
Introduction to Wavelets

Fourier and Wavelet Analysis CTH & GU

November 28, 2007

1 Introduction

The purpose of this assignment is to get familiar with the MatLab toolbox
Wavelet containing filter banks, wavelet transforms, and related utilities.
You will compute the wavelet transform of some simple signals which should
lead to a better understanding of wavelets and filter banks. Also, we want to
give a first glimpse of the compression potential of filter banks and wavelet
transforms, something that we will exploit further in the assignment on image
compression.

1.1 The Wavelet Toolbox

The Wavelet toolbox is a collection of MatLab-files for wavelet analysis,
synthesis, and related processing algorithms. To get a first impression of the
resources in the toolbox, start the wavelet demo with the MatLab command

wavedemo

Using the desktop variant of MatLab, you will be able to perform wavelet
related operations, and view results, without having to give explicit com-
mands in a command window. This is done by starting the Wavelet Main
Menu window.

1.2 The Signals

The signals we will analyze are:

• pulse A Dirac impulse at t = 1/2.

• step A unit step function that jumps from 0 to 1 at t = 1/2.

• triangle A triangle or hat function.

1



• wnoise A white noise signal

• sine A pure harmonic sine wave with frequency 25 Hz.

• realw A real-world signal

All these signals are sampled on the unit interval [0, 1] with 512 = 29 samples.
The signals can be obtained by downloading the file signals.mat from the
course web page; they can then be entered in the MatLab session by executing

>> load signals.mat

In our discussion on filter banks, we have always assumed the signals to
be of infinite length. But, in practice, all signals are finite, and this must be
taken into account when implementing filter banks. One solution is to make
a periodic extension of the signal. This is equivalent to using periodic or
circular convolution. In this form, the filter bank is fed with 2J samples and
it then splits the signal into two frequency components with 2J−1 samples
each. A disadvantage with this approach is that it introduces a discontinuity
at the boundaries of the signal if the boundary values do not match each
other. This will affect the fine-scale wavelet coefficient close to the boundary,
but the situation is not as bad as with the Fourier transform where this
phenomenon is global. Another method is to extend the signal symmetrically
around the boundaries, which is often used in image compression. It is also
possible to modify the filters at the boundary, but this turns out to be rather
complicated. We will only use the default symmetric extension mode here.

2 Filter Banks

2.1 Filter Banks in the Wavelet Toolbox

The first thing you have to do is to choose the filters/wavelets you want
to work with, e.g., Haar or Daubechies or some others. (The command
waveinfo produces information about the available wavelets.)

We start with a signal containing 29 sample values. We split this signal
into a high- and low-frequency part with 28 samples each. We then recur-
sively split the low-frequency part and, after L steps, we end up with a
low-frequency part containing 29−L samples. Usually one chooses the num-
ber of steps so that 29−L is greater than the filter length. The output is a
vector containing the wavelet coefficients organized as in Figure 1. In other
words, the first 29−L elements of wc contains the scaling (approximation)
coefficients, then comes the wavelet (detail) coefficients at successively finer
scales (higher frequencies).

2



��
����
��

��
����
��

-

-

-

-

-

-

-

-

H

G

↓ 2

↓ 2

H

G

↓ 2

↓ 2
signal

wc(1:64)

wc(65:128)

wc(129:256)

Figure 1: Organization of wavelet coefficients.

2.2 Displaying Wavelet Decompositions

There are several ways to display the wavelet decomposition; one is first to
use the wavedec command:

[wc,l]=wavedec(signal,L,’wname’);

This gives a vector, of which the first 29 entries, wc, are the coefficients as
described in the previous section. (The l part contains information about
the lengths of the parts of wc.)

2.3 Exercise 1

For the signals pulse and wnoise, compute the wavelet transform and display
the results from wavedec followed by detcoef. The command

wcj=detcoef(wc,l,j)

returns the wavelet (detail) coefficients at level j, 1 ≤ j ≤ L.
Use the Haar filter and the Daubechies filters with filter length 4 and 6,

and put L = 4. Plot the results at the different levels. Then answer the
following questions:

1. Describe the behaviour of the wavelet coefficients of the Dirac pulse. Is
there a difference depending on which filters (wavelets) you are using?
If so, explain this difference.

2. Describe the wavelet coefficients of the white noise signal. Is there any
pattern in the coefficient values?

3. Using the command wfilters, plot the frequency responses of the
different filters H and G (coming from the scaling functions and the
wavelets) you have used. What is the difference?

3



3 Wavelet Transforms

In this part, we will compute wavelet decompositions in the light of wavelet
theory. In particular, we will see how vanishing moments is connected to the
compression ability of the wavelet transform.

3.1 Multiresolution Plots

To display the multiresolution decomposition itself, rather than just the
wavelet coefficients, use the wavedec command described above.

Then, from these data, the command waverec returns the different parts
of the decomposed signal:

aL=wrcoef(’a’,wc,l,’wname’,L);

gives the approximation at level L and

dj=wrcoef(’d’,wc,l,’wname’,j);

gives the wavelet multiresolution component at level j, 1 ≤ j ≤ L.
These components can then be viewed using the standard MatLab plot

routines.

3.2 Exercise 2

For each of the signals step, triangle, sine, and realw, compute the
wavelet transform using the same filters as before. Plot the multiresolution
decomposition in each case. Please answer the following questions:

1. Describe the behaviour of the detail signals dj for the step and triangle

signal. Is there a difference depending on what filters you are using? If
so, explain this difference.

2. Do the same thing for the sine signal.

3. For the realw signal, plot a histogram showing the distribution of the
absolute value of the sample values. Here the hist command is useful.
Do the same thing for the wavelet coefficients. What is the difference?
Is there a difference depending on what signal or filter you are using? If
so, explain this difference, and its possible use for compression purposes.

4. Finally, we want you to plot the scaling functions and wavelets cor-
responding to the Daubechies-4 and Daubechies-6 filters. To do this,
you use the cascade algorithm. To plot a scaling function ϕj,k in the

4



interval [0, 1], choose the coarsest scale L = j, j < 9. Then define a
vector

wc=zeros(1,2^9);

Now set the coefficient in wc corresponding to sj,k equal to one. Then
compute the inverse wavelet transform of wc of the approximation part
by

signal=wrcoef(’a’,wc,l,’wname’);

where l can be copied from the computations in Exercise 1. The ele-
ments in signal will then be fair approximations to the sample values
of ϕj,k. In the same way, setting the coefficient in wc corresponding to
wj,k to one will give a approximation to ψj,k using

signal=wrcoef(’d’,wc,l,’wname’,j);

You will probably have to do some trial-and-error before the plots look
nice. For instance, you have to choose j large enough and choose k
properly so that the scaling function and wavelet are supported in the
unit interval [0,1].

How could these approximations be improved?

5


