Department of Mathematics Göteborg

Numerical Linear Algebra, TMA265/MMA600

Solutions to the examination October 22, 2010

1a)
$$\begin{cases} A(x + \delta x) = b + \delta b \\ Ax = b \end{cases} \Leftrightarrow A\delta x = \delta b \Leftrightarrow \delta x = A^{-1}\delta b \Rightarrow$$

$$\|\delta x\| = \|A^{-1}\delta b\| \le \|A^{-1}\| \|\delta b\| \Rightarrow \frac{\|\delta x\|}{\|x\|} \le \|A^{-1}\| \frac{\|\delta b\|}{\|x\|} = \|A^{-1}\| \|A\| \frac{\|\delta b\|}{\|A\| \|x\|} =$$

$$= \kappa(A) \frac{\|\delta b\|}{\|A\| \|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}, \text{ where the last inequality comes from } \|b\| = \|Ax\| \le \|A\| \|x\|.$$

1b) $A = LU, A^T w = u \Leftrightarrow \begin{cases} U^T v = u \\ L^T w = v \end{cases}$
Take $u = \pm 1$ with signs to make $|v_i|$ maximal, then w is realistic since we reveal the ill-
conditioning of A inherited in U

conditioning of A, inherited in U. Finally, $\frac{1}{\kappa(A)} = \frac{1}{\|A\| \|A^{-1}\|} \leq \frac{\|w\|}{\|A\| \|x\|}$, where the last inequality comes from $\|x\| = \|A^{-1}w\| \leq \|A^{-1}\| \|w\|$.

2a) See text book or lecture notes; q ≈ √M/3.
2b) "Matrix times matrix" and "solving triangular systems with many right hand sides".

3) We have from the SVD: $A = U\Sigma V^T \Leftrightarrow U^T A = \Sigma V^T$. Let $z = V^T x$ be a transformation and let rank(A) = r. Since the 2-norm is invariant under orthogonal transformations we get: $||Ax - b||_2^2 = ||U^T(Ax - b)||_2^2 = ||\Sigma V^T x - U^T b||_2^2 = ||\Sigma z - U^T b||_2^2 =$ $||\left[\begin{array}{c} \Sigma_r z_1 \\ O \end{array}\right] - \left[\begin{array}{c} U_1^T b \\ U_2^T b \end{array}\right] ||_2^2 = ||\Sigma_r z_1 - U_1^T b||_2^2 + ||U_2^T b||_2^2$ i.e. $||Ax - b||_2^2$ is minimized for $z_1 = \Sigma_r^{-1} U_1^T b$. For the minimum norm note that x = Vz and $||x||_2^2 = ||z||_2^2 = ||z_1||_2^2 + ||z_2||_2^2$ is minimized for $z_2 = O$ and then $x = Vz = V_1 z_1 + V_2 z_2 = V_1 z_1 = V_1 \Sigma_r^{-1} U_1^T b$.

4a) For
$$H = I - 2uu^T$$
 first calculate $\hat{u} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} - \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$ and normalize
to $u = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$. The Householder reflection becomes $H = I - 2uu^T = \begin{bmatrix} 1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0 \end{bmatrix}$.
Then $HAH = \begin{bmatrix} 2 & 1 & 0\\1 & 4 & 2\\0 & 2 & 3 \end{bmatrix}$.

 $\begin{aligned} \mathbf{4b)} \text{ Use a Givens rotation } R(2,3,\theta) &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & s \\ 0 & -s & c \end{bmatrix} \text{ to zero-out the } (3,1) \text{ element:} \\ R(2,3,\theta)A &= \begin{bmatrix} 2 & 0 & 1 \\ s & 3c-2s & 2c+4s \\ c & -3s+2c & -2s+4c \end{bmatrix}. \text{ By } s = 1, \ c = 0 \text{ we get the desired } R(2,3,\theta)A = \\ \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 4 \\ 0 & -3 & -2 \end{bmatrix} \text{ and then} \\ R(2,3,\theta)AR(2,3,\theta)^T &= \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 4 \\ 0 & -3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & -2 \\ 0 & -2 & 3 \end{bmatrix}. \end{aligned}$

4c) We apply spectral slicing on the tridiagonal matrix from b): $B = HAH = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 3 \end{bmatrix}$,

i.e. we want to find a factorization $B - \sigma I = LDL^T$ with $\sigma = 1$, so we should identify the elements in L and D from:

 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 2 \\ 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_1 & 1 & 0 \\ 0 & l_2 & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_1 & 0 \\ 0 & 1 & l_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} d_1 & l_1 d_1 & 0 \\ l_1 d_1 & d_2 + l_1^2 d_1 & l_2 d_2 \\ 0 & l_2 d_2 & d_3 + l_2^2 d_2 \end{bmatrix}.$ We find $d_1 = 1$, $l_1 = 1$, $d_2 = 2$, $l_2 = 1$ and $d_3 = 0$. The eigenvalues of D are ≥ 0 so the eigenvalues of A are ≥ 1 . One eigenvalue of D is 0 so one eigenvalue of A is 1.

5a) Let $x \in R(X)$ i.e. x = Xz for some z. Then $Ax = AXz = XBz \in R(X)$ so X is right invariant subspace.

5b) Let λ be an eigenvalue of B. Then $By = \lambda y$ for some eigenvector y and then $XBy = \lambda Xy \Rightarrow AXy = \lambda Xy$ so λ is also an eigenvalue of A with eigenvector Xy. **5c)** Assume X_1 contains some eigenvectors of A as columns. Then X_1 is a right invariant subspace $AX_1 = X_1D$, where D is diagonal with corresponding eigenvalues. Let now $X = [X_1 X_2]$ be non-singular. Then $X^{-1}AX = X^{-1}[AX_1 AX_2] = [X^{-1}X_1D X^{-1}AX_2] = \begin{bmatrix} D & \tilde{A}_{12} \\ O & \tilde{A}_{22} \end{bmatrix}$, so the rest of the eigenvalues of A are the eigenvalues of the smaller matrix \tilde{A}_{22} .

6) See text book or lecture notes.

7) See text book or lecture notes.