Differential Equations and Scientific Computing, part A
NOTES ON TIME DEPENDENT PROBLEMS

1. THE MODEL PROBLEM

We consider the following time dependent model problem,

o —(au') = f, Tmin < T < Tmax, 0<t<T,

u(xminyt) = 07 0<t< T,

(1) u(Tmax,t) = 0, 0<t<T,
U(JE, 0) = UO(w)a Tmin < T < Tmax;

where u = wu(z,t) is the unknown function that we wish to compute, with time derivative, ‘g—’;,
denoted by %, and z-derivative, %, denoted by u'. The functions a = a(z,t) and f = f(z,t)
are data to the problem. We also need to specify boundary data: in (1) we have homogeneous
Dirichlet boundary conditions at both end-points, T = Tyin, Tmax, for all times, 0 < t < T, and
ingtial data: ug(z), which specifies the solution, for Zpyin < T < Tmax, at time ¢t = 0.

2. THE NUMERICAL METHOD

We construct a numerical method by first discretizing in space (using finite elements) to obtain
a finite dimensional system of linear, ordinary differential equations. We then discretize in time
and solve the system of ODE numerically (using the backward Euler method).

2.1. Space Discretization.
2.1.1. Variational Formulation. Multiply the differential equation in (1) by a test function v(x) €

H} ([Zmin, Tmax]) = {y(g;) : f;::" v'(z)? dx < 00, V(Tmin) = V(Tmax) = 0}, and integrate over

[wmin; xmax]:

Tmax Tmax Tmax
/ wdr — / (au')'vdx = / fvdz, 0<t<T.
T x

min Zmin min

We now integrate by parts:

Tmax Tmax Tmax
/ wdz — [(au)v]g_om> + / au'v'dz = / fvdz, 0<t<T.
T T

min ZTmin min

Since

V(Zmin) = V(Zmax) = 0,
we obtain

Tmax Tmax Tmax
/ wdr + / au'v' dz = / fodz, 0<t<T.

Zmin Zmin Zmin

We now state the following variational formulation of (1):

Find u(z,t) such that, for every fixed t: u(x,t) € H3([Zmin, Tmax]), and
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Tmax Tmax Tmax
(2) / wwdr + / au'v' dx = / fodz, 0<t<T, Yv€ H}([Tmin, Tmax])-

Zmin Zmin Zmin

2.1.2. Discretization in Space. In order to discretize (2) in space, we introduce the vector space,

o]

Vi, of continuous, piecewise linear functions, v(x), on a partition, Tmin = o < 21 < ... < Zy <
IN+1 = Tmax, Of [Tmin, Tmax], Such that v(Zmin) = v(Zmax) = 0, and state the following (space)
discrete counterpart of (2):

Find U(z,t) such that, for every fixed t: U(z,t) €V}, and

TN41 | TN+1 TN 41 °
(3) / Uvdx + / aUv'dz = / fvds, 0<t<T, VYveV,.

Zo Zo 0

2.1.3. Ansatz. We now seek a solution, U(z,t), to (3), expressed (for every fixed t) in the basis of

hat functions {goi}éil CVp,. (Note that po and o n41 do not belong to the basis, since all functions

in V}, are zero at the end-points.) In other words, we make the Ansatz

N
(4) Ulz,t) = &(t)p;(e),
j=1
and seek to determine the (time dependent) coefficient vector
&i(t) U(z1,1)
&(t) U(z2,t)
eo=| "0 = |
En(t) Uz, 1)

of nodal values of U(z,t), in such a way that (3) is satisfied.

Consider very carefully the structure of U(x,t) in (4): For every fixed time, ¢, we note that
Ul(z,t), as a function of z, is a continuous, piecewise linear function with weights given by &(t).

2.1.4. Construction of Space Discrete System of ODE. We substitute (4) into (3):

N N TN+1 N IN+1 TN+1
(5) Z é-j(t) (/ p;v da:) + Z é-j(t) (/ 030;-1)' d.Z') = / fuvdz,
j=1 o j=1 o o
0<t<T, VoeVy.
Since {%}é\;l CI;h is a basis for I;h, (5) is equivalent to
N . TN+1 N TN+1 , ) IN+1
(6) Z &(t) (/ 0ipi dx) + Z &(t) (/ ag;ip; dw) = / foide,
j=1 o j=1 o e

0<t<T, i=1,...,N,
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which is an N-dimensional system of linear, ordinary differential equations. Introducing the no-

tation

TN+1
mi; = / 0, (@)ei(x) da,

0

wi®)= [ al,t) ¢ )el(e) d

0

) = [ T e i) da,

Zo

we can write the system of linear, ordinary differential equations (6), as:

(M &) 4+ .+ min&(l) + an@® &) + ...+ a(t)Ex(D) by (t),
moq él (t) + ... + Mmon £N (t) + Qo1 (t) 61 (t) + ... + ClQN(t) §N (t) b2 (t),
4
\ MnN1 él (t) 4+ ... 4+ Mmnn é:N(t) + ani (t) 61 (t) + ... + aNN(t) §N (t) bN(t),
0<t<T.
In matriz form, this reads
(7) ME®) + A(t)E(t) = b(t), 0<t<T,
myy  --. MMN
where M = : : is the mass matriz,
mn1 ... MMNN
au(t) e alN(t)
A(t) = : : is the (possibly time dependent) stiffness matriz, and

ani(t) ... anx(t)
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bi(t)
b(t) = : is the (possibly time dependent) load vector.

bu(t)

2.2. Time Discretization. To discretize (7) in time, let 0 = ¢g < t1 <ty < --- < ty, =T be
discrete time levels with corresponding time steps k, = t, — tn—1, n = 1,..., L. Further, let &
denote the approzimation of £(t,),n=1,..., L.

There are different possible choices of initial data, £ = £(0), to (7): the simplest is

£1(0) uo(z1)
o - £2(0) _ up(z2)
en(0) o ()

which corresponds to letting U(z,0) = Ejvzl & (0)p;(x) be the nodal interpolant of up(x) =
u(z,0). (An alternative would be to choose U(z,0) as the La([Zmin, Tmax])-pProjection of ug, but
then we would need to compute £°.)

We now integrate (7) (element-wise) over one time interval [t,_1, t,]:

tn ) tn tn
Méwdt + [ A@) e dt = / b(t) dt.
tn—1 tn—1 tn—1
Since M is a constant matrix, we get:
tn

®) M(E(t) — E(tn 1)) + [ AD) ) dt = / " bt dt.

tn—1 tn—1

Given an approximation, £"~1, of £(t,_1), approximating the integrals in (8) using right end-point
quadrature gives the backward Euler method defining £ by

M(E" = €"71) + Atn)€" kn = b(tn)kn,
ie.,

n _ ¢n—1
) 2 =S A)E = ).

For solving (7) using the backward Euler method we can now state the following algorithm:

Given £° = £(0). For n =1,..., L: Solve the linear system of equations
(10) (M 4+ kpAn)E™ = ME™ + kpby,.

In (10) we have introduced the notation
Ap = Atn), bn = b(tn).
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Remark. Observe the similarity between (7) and (9): We may alternatively view the backward
Euler method as approximating the derivative by a difference quotient, and evaluating the other
terms at the right end-point of the time interval.



