FINANCIAL DERIVATIVES AND STOCHASTIC ANALYSIS
(CTH[T M A285]&GU[M AM695])

December16, 2006, morning (4 hours), v
No aids.
Each problem is worth 3 points.

Solutions

1. (Black-Scholes model) Suppose S(0) < B,T > 0, and M(T") = maxo<,<7 S(u).
Find the price Iy (0) at time zero of a barrier option of European type paying
the amount Y = 1j5/(7)<p] to its owner at time of maturity 7.

Solution. We have )
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Thus by the given formula below
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2. Find an adapted process (I'(t))o<t<r such that

W3(t) + W2(E) — 3OV (1) — £ = /tF(s)dW(s), 0<t<T.

Solution. Set u(t,z) = #3+2*—3tx—t. Then v, = —3x—1, u, = 322 +22—3t,
and ul), = 6z + 2 and it follows that
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Thus by the It6-Doeblin formula

dW3(t) + W2(t) — 3tW (t) — t) = du(t, W(t))
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and we get

T(t) = ul(t, W(t)) = 3W2(t) + 2W (t) — 3t.

3. (Black-Scholes model with d stocks) Suppose aq,...,a; € R and K > 0
and consider a derivative of European type paying the amount

d

Y= aSi(T) - K)*
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to its owner at time of maturity 7. Show that

Iy () > (Y aiSi(t) - K)*

where IIy (¢) denotes the price of the derivative at time t.

Solution. Set 7 =T — t. We have
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and since the function f(z) = (z — K)* is convex, the conditional Jensen
inequality shows that
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4. Show that the stochastic process
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Z(t) = exp(cW(t) — %t), t>0

is a martingale.

5. (Black-Scholes model with d stocks and interest rate r; P is the risk-neutral
measure and 1/ denotes a d-dimensional P-Brownian motion)

a) Let N = (N(t))o<t<r be a strictly positive price process. Show that
there exists a volatility vector process v(t) = (v1(t),...,vq(t)), 0 < t < T,
such that

AN(t) = rN(t)dt + N(t)v(t) - dW (t).

b) Let S = (S(t))o<i<r and N = (N(t))o<i<r be strictly positive price
processes with volatility vector processes (o(t))o<t<r and (v(t))o<i<r, re-
spectively. Prove that

S@t) _ S() (N
dm = W(U(t) —v(t)) - dW ™M (1)

where W) (t) — [y v(u)du, 0<t<T

c¢) Find a probablhty measure P) such that W) is a PY) -Brownian
motion.

A formula
For any T, o0,m > 0, and a € R,
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