gradients are constant, which is a property
of a plane. O

Problem 4. Consider once more the triangulation of = [0, 2] x [0, 1] into 3 triangles
drawn in Figure 1. Let I' = 02 denote the boundary of 2. Assuming that y(z, y) = 1,
gp(z,y) =1+ z+vy, and gy(z, y) = 0, compute by hand:
(a) The “boundary matrix” R with elements r;; = [y @j¢ids, i,j =1,...,5.
(b) The “boundary vector” rv with elements rv; = [.(ygp — gn) pids, i =1,...,5.

Hint: You can either compute the curve integrals analytically or use Simpson’s formula
which is exact in this case.
Solution: Start by dividing and numbering the boundary I' into five segments I';, 1 =
1,...,5 according to Figure 2.
(a) The first row of the “boundary matrix” is now computed using Simpson’s rule. When
doing this we have to keep track of where the basis functions are non-zero. For instance,
1 is identically equal to zero on the boundary except on the segments ['; and I's. Further,
the value of ¢; at the midpoints of I'y and I'; is % Since v =1 this gives:

1 1
rllszfds:/ gofds—i—/ w%ds:/ ©1(0, y)Qdy‘i‘/ o1(z, 0)* dx
I I's I'y 0 0

1-1+4-1-L40-0 1-1+4-L.140-.0
= {Simpson’s rule} = 2 -1+ -1

1, 1
2 2
6 6
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Figure 2: Problem 4 (Week 7). The five segments of I

Since ¢; and ¢, are non-zero simultaneously only on I'; we get:

! 0-1+4-2-141-0 1
7“12:/ €02<P1d8:/ p2(z, 0)p1(z, 0)do = é. 2 =
I 0
and analogously:
! 0-1+4-L.-141.0 1
7"15:/ 905§01d3:/ 05(0, ¥)¢1(0, y) dy = - =g
I's 0

The matrix element 3 = 0 since ¢; and ¢3 don’t overlap on any boundary segment.
The same reasoning leads to 74 = 0. Similar computations give the rest of the matrix
elements (also note that R is symmetric), we just have to remember how long the boundary
segments are. (Be careful with the integrals over I'y; don’t forget that this segment has
length 2!) The final result is:

WIND |+

Wi = O
—ol- O O

symm.

—wli= O ool

(b) We start by computing the first component rvy of the “boundary vector” rv. Since
v=1,9p =142z +y and gy = 0 the integrand becomes (1 + z + y) ¢1(z, y). Note that
since ¢y is non-zero only on I'; and I's; we need only integrate over these two boundary
segments. Further note that y = 0 on I'y and that x =0 on I'5:

rV1=/F(1—|—33+y)§01(l“, y)ds=/F (142 +0)¢i(z, 0)d3+/ (1+0+9) (0, y)ds

T's
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1 1
={ds=dronTi;ds=dyonls}= [ (1+z)pi(z,0)dz —|—/ (14+y)p1(0, y) dy
0 0

1-1+4-2.142.0 1-1+4-2.142.0
={Simpson’s rule} = é 2 14 é 2 1
_4+4_4
6 6 3

Continuing in the same way gives the rest of the elements:

rvzz/r(l—i—x—i-y)gag(x, y)ds=/

I'

(142 +0) ps(a, 0)ds—|—/ (142 +0) po(z, 0) ds

Ty

2
={ds=dzonT'; UTly} = (1 + ) po(x, 0) dx —I—/ (14 z) pa(z, 0)dz
10+4§ 1421 2:14+4-2.243.0
={Simpson’s rule} = é 2 14+ (23 2 1
5 7
=S4 - =9
6 * 6 ’

rv3=/r(1+x+y)<,03(m, y)ds=/

(14+2+0) p3(z, 0)d8—|—/ (1+2+y)ps(2, y)ds
I'»

T3

2 1
={ds=dronTy;ds=dyon '3} = | (1+z)ps(z, 0)dx —I—/ B+ y) ps(2, y) dy
1 0

2:0+4-2-143.1 3-1+4-72-144.0
={Simpson’s rule} = é 2 14+ (23 2 1
8 10
= — _— = 3
6 * 6 ’

rio= [0t e s = [

(14+2+y) pa(2, y)d8—|—/ (1+z+4+1)ps(x, 1)ds
Ts

Ty

1 2
={ds=dyonTs;ds=dronTs} = [ 3+vy)ws2, y)dy+ / (2+ ) ps(z, 1) dz
0 0

3-04+4-2.144.1 2-04+4-3-244-1
={Simpson’s rule} = ha é 2 " -1+ ha 5 2 -2
_11+20_51
6 6 6

rv5:/r(1+x+y)g05(x, y)ds:/

I'g

14z +1)@s(z, l)ds—i-/ (1+04+1y)ps5(0, y)ds

Ts

2 1
={ds=dr onTy; ds =dy on I's} = 2+ z) ps(z, 1) dx —I—/ (1+1vy) es(0, y) dy
0 0

5



2:1+4-3-144-0 1-04+4-3-142.1
={Simpson’s rule} = G 2 -2+ é 2 -1
16 5 1
=—42=3_.
6 * 6 2
U
Problem 5. Show that the equation:
// VU - Vudx dy :/ fvdxdy for all v € Vy, (1)
Q Q
is equivalent to
//VU-Vgpidxdyz/ foidedy fori=1,... N, (2)
Q Q

where N is the number of internal nodes (“nintnodes”) and {¢;}Y | is the basis of “tent-
functions” in V.

Solution:

=: We assume that (1) is true:

//QVU-Vvdxdy:/vadxdy Yv e Vy,
and want to show that this implies that (2) is true:
//QVU-Vgoidxdy:/ Qfgpidacdy 1=1,...,N.
But since (1) holds for all v € Vjp and ¢; € Vp, i = 1,..., N, it’s for sure that (1)

implies (2).
<: We now assume that (2) is true:

//VU-Vgoidxdy:/ foidedy 1=1,..., N,
Q Q

and want to show that this implies that (1) is true:

// VU - Vvdxdy—// fvdzdy Vv e Vi

Since {p;}N | is a basis for Vjg, every v € Vjg can be written:

N
= Z C; (,01(37, y)
=1



for some constants ¢;, i = 1,..., N. Multiply (2) with arbitrary constants ¢; for all i =
1,..., N. If we add it all together, we get:

// VU - V(c1¢1) dzdy + // VU - V(cap2) dxdy + - - - + // VU - V(eyen) dzdy
Q Q Q

2// feior d:vdy—l—// f02¢2dxdy+---—|—// fenon dxdy,
Q Q Q

and hence:
N N
// VU'V(ZCiSOi)dxd?JZ// f(zci%') dzdy, (3)
Q2 i=1 & =1
for arbitrary constants ¢;, : = 1,..., N. Since (3) holds for every set of constants {c;}Y ,,
we conclude that (1) holds for all v € Vj. O

Problem 6*. Show that the problem: find U € V} such that

// VU - Vwdz dy = // fwdxdy for all w € Vi, (4)
Q Q

is equivalent to the minimization problem: find U € V}, such that

1 1
—//VU-VUda:dy—//fdedyz min—//Vv-Vvdxdy—//fvda:dy. (5)
2 Q Q UEVh()Q Q Q

Solution:
U
Problem 7*.
(a) Consider the quadratic equation
at’ + bt + ¢ = 0, (6)

Investigate under what condition on the coefficients a, b, ¢ equation (6) does not have two
distinct real roots.
(b) Prove the Cauchy-Schwarz inequality:

[ [ vwdsdy) < Nollo ol ™
Q

Hint: start from the fact that ||v+tw||%2(9) > 0. Expanding ||v+tw||%2(m gives a quadratic
polynomial which can not have two distinct real roots (why?). Use (a) to prove the Cauchy-
Schwarz inequality.

Solution:



Problem 8. Calculate ||V f||12q) where Q = [0,1] x [0,1] and

(a) f = 2173

(b) f = sin(nz;)sin(mxs) with n and m arbitrary integers. What happens when n,m
tends to infinity?

Solution:

(a) Recall that the gradient, V f, of a scalar function f(x,z2) is a vector with the partial
derivatives of f as components:

af o
Vf= (a—jl, a—i) = (22, 2z122).

Now, using the definition of the L?-norm we get:

IV fll720 =//Q|Vf|2dx1da:2://QVf-Vfdxldxg://93534—430?3:3(&131(1@

1 1 1
= / / (x5 + 42%22) doods, = / [La5 + %xfxg]é dz,
o Jo 0
! 29

1, 4,2 _I1 431_1 4_
:/O(g+§$1)d$1—[5$1+§£E1]0—5+§—4—5,

i.e. we have the answer ||V f|2@) = /2.
(b) First note that if n = 0 and/or m = 0 we have f = 0 and therefore Vf = (0, 0) and

IV fllz2@) = 0. If n # 0 and m # 0 we first, as in (a), compute the gradient vector V f of
the function f(z1,zs):

V[ = (ncos(nxq) sin(mxsy), msin(nz) cos(mas)).

As above, we then compute:

||Vf||%2(9) = //Q (n? cos®(nz1) sin®(ma) + m* sin®(na,) cos®(mas)) dzidzs.
This looks a bit nasty but using the well known trigonometric formulas
sin @ = (1 —cos2a), cos’a =3 (1+cos2a)

we can rewrite the integral, which then equals:

2 2
// (%(1 + cos2nxq)(1 — cos 2mz,y) + mT(I — cos 2nx1)(1 + cos 2mx2)) dxidxs.
0



Since the factors in the integrand are independent of each other we can break the
integral into four separate and simple parts. We thus have:

n? [l 1
||Vf||%2(9) = Z/o (1 + cos2nzx;) dxl/o (1 — cos 2mxs) dzs
m2 [ 1
+ T/‘ (1 — cos2nxq) dxl/ (1 + cos 2mus) dao
0 0
n? sin 2nz,1* sin2mz; 1t m?2 sin 2nz, 1" sin 2mao "
= o+ | oy T | - | [ 2
4 2n 0 2m 0 4 2n 0 2m 0
n

_ 2 1+sin2n 1 sin 2m +m2 1 sin 2n 1+sin2m
4 2n 2m 4 2n 2m )

If we let n, m tend to infinity the terms involving sine tend to zero because of the big
terms in the denominators and we are left with

2 2
9 n m
||Vf||L2(Q) ~ 1 + e — 00 n,m — Q.

This can be understood if we consider the effect of n in the expression sinnz;. The
integer n determines how fast the function will oscillate, i.e., the frequency. As n tends
to infinity the function will oscillate increasingly faster, causing its derivative to become
large. And since the norm is a measure of the gradient’s size, it will become infinite in the
limit. O

Problem 9. Let u = z172 and a = 1 + x3. Calculate
(a) Vu.

(b) Au.

(c) V-aVu.

Solution:

(a)

8301’ 6—3:2

Vu = <% 8u> = (23, 2z129)

(b)
o 9

A s . = _ —
u=V-Vu (83:1’8:162

) . (.’Eg, 2.’131I2) =0+ 2.’[)1 = 21‘1
0o 0
V- (aVu) = (8—331’ 8—962) - (14 23) (23, 22125)

g 0
- (aT’ 57) (a5 + 23, 2mzy + 2ma)
1 2

9



= 2z, + 67,23

U
Problem 10. Consider the problem: find u such that
—Au+cu=f in Q, (8)
u=gp on I'p, 9)
—n-Vu =gy on 'y, (10)

where ¢ = ¢(z, y) > 0, with the usual notation.

(a) Derive a finite element method for this problem using approximation of the Dirichlet
boundary condition.

(b) Prove that the finite element solution is unique when 1. ¢ > 0 and 2. I'p is non-empty.
Solution:

(a) We approximate the Dirichlet boundary condition (9) by

—n-Vu=v(u—gp) onTp, (11)

where v >> 0.
Multiply the differential equation (8) by a function v = v(z, y) and integrate over :

_//Sz(Au)vdxdy—k//S)cuvdxdy://vadivdy-

Integrate by parts in the first term:

—/(n-Vu)vds+// Vu-Vvd:vdy+//cuvdwdyz//fvdxdy.
r Q Q Q

Use the boundary conditions (10) and (11) to replace —(n - Vu) in the boundary integral:

/ ngds+/ ’Y(U—QD)Ud8+// Vu-Vvda:dy+//cuvdxdy://fvdxdy.
I'n T'p Q Q Q

We now state the variational formulation: Find u € V such that

/ fyuvds—l—// Vu-Vvda:dy+//cuvd:rdy:
T'p 9} 9)

/ ’ygDvds—/ ngds+// fvdxdy forallveV, (12)
I'p 'y Q

where V' is the space of functions that are smooth enough for the integrals in (12) to exist.
The corresponding Finite Element Method reads: Find U € V), such that

/ fyUUds—i—//VU-Vvdxdy-l—//chd:cdy:
T'p 9} 9}

10



/ Ygpv ds — / gnvds +/ fvdxdy for all v € Vj, (13)
T'p I'n Q

where V}, is the space of continuous, piece-wise linear functions on a given triangulation of
Q.

(b) Assume that there are two solutions Uy, Uy € V}, to (13):

/ 7Ulvds+/ vU; - Vvdacdy+// clvdzdy =
Q
/ VgDvds—/ Nvds+// fvdzdy for all v € Vj,
I'n

~yUsv d8+/ VU, - Vv d:vdy-l—// cUsv dzdy =
T'p Q

/ Dvds—/ gm}dS—i—// fvdxdy for all v € Vj,.
T'p I'n Q

Subtraction gives:

/ v(Uy — Us)vds +/ V(U; — Us) - Vodzdy + // c(Uy — Uy)v dzdy = 0,
T'p Q

Q

for all v € V},. Now choose v =U; — Uy € Vj;:

/FD (U, — Uy)*ds + //Q \V (U, — Uy) [* dady + //Q c(Uy — Uy)? dxdy = 0. (14)

Since all three terms on the left-hand side are non-negative they must all be equal to 0:

/ ’}’(Ul - U2)2 ds = 0, (15)

/me—@wmw:m (16)

//Q c(Uy = Uy)? dxdy = 0. (17)

We now consider the two cases separately:

1. If ¢ > 0 equation (17) immediately implies that U; — Uy = 0 in €, i.e., U; = Us in €.
2. If we only know that ¢ > 0, but I'p is non-empty, we can first use (16) to conclude that
V(Ui — Uy)| = 01in Q, ie., Uy — Us is constant in ). Then we use (15) to conclude that
Uy — Uy =0 on I'p, but then the constant must be 0 and we have that U; — Uy = 0 in €2,
i.e., Uy = U, in ).

11



Remark. Since existence and uniqueness is equivalent for quadratic linear systems of equa-
tions, we have also proved existence of a solution to our Finite Element Method.

]
Problem 11. Let K be a triangle with corners (0, 0), (0,1), and (1,0), and let f(x;, 22) =

7?2 + 5. Calculate
// f(:cl, .TQ) dﬂ?ld.TQ,
K
using

(a) one-point (“center of mass”) quadrature,

(b) corner (“node”) quadrature,

(c) mid-point (of the triangle sides) quadrature.

Also compute the integral analytically and compare with your results above.
Solution: Denote the area of K by pu(K), i.e., u(K) = 3.
(a) The co-ordinates for the center of mass of a triangle, (zcam, you), are the mean values
of the co-ordinates of the corners:

. (O, 0)+(0, 1)+(1,0) _ 11
(iCCM, yCM) = 3 = (57 g)

//K f(z1, 22) dridzy = f(xom, you) p(K) = ((%)2 n %) ,

(b)
[[ st ) ey » FOOTIODEILO, gy L 00 2d 2
(c)

Thus:

3 3 2 3

//K f(z1, z2) dr1dzy ~ £0,1/2) + f(1/2?: 0) + f(1/2, 1/2) ()

C1/2+1/443/4 1 1

3 2 4

We know that the quadrature rule in (c) should give the exact result in this case, since
f is a polynomial of degree 2. We check:

//K f(x1, o) dxr1dxy = /01 (/Olwl (2% + 22) dxg) dz,
1

1 To=1-x1 1 1
= / |:IL'§.I2 + —x%} dr, = / (x%(l —z1)+ =(1— x1)2) dxy
0 2 x2=0 0 2

12




1 r1=1
1 3 1 1 1 1 1 1 1 1 1

Problem 12. Let K be a triangle with corners (0,0), (0, 1), and (1,0).

(a) Calculate the three basis functions );, i = 1,2, 3, for the space P(K) of linear functions
defined on K.

(b) Calculate the 3 x 3 element mass matrix with elements m;; = [[, A\;\; dz dy approxi-
mately using corner quadrature.

(c) Calculate the 3 x 3 element stiffness matrix with elements a;; = [[, VA; - VA dz dy.
Solution: Denote the area of K by u(K), i.e., u(K) = 3. We also introduce the node
numbering N; = (0,0), N, = (0,1), and N3 = (1,0).

(a) You can compute the basis functions in the same way as you did in Problem 2(a)
(Week 5). An alternative is to argue as follows: The basis function A3(z, y) is equal to 1
in (1,0) and is equal to 0 for z = 0. It therefore has to be A3(z, y) = z, since this is a
linear function that obviously satisfies these two requirements. (And linear functions are
uniquely determined by their nodal values.) By the same argument we have \s(z, y) = y.
Finally we know that \;(x, y) + Aa(z, y) + A3(z, y) = 1 since the sum is a linear function
that is equal to 1 in all three nodes. Therefore A\ (z, y) = 1—A3(z, y) —Aa(z, y) = 1—z—y.
(b) With corner (node) quadrature we approximate:

j i\Y, j :]- ) 51 ']-a ila
mz-jz//K)\j)\idxdy%)\J(O’o)/\(o 0 40 MO DA AL OMLO) ey

If 7 # j at least one of the factors A; and ); is zero in each corner and therefore m;; = 0.
If i = 5 we get:

)\i ) /\z P )\Z s 1 /\Z , 1 AZ 1’ )\Z 1,
mii:// i dz dy ~ (0, 0)Ai(0, 0) + Ai(0, 1)Ai(0, 1) + As(1, 0)Ai( O)M(K)
K
12 1 1

3

=337 %
since A; is equal to 1 in one node and equal to 0 in the other two nodes.
The final result is therefore:

[1/6 0 0 1
0 1/6 0
[ 0 0 1/6J

(c) Since the gradient of a linear function is constant we can move the integrand outside
the integral:

1
K N
H(K)

13



From (a) we can compute: VA, = (-1, —1), VAy = (0, 1) and VA3 = (1, 0). We thus
get: VA - VA =2, VA - VA =1, VA3 - VA3 =1, VA - VX = VXA - VA = 1,
V/\l : V/\g = VAg . V/\l = —1 and VAQ . V)\g, = V)\g, . V/\g =0.

The final result is therefore:

1 —1/2 —1/2

~-1/2 1/2 0
~1/2 0 1/2

14



