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1. (3p) Let a stock price be modeled in the following way.
S(t) = aexp((r — %O‘z)t +oW(t)),

whereo > 0.

(&) Compute the variance 6ft).
(b) Compute lim_,  S(t) for the cases > o2 andr < 102
(c) Compute lim_,o E(S(t)), and lim._, o Var(S(t)).

Solution: )
Var(S(t)) = a%e’™ (et —1).

2. (3p) LetP be the Lebesgue measure ©n= [0, 1]. Find another measui®on Q such that for all
subsetA € B[0, 1] such thal?(A) = 0 impliesﬁ”(A) =0(i.e. PP is absolute continuousith respect
to P), but such thaP andP are not equivalent. Remember to show that your suggested méaisure
indeed a probability measure.

Solution: Get inspired by Exercise 1.10 on p. 45 in Shreve’s book.

3. (3p) Letp(S(T)) be the risk-neutral probability density function of the asset @$idg at maturity
time T of an European call option.

(a) Derive the price of the European call option, at time 0, for the strike grigematurity timer,
where we assume that the interest rate is constant

(b) Let nowc be the option price above, and tet andc be the prices where the strike price is
set toK — 6 andK + & respectively. We assume thais "small”. Give an approximation of the
value of(K).

Solution: First we have that the price of the European option at time zero is

¢ =c(K) :e_TTJ (S(T) = K)e(S(T)) dS(T).
S(T)=K
Now, differentiate twice with respect to the strike pri€gives
aZC —rT
3wz = e " e(K).

Hence we have that
0% ye_—2c+cy

e(K)=e" 5 ~ 52

4. (3p) Let{Z,}\_, be a discrete sequence adapted to the filtrafign Let the sequencs,}N_, be
such thaSy := Zn and

Sn = maX(Zn)E(Sn+1 ‘-/TTL))) forn S N-—-1.

(The sequencgs,, } is called the Snell envelope ., }.)



(a) Show thafS, }is a supermartingale.
(b) Show thats,,} is the smallest supermartingale such that> Z, foralln < N, i.e.{S,.}is
dominating{Z., }.
Solution:

(@) {Sn} > E(Sny1|Fn) s0{S,}is a supermartingale.

(b) Let{A,.} be an arbitrary supermartingale dominat{zg,}. We will show, by induction, that
{A.} will also dominate(S,,}. First we note that sinc&y = Zn, thatAn > Sn. Let us now
assume thad,, > S,,.. Then

An71 2 E(Anu:n) 2 E(Sn‘fnf1 )
Furthermore, sincéA;} dominategZ;}, we have especially tha&,, 1 > Z,,_7. Thus
Anfl > maX(Zn71 y E(Sn|-7:nf1 )) = Sn71 .

Induction now gives us thd#\;} dominateqS;} and we are done. (The Snell envelope i used
in the study/evaluation of American options.)

5. (3p) Let
dSx(t) = o (t)dt + P (t) dW(t),

forall t € [0, T] andk = {1, 2}, where we also have that

T T
J loe ()] dt < o0, andJ BZ(t)dt < oo.
0 0

Show thatdS; = dS; ifand only if 6«1 = «, andf; = 2.
Solution: One implication, i.e<, is trivial. We show the other one by letting := o« — a3,

B:=p1— P2, and

t

X(t) := Jo o(u) du+ L B(u) dW(u).

Then we have that
dX?(t) = 2X(t) dX(t) + p2(t) dt.

Hence

t t

2X(u) dX(u) + L B2 (u) du. (1)

X2(t) — X2(0) :J

0
If dS; = dS; then

t

J o (u) du+ B (u) dW(u) = J o (u) du+ Bz(u) dW(u).
0 0

ThenX(t) = 0 which implies, using (1), thgb(u) = 0 for all u € [0, T]. Then from the definition
of X(t) we see that

Hencex(u) = 0forallu € [0, T]. Thusx; = x; andp1 = p2.



6. (4p) (Change of measure) Legd, 7, P) be a probability space and I&tbe an almost surely non-
negative random variable withZ = 1. For allA € F, define

P(A) = L Z(w) dP(w).

Show thaf is a probability measure and tHaX = E[XZ], for any non-negative random variat{e
Solution: See Theorem 1.6.1 on p. 33 in Shreve’s book.

7. (4p) (Central limit)
Let My be a symmetric random walk, i.e.

1
P(Myy1 =M +1) =P(My 1 = My — 1) =5

Let us fix a positive integet and let us for alk such thamt is a positive integer, define
Mnt
v’

Show that ast — oo, W™ (t) converges to the normal distribution with mean zero and variance

wim) (t) =

Solution: See Theorem 3.2.1 on page 89 in Shreve’s.



