NOTES ON TIME DEPENDENT PROBLEMS

1. The Model Problem

We consider the following time dependent model problem,

$$\begin{array}{rcl} \dot{u} - (au')' & = & f, & x_{\min} < x < x_{\max}, & 0 < t < T, \\ \\ u(x_{\min}, t) & = & 0, & 0 < t < T, \\ u(x_{\max}, t) & = & 0, & 0 < t < T, \\ \\ u(x, 0) & = & u_0(x), & x_{\min} < x < x_{\max}, \end{array}$$

where u = u(x,t) is the unknown function that we wish to compute, with time derivative, $\frac{\partial u}{\partial t}$, denoted by \dot{u} , and x-derivative, $\frac{\partial u}{\partial x}$, denoted by u'. The functions a = a(x,t) and f = f(x,t) are data to the problem. We also need to specify boundary data: in (1) we have homogeneous Dirichlet boundary conditions at both end-points, $x = x_{\min}$, x_{\max} , for all times, 0 < t < T, and initial data: $u_0(x)$, which specifies the solution, for $x_{\min} < x < x_{\max}$, at time t = 0.

2. The Numerical Method

We construct a numerical method by first discretizing in space (using finite elements) to obtain a finite dimensional system of linear, ordinary differential equations. We then discretize in time and solve the system of ODE numerically (using the backward Euler method).

2.1. Space Discretization.

2.1.1. Variational Formulation. Multiply the differential equation in (1) by a test function $v(x) \in H_0^1([x_{\min}, x_{\max}]) := \left\{v(x): \int_{x_{\min}}^{x_{\max}} v'(x)^2 dx < \infty, \ v(x_{\min}) = v(x_{\max}) = 0\right\}$, and integrate over $[x_{\min}, x_{\max}]$:

$$\int_{x_{\min}}^{x_{\max}} \dot{u}v \, dx \, - \, \int_{x_{\min}}^{x_{\max}} (au')' v \, dx \, = \, \int_{x_{\min}}^{x_{\max}} fv \, dx, \quad 0 < t < T.$$

We now integrate by parts:

$$\int_{x_{\min}}^{x_{\max}} \dot{u}v \, dx \, - \, \left[(au')v \right]_{x=x_{\min}}^{x=x_{\max}} \, + \, \int_{x_{\min}}^{x_{\max}} au'v' \, dx \, = \, \int_{x_{\min}}^{x_{\max}} fv \, dx, \quad 0 < t < T.$$

Since

$$v(x_{\min}) = v(x_{\max}) = 0,$$

we obtain

$$\int_{x_{\min}}^{x_{\max}} \dot{u}v \, dx \, + \, \int_{x_{\min}}^{x_{\max}} au'v' \, dx \, = \, \int_{x_{\min}}^{x_{\max}} fv \, dx, \quad 0 < t < T.$$

We now state the following variational formulation of (1):

Find u(x,t) such that, for every fixed t: $u(x,t) \in H_0^1([x_{\min}, x_{\max}])$, and

Date: March 31, 2003.

(2)
$$\int_{x_{\min}}^{x_{\max}} \dot{u}v \, dx + \int_{x_{\min}}^{x_{\max}} au'v' \, dx = \int_{x_{\min}}^{x_{\max}} fv \, dx, \quad 0 < t < T, \quad \forall v \in H_0^1([x_{\min}, x_{\max}]).$$

2.1.2. Discretization in Space. In order to discretize (2) in space, we introduce the vector space, $\overset{\circ}{V_h}$, of continuous, piecewise linear functions, v(x), on a partition, $x_{\min} = x_0 < x_1 < \ldots < x_N < x_{N+1} = x_{\max}$, of $[x_{\min}, x_{\max}]$, such that $v(x_{\min}) = v(x_{\max}) = 0$, and state the following (space) discrete counterpart of (2):

Find U(x,t) such that, for every fixed t: $U(x,t) \in \stackrel{\circ}{V_h}$, and

(3)
$$\int_{x_0}^{x_{N+1}} \dot{U}v \, dx + \int_{x_0}^{x_{N+1}} aU'v' \, dx = \int_{x_0}^{x_{N+1}} fv \, dx, \quad 0 < t < T, \quad \forall v \in \stackrel{\circ}{V_h}.$$

2.1.3. Ansatz. We now seek a solution, U(x,t), to (3), expressed (for every fixed t) in the basis of hat functions $\{\varphi_i\}_{i=1}^N \subset \stackrel{\circ}{V_h}$. (Note that φ_0 and φ_{N+1} do not belong to the basis, since all functions in $\stackrel{\circ}{V_h}$ are zero at the end-points.) In other words, we make the Ansatz

(4)
$$U(x,t) = \sum_{j=1}^{N} \xi_j(t)\varphi_j(x),$$

and seek to determine the (time dependent) coefficient vector

$$\xi(t) = \begin{bmatrix} \xi_1(t) \\ \xi_2(t) \\ \vdots \\ \xi_N(t) \end{bmatrix} = \begin{bmatrix} U(x_1, t) \\ U(x_2, t) \\ \vdots \\ U(x_N, t) \end{bmatrix},$$

of nodal values of U(x,t), in such a way that (3) is satisfied.

Consider very carefully the structure of U(x,t) in (4): For every fixed time, t, we note that U(x,t), as a function of x, is a continuous, piecewise linear function with weights given by $\xi(t)$.

2.1.4. Construction of Space Discrete System of ODE. We substitute (4) into (3):

(5)
$$\sum_{j=1}^{N} \dot{\xi_{j}}(t) \left(\int_{x_{0}}^{x_{N+1}} \varphi_{j} v \, dx \right) + \sum_{j=1}^{N} \xi_{j}(t) \left(\int_{x_{0}}^{x_{N+1}} a \, \varphi'_{j} v' \, dx \right) = \int_{x_{0}}^{x_{N+1}} f v \, dx,$$
$$0 < t < T, \quad \forall v \in \stackrel{\circ}{V_{h}}.$$

Since $\{\varphi_i\}_{i=1}^N \subset \stackrel{\circ}{V_h}$ is a basis for $\stackrel{\circ}{V_h}$, (5) is equivalent to

(6)
$$\sum_{j=1}^{N} \dot{\xi_{j}}(t) \left(\int_{x_{0}}^{x_{N+1}} \varphi_{j} \varphi_{i} dx \right) + \sum_{j=1}^{N} \xi_{j}(t) \left(\int_{x_{0}}^{x_{N+1}} a \varphi_{j}' \varphi_{i}' dx \right) = \int_{x_{0}}^{x_{N+1}} f \varphi_{i} dx,$$

$$0 < t < T, \quad i = 1, \dots, N,$$

which is an N-dimensional system of linear, ordinary differential equations. Introducing the notation

$$m_{ij} = \int_{x_0}^{x_{N+1}} \varphi_j(x) \varphi_i(x) \, dx,$$

$$a_{ij}(t) = \int_{x_0}^{x_{N+1}} a(x,t)\,\varphi_j'(x)\varphi_i'(x)\,dx,$$

$$b_i(t) = \int_{x_0}^{x_{N+1}} f(x, t) \varphi_i(x) dx,$$

we can write the system of linear, ordinary differential equations (6), as:

$$\begin{cases} m_{11} \, \dot{\xi_1}(t) & + & \dots & + & m_{1N} \, \dot{\xi_N}(t) & + & a_{11}(t) \, \xi_1(t) & + & \dots & + & a_{1N}(t) \, \xi_N(t) & = & b_1(t), \\ m_{21} \, \dot{\xi_1}(t) & + & \dots & + & m_{2N} \, \dot{\xi_N}(t) & + & a_{21}(t) \, \xi_1(t) & + & \dots & + & a_{2N}(t) \, \xi_N(t) & = & b_2(t), \\ \vdots & & \vdots \\ m_{N1} \, \dot{\xi_1}(t) & + & \dots & + & m_{NN} \, \dot{\xi_N}(t) & + & a_{N1}(t) \, \xi_1(t) & + & \dots & + & a_{NN}(t) \, \xi_N(t) & = & b_N(t), \\ 0 < t < T. \end{cases}$$

In matrix form, this reads

(7)
$$M \dot{\xi}(t) + A(t) \xi(t) = b(t), \quad 0 < t < T,$$

where
$$M = \left[\begin{array}{ccc} m_{11} & \dots & m_{1\mathrm{N}} \\ \vdots & \ddots & \vdots \\ m_{\mathrm{N}1} & \dots & m_{\mathrm{N}\mathrm{N}} \end{array} \right]$$
 is the $\mathit{mass\ matrix},$

$$A(t) = \left[egin{array}{cccc} a_{11}(t) & \dots & a_{1N}(t) \\ & \vdots & \ddots & \vdots \\ & a_{N1}(t) & \dots & a_{NN}(t) \end{array}
ight] ext{ is the (possibly time dependent) } stiffness \ matrix, \ ext{and}$$

$$b(t) = \left[egin{array}{c} b_1(t) \ dots \ b_{
m N}(t) \end{array}
ight]$$
 is the (possibly time dependent) $load\ vector.$

2.2. **Time Discretization.** To discretize (7) in time, let $0 = t_0 < t_1 < t_2 < \cdots < t_L = T$ be discrete time levels with corresponding time steps $k_n = t_n - t_{n-1}$, $n = 1, \ldots, L$. Further, let ξ^n denote the approximation of $\xi(t_n)$, $n = 1, \ldots, L$.

There are different possible choices of initial data, $\xi^0 = \xi(0)$, to (7): the simplest is

$$\xi^{0} = \begin{bmatrix} \xi_{1}(0) \\ \xi_{2}(0) \\ \vdots \\ \xi_{N}(0) \end{bmatrix} = \begin{bmatrix} u_{0}(x_{1}) \\ u_{0}(x_{2}) \\ \vdots \\ u_{0}(x_{N}) \end{bmatrix},$$

which corresponds to letting $U(x,0) = \sum_{j=1}^{N} \xi_{j}(0)\varphi_{j}(x)$ be the *nodal interpolant* of $u_{0}(x) = u(x,0)$. (An alternative would be to choose U(x,0) as the $L_{2}([x_{\min}, x_{\max}])$ -projection of u_{0} , but then we would need to *compute* ξ^{0} .)

We now integrate (7) (element-wise) over one time interval $[t_{n-1}, t_n]$:

$$\int_{t_{n-1}}^{t_n} M \,\dot{\xi}(t) \,dt \,+\, \int_{t_{n-1}}^{t_n} A(t) \,\xi(t) \,dt \,=\, \int_{t_{n-1}}^{t_n} b(t) \,dt.$$

Since M is a constant matrix, we get:

(8)
$$M(\xi(t_n) - \xi(t_{n-1})) + \int_{t_{n-1}}^{t_n} A(t) \, \xi(t) \, dt = \int_{t_{n-1}}^{t_n} b(t) \, dt.$$

Given an approximation, ξ^{n-1} , of $\xi(t_{n-1})$, approximating the integrals in (8) using right end-point quadrature gives the backward Euler method defining ξ^n by

$$M(\xi^n - \xi^{n-1}) + A(t_n)\xi^n k_n = b(t_n)k_n$$

i.e.,

(9)
$$M\frac{\xi^n - \xi^{n-1}}{k} + A(t_n)\xi^n = b(t_n).$$

For solving (7) using the backward Euler method we can now state the following algorithm:

Given $\xi^0 = \xi(0)$. For $n = 1, \dots, L$: Solve the linear system of equations

$$(10) (M + k_n A_n) \xi^n = M \xi^{n-1} + k_n b_n.$$

In (10) we have introduced the notation

$$A_n = A(t_n), \quad b_n = b(t_n).$$

Remark. Observe the similarity between (7) and (9): We may alternatively view the backward Euler method as approximating the derivative by a difference quotient, and evaluating the other terms at the right end-point of the time interval.