Mathematics Chalmers University of Technology Göteborg University

Partial Differential Equations, Assignment 1B

Consider the two point boundary value problem

$$-(au')' + bu' + cu = f$$
, on $(0,1)$
 $u(1) = 0$, $au'(0) = k(u(0) - g)$.

where a, b, c, f, k and g are given functions.

- a. Write a finite element code for this problem in e.g. Matlab. It suffices to consider the case a = 1, b = 0, c = 1, k = 0, g = 0 and f = 1.
- b. Extend your code to incorporate the term bu' with b a constant.
- c. Modify the code to include the Robin boundary condition au'(0) = k(u-g) for arbitrary values of k and g.

A template code in Matlab.

```
function template()
 This FEM routine solves the equation
         -u''(x) = 1.0, in 0 < x < 1,
           u(0) = u(1) = 0.
<u>%_____</u>%
clear all % Remove all variables from Matlab's workspace.
x = 0:0.05:1; % Generate node coordinates.
[S, R, b] = assemble(x); % Assemble the matrices and vectors.
A = S + R;
U = A \ % Solve the linear system of equations.
plot (x, U) % Plot the FEM approximation U(x).
% Subroutines -----%
function [S, R, b] = assemble(x)
N = length(x); % Get the number of nodes.
% Init all matrices and vectors.
b = zeros(N,1); % Load vector
R = zeros(N, N); % Boundary matrix
S = zeros(N,N); % Stiffness matrix
for i = 1:(N-1) % Loop over the sub-intervals and assemble.
 h = x(i+1) - x(i); % Get the mesh size.
 S(i,i) = S(i,i) + 1/h;
  S(i,i+1) = S(i,i+1) - 1/h;
```

```
S(i+1,i) = S(i+1,i) - 1/h;
S(i+1,i+1) = S(i+1,i+1) + 1/h;
b(i) = b(i) + 0.5 * h;
b(i+1) = b(i+1) + 0.5 * h;
end

% Set the boundary conditions, u(0) = u(1) = 0.
R(1,1) = 1e4; % A large number here forces <math>u(0) to zero.
R(N,N) = 1e4; % A large number here forces <math>u(1) to zero.
```