MATHEMATICS, Chalmers and Göteborg University

Tentamen i Financial Derivative and Stochastic Analysi(CTH-TMA285) (GU-MAM695)

September 1 2006, at Väg och vatten.

Telephone back-up: Torbjörn Lundh, 0731-526320. Allowable handbook: βeta. No calculators are allowed.

1. (3p) Let a stock price be modeled in the following way.

$$S(t) = \alpha \exp\bigl((r - \frac{1}{2}\sigma^2)t + \sigma W(t)\bigr),$$

where $\sigma > 0$.

- (a) Compute the variance of S(t).
- (b) Compute $\lim_{t\to\infty} S(t)$ for the cases $r > \frac{1}{2}\sigma^2$ and $r < \frac{1}{2}\sigma^2$.
- (c) Compute $\lim_{t\to\infty} \mathbb{E}(S(t))$, and $\lim_{t\to\infty} \text{Var}(S(t))$.

Solution:

$$Var(S(t)) = a^2 e^{2rt} (e^{\sigma^2 t} - 1).$$

2. (3p) Let \mathbb{P} be the Lebesgue measure on $\Omega = [0, 1]$. Find another measure $\tilde{\mathbb{P}}$ on Ω such that for all subsets $A \in \mathcal{B}[0, 1]$ such that $\mathbb{P}(A) = 0$ implies $\tilde{\mathbb{P}}(A) = 0$ (i.e. $\tilde{\mathbb{P}}$ is *absolute continuous* with respect to \mathbb{P}), but such that $\tilde{\mathbb{P}}$ and \mathbb{P} are not equivalent. Remember to show that your suggested measure $\tilde{\mathbb{P}}$ is indeed a probability measure.

Solution: Get inspired by Exercise 1.10 on p. 45 in Shreve's book.

- 3. (3p) Let $\varphi(S(T))$ be the risk-neutral probability density function of the asset price S(T) at maturity time T of an European call option.
 - (a) Derive the price of the European call option, at time 0, for the strike price K at maturity time T, where we assume that the interest rate is constant r.
 - (b) Let now c be the option price above, and let c_- and c_+ be the prices where the strike price is set to $K \delta$ and $K + \delta$ respectively. We assume that δ is "small". Give an approximation of the value of $\phi(K)$.

Solution: First we have that the price of the European option at time zero is

$$c=c(K)=e^{-rT}\int_{S(T)=K}^{\infty}(S(T)-K)\phi(S(T))\,dS(T).$$

Now, differentiate twice with respect to the strike price K gives

$$\frac{\partial^2 c}{\partial \mathsf{K}^2} = e^{-r\mathsf{T}} \varphi(\mathsf{K}).$$

Hence we have that

$$\phi(K) = e^{r\mathsf{T}} \frac{\partial^2 c}{\partial \mathsf{K}^2} \approx e^{r\mathsf{T}} \frac{c_- - 2c + c_+}{\delta^2}.$$

4. (3p) Let $\{Z_n\}_{n=0}^N$ be a discrete sequence adapted to the filtration \mathcal{F}_n . Let the sequence $\{S_n\}_{n=0}^N$ be such that $S_N := Z_N$ and

$$S_n := \max(Z_n, \mathbb{E}(S_{n+1}|\mathcal{F}_n)), \text{ for } n \leq N-1.$$

(The sequence $\{S_n\}$ is called the Snell envelope of $\{Z_n\}$.)

- (a) Show that $\{S_n\}$ is a supermartingale.
- (b) Show that $\{S_n\}$ is the smallest supermartingale such that $S_n \ge Z_n$ for all $n \le N$, i.e. $\{S_n\}$ is dominating $\{Z_n\}$.

Solution:

- (a) $\{S_n\} \ge \mathbb{E}(S_{n+1}|\mathcal{F}_n)$ so $\{S_n\}$ is a supermartingale.
- (b) Let $\{A_n\}$ be an arbitrary supermartingale dominating $\{Z_n\}$. We will show, by induction, that $\{A_n\}$ will also dominate $\{S_n\}$. First we note that since $S_N = Z_N$, that $A_N \geq S_N$. Let us now assume that $A_n \geq S_n$. Then

$$A_{n-1} \ge \mathbb{E}(A_n | \mathcal{F}_n) \ge \mathbb{E}(S_n | \mathcal{F}_{n-1}).$$

Furthermore, since $\{A_i\}$ dominates $\{Z_i\}$, we have especially that $A_{n-1} \geq Z_{n-1}$. Thus

$$A_{n-1} \ge \max(Z_{n-1}, \mathbb{E}(S_n | \mathcal{F}_{n-1})) = S_{n-1}.$$

Induction now gives us that $\{A_i\}$ dominates $\{S_i\}$ and we are done. (The Snell envelope i used in the study/evaluation of American options.)

5. (3p) Let

$$dS_k(t) = \alpha_k(t)dt + \beta_k(t) dW(t),$$

for all $t \in [0, T]$ and $k = \{1, 2\}$, where we also have that

$$\int_0^T |\alpha_k(t)|\,dt < \infty, \text{ and } \int_0^T \beta_k^2(t)\,dt < \infty.$$

Show that $dS_1 = dS_2$ if and only if $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$.

Solution: One implication, i.e. \Leftarrow , is trivial. We show the other one by letting $\alpha := \alpha_1 - \alpha_2$, $\beta := \beta_1 - \beta_2$, and

$$X(t) := \int_0^t \alpha(u) du + \int_0^t \beta(u) dW(u).$$

Then we have that

$$dX^{2}(t) = 2X(t) dX(t) + \beta^{2}(t) dt.$$

Hence

$$X^{2}(t) - X^{2}(0) = \int_{0}^{t} 2X(u) dX(u) + \int_{0}^{t} \beta^{2}(u) du.$$
 (1)

If $dS_1 = dS_2$ then

$$\int_0^t \alpha_1(u) \, du + \beta_1(u) \, dW(u) = \int_0^t \alpha_2(u) \, du + \beta_2(u) \, dW(u).$$

Then X(t)=0 which implies, using (1), that $\beta(u)=0$ for all $u\in[0,T]$. Then from the definition of X(t) we see that

$$0 = X(t) = \int_0^t \alpha(u) du.$$

Hence $\alpha(u) = 0$ for all $u \in [0, T]$. Thus $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$.

6. (4p) (Change of measure) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let Z be an almost surely nonnegative random variable with $\mathbb{E}Z = 1$. For all $A \in \mathcal{F}$, define

$$\widetilde{\mathbb{P}}(A) = \int_A Z(\omega) \, dP(\omega).$$

Show that $\widetilde{\mathbb{P}}$ is a probability measure and that $\widetilde{\mathbb{E}}X=\mathbb{E}[XZ]$, for any non-negative random variable X. Solution: See Theorem 1.6.1 on p. 33 in Shreve's book.

7. (4p) (Central limit) Let M_k be a symmetric random walk, i.e.

$$\mathbb{P}(M_{k+1} = M_k + 1) = \mathbb{P}(M_{k+1} = M_k - 1) = \frac{1}{2}.$$

Let us fix a positive integer n and let us for all t such that nt is a positive integer, define

$$W^{(n)}(t) = \frac{M_{nt}}{\sqrt{n}}.$$

Show that as $n \to \infty$, $W^{(n)}(t)$ converges to the normal distribution with mean zero and variance t. Solution: See Theorem 3.2.1 on page 89 in Shreve's.