
TMA372/MMG800 PARTIAL DIFFERENTIAL EQUATIONS

ASSIGNMENT 2 AND COMPUTER PROJECT

1. Consider the heat equation:

ut − ∆u =0, x ∈ Ω, t > 0,

u =0, x ∈ ∂Ω, t > 0,

u(x, 0) =u0, x ∈ Ω.

a) Show the following stability estimates:

‖u(t)‖2 +

∫ t

0

‖∇u‖2 ds ≤ ‖u0‖
2, t > 0,

‖∆u‖ ≤
1

t
‖u0‖, t > 0.

The latter estimate is the so called parabolic smoothing estimate (or strong stabil-
ity), that describes the fact that the solution is smmother than the initial data (it
gains regularity).
b) How do these estimates change if you substitute uxx + 4uyy for ∆u ?
c) Solve the problem with Ω = [0, 1] using a Fourier series and study how fast the
coefficients for the different Fourier modes decay. Prove the smoothing estimate by
using this Fourier series representation of the exact solution.

1. Selected applications

Select one of the following applied problems. The objective is to solve an applied
problem of interest using a finite element method implemented in a software of your
choice, to evaluate the results obtained and draw some conclusions concerning the
nature of the exact solution and the numerical approximation. Use your fantasy and
focus on features of interest. Note that the problems are not precisely formulated.
You thus have to think of:

• An interesting real world problem.
• Mathematical modelling including for instance the choice of boundary con-

ditions and truncation of the computational domain in case of unbounded
domains.

• Computational aspects.
• Analytical aspects, seek to simplify the model so that it is possible to obtain

an analytical solution. Solve the simplified problem and think about the
extra assumptions you have made, are these realistic?

1.1. Convection-diffusion-absorption/reaction. Consider a 2d convection-
diffusion-absorption/reaction problem of the form

αu + β · ∇u −∇ · (ǫ∇u) = f,

together with suitable boundary conditions on the boundary Γ of Ω, where u is an
unknown concentration, ǫ = ǫ(x) is a given (small) diffusion coefficient, β = β(x)
is a given velocity field, α = α(x) is a given absorption/reaction coefficient and
f = f(x) is a given production term. Solve a convection-dominated problem of this
form for instance related to pollution control, where f is a delta-function at some
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point P ∈ Ω. Determine for instance the width of the ”smoke plume” and compare
with theory.

1.2. Electrostatics. Consider the basic problem of 2d electrostatics

∇ · (ǫE) = ρ,

E = −∇φ,

together with suitable boundary conditions corresponding to a part of the boundary
of Ω being a perfect conductor and the remaining part being insulated. Here E is
the electric field, φ the electric potential, ǫ = ǫ(x) the dielectricity coefficient, and
ρ the charge density. Solve a problem of this form in a configuration of interest
for instance with the boundary containing a sharp non-convex corner. Study the
behaviour of the electric field in the vicinity of the corner and compare with theory.

1.3. 2d fluid flow. The velocity u = (u1, u2) of an incompressible irrotational
2d fluid may be expressed through a potential φ by u = ∇φ . Coupled with the
incompressibility equation ∇ · u = 0 this gives the Laplace equation for φ:

∇ · (∇φ) = ∆φ = 0,

together with suitable boundary conditions expressing for instance that u · n = 0
on solid boundaries. Note that it is not possible to use Neumann conditions on the
entire boundary. Solve a problem of the following type, using a potential:

(a) flow through a 2d nozzle
(b) flow around a disc or wing profile

Use the gradient plot to visualize the flow.

1.4. Heat conduction. Consider the 2d stationary heat equation

∇ · q = f, q = −κ∇u,

together with suitable boundary conditions, where u is the temperature, q the heat
flow, κ the heat conduction coefficient and f a given production term. Solve for
instance a problem of this form modelling a hot water pipe buried in a half space
and determine the temperature on the boundary of the half space above the pipe
using a Robin boundary condition on the surface.

1.5. Quantum physics. Consider the 2d stationary Schrödinger eigenvalue prob-
lem

−
~

2

2m
∆u + V (x)u = λu,

where V is a given potential, ~ is Planck’s constant divided by 2π and m is the
particle mass. Give a quantum physical interpretation of the eigenvalues and cor-
responding eigenfunctions determined by this equation. Normalize the constants
and solve the problem for some suitable domain and potential. Discuss your com-
putational results from a quantum physical viewpoint.


