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1. (3p) Let a stock price be modeled in the following way.

S(t) = a exp
(
(r −

1

2
σ2)t + σ W(t)

)
,

whereσ > 0.

(a) Compute the variance ofS(t).

(b) Compute limt→∞ S(t) for the casesr > 1
2σ2 andr < 1

2σ2.

(c) Compute limt→∞ E
(
S(t)

)
, and limt→∞ Var

(
S(t)

)
.

Solution:
Var

(
S(t)

)
= a2e2rt

(
eσ2t − 1

)
.

2. (3p) LetP be the Lebesgue measure onΩ = [0, 1]. Find another measurẽP on Ω such that for all
subsetsA ∈ B[0, 1] such thatP(A) = 0 impliesP̃(A) = 0 (i.e. P̃ is absolute continuouswith respect
to P), but such that̃P andP are not equivalent. Remember to show that your suggested measureP̃ is
indeed a probability measure.

Solution: Get inspired by Exercise 1.10 on p. 45 in Shreve’s book.

3. (3p) Letϕ(S(T)) be the risk-neutral probability density function of the asset priceS(T) at maturity
timeT of an European call option.

(a) Derive the price of the European call option, at time 0, for the strike priceK at maturity timeT ,
where we assume that the interest rate is constantr.

(b) Let nowc be the option price above, and letc− andc+ be the prices where the strike price is
set toK − δ andK + δ respectively. We assume thatδ is "small". Give an approximation of the
value ofϕ(K).

Solution: First we have that the price of the European option at time zero is

c = c(K) = e−rT

∫∞
S(T)=K

(S(T) − K)ϕ(S(T))dS(T).

Now, differentiate twice with respect to the strike priceK gives

∂2c

∂K2
= e−rTϕ(K).

Hence we have that

ϕ(K) = erT ∂2c

∂K2
≈ erT c− − 2c + c+

δ2
.

4. (3p) Let{Zn}Nn=0 be a discrete sequence adapted to the filtrationFn. Let the sequence{Sn}Nn=0 be
such thatSN := ZN and

Sn := max
(
Zn, E(Sn+1|Fn)

)
, for n ≤ N − 1.

(The sequence{Sn} is called the Snell envelope of{Zn}.)



(a) Show that{Sn} is a supermartingale.

(b) Show that{Sn} is the smallest supermartingale such thatSn ≥ Zn for all n ≤ N, i.e. {Sn} is
dominating{Zn}.

Solution:

(a) {Sn} ≥ E(Sn+1|Fn) so{Sn} is a supermartingale.

(b) Let {An} be an arbitrary supermartingale dominating{Zn}. We will show, by induction, that
{An} will also dominate{Sn}. First we note that sinceSN = ZN, thatAN ≥ SN. Let us now
assume thatAn ≥ Sn. Then

An−1 ≥ E(An|Fn) ≥ E(Sn|Fn−1).

Furthermore, since{Ai} dominates{Zi}, we have especially thatAn−1 ≥ Zn−1. Thus

An−1 ≥ max
(
Zn−1, E(Sn|Fn−1)

)
= Sn−1.

Induction now gives us that{Ai} dominates{Si} and we are done. (The Snell envelope i used
in the study/evaluation of American options.)

5. (3p) Let
dSk(t) = αk(t)dt + βk(t)dW(t),

for all t ∈ [0, T ] andk = {1, 2}, where we also have that∫T

0

|αk(t)| dt < ∞, and
∫T

0

β2
k(t)dt < ∞.

Show thatdS1 = dS2 if and only if α1 = α2 andβ1 = β2.

Solution: One implication, i.e.⇐=, is trivial. We show the other one by lettingα := α1 − α2,
β := β1 − β2, and

X(t) :=

∫t

0

α(u)du +

∫t

0

β(u)dW(u).

Then we have that
dX2(t) = 2X(t)dX(t) + β2(t)dt.

Hence

X2(t) − X2(0) =

∫t

0

2X(u)dX(u) +

∫t

0

β2(u)du. (1)

If dS1 = dS2 then∫t

0

α1(u)du + β1(u)dW(u) =

∫t

0

α2(u)du + β2(u)dW(u).

ThenX(t) = 0 which implies, using (1), thatβ(u) = 0 for all u ∈ [0, T ]. Then from the definition
of X(t) we see that

0 = X(t) =

∫t

0

α(u)du.

Henceα(u) = 0 for all u ∈ [0, T ]. Thusα1 = α2 andβ1 = β2.



6. (4p) (Change of measure) Let(Ω,F , P) be a probability space and letZ be an almost surely non-
negative random variable withEZ = 1. For allA ∈ F , define

P̃(A) =

∫
A

Z(ω)dP(ω).

Show that̃P is a probability measure and thatẼX = E[XZ], for any non-negative random variableX.

Solution: See Theorem 1.6.1 on p. 33 in Shreve’s book.

7. (4p) (Central limit)
Let Mk be a symmetric random walk, i.e.

P(Mk+1 = Mk + 1) = P(Mk+1 = Mk − 1) =
1

2
.

Let us fix a positive integern and let us for allt such thatnt is a positive integer, define

W(n)(t) =
Mnt√

n
.

Show that asn → ∞, W(n)(t) converges to the normal distribution with mean zero and variancet.

Solution: See Theorem 3.2.1 on page 89 in Shreve’s.


