Mathematics Chalmers University of Technology Göteborg University

Partial Differential Equations, Assignment 1A

Consider the two point boundary value problem

$$-(au')' + bu' + cu = f$$
, on $(0,1)$
 $u(1) = 0$, $au'(0) = k(u(0) - g)$.

where a, b, c, f, k and g are given functions.

- a. Give a variational formulation of this problem in a suitable space.
- b. Formulate the corresponding Finite Element Method with a continuous piecewise linear approximation. Write out the elements in the matrices and compute them when a, b, c, and f are constants. Study in particular how the boundary condition is approximated by the FEM.
- c. Prove an a priori and an a posteriori error estimate under the assumptions that $a, c \ge 0$ and b = 0. Formulate an adaptive algorithm based on the a posteriori estimate.
- d. Assume b=0 and $c\geq 0$. Formulate the minimization problem which is equivalent to the differential equation above. Show, that they are indeed equivalent.