
Image Compression

Fourier and Wavelet Analysis CTH & GU

December 2, 2007

1 Preparation

The programmes and data needed in this assigment are available from the
web page. You need to download compress.m, dctcompress.m, lena.tif,

wclena.ps, and wcshow.m. Once these files have been copied, start Mat-
Lab. To import and display the Lena image, type:

X=imread(’lena.tif’);

I=im2double(X);

imshow(I)

truesize

Both X and I are 512 × 512 matrices and contain the grey scale values of
the image. The values in X are 8-bit numbers ranging from 0 to 255, where
0 corresponds to black and 255 to white. The values in I are floating point
numbers ranging from 0.0 to 1.0, where 0.0 corresponds to black and 1.0 to
white. To compute the 2D-wavelet transform of the image using the Haar
(= db1) wavelet type:

[wc,s]=wavedec2(I,3,’db1’);

Here 3 means that we stop the wavelet transform after 3 steps, when the
coarsest image has size 26 × 26, 6 = 9 − 3. (Using wrcoef2 and detcoef2,
you could try to see in which blocks the vertical and horizontal edges appear
most clearly. Note that little energy is in the high-pass bands.)

1



2 Compression Programme

We are going to compare the performance between different wavelet bases
and the Fourier basis for the compression of images, without recourse to the
more sofisticated utilities in the toolbox. More specifically, we will use the
Haar, Daubechies-4, and a biorthogonal wavelet basis as well as a discrete
time cosine basis.

The file compress.m contains the following incomplete programme:

function CI=compress(I,L,t)

[N,J]=size(I);

% Forward Wavelet Transform

[wc,s]=...

% Threshold wavelet coefficients

temp=wc(1:2^{N-L},1:2^{N-L});

wc=wthresh(wc,’h’,t);

wc(1:2^{N-L},1:2^{N-L})=temp;

% Count number of non-zero coefficients

nz=nnz(wc);

% Inverse Wavelet Transform

CI=...

% Print out the compression ratio

...

2.1 Exercise 1

Your task is to complete this programme by replacing the dots . . . with
appropriate commands. The input is the image I, the dyadic size N-L (2N−L×
2N−L) of the coarsest image, and the threshold t > 0. The programme
first computes the forward wavelet transform of the image. Then all wavelet
coefficients with modulus smaller than t are set to zero and finally the inverse
wavelet transform of the thresholded coefficients is computed. The output CI

2



is the compressed image. The programme should also print the compression
ratio, i.e. the number of pixels in the original image divided by the number of
non-zero wavelet coefficients. Set L = 3 since further splittings in the wavelet
transform do not give better compression; most of the compression is gained
in the first three splittings of the transform.

Hand in a print out of the complete programme.

3 Wavelet Compression

Modify the threshold until you achieve a compression ratio approximately
equal to 30. Then modify the programme so that the wavelet is the Daubechies-
4 wavelet, ’db2’ (sic! ). Again find a threshold so that the compression ratio
approximately equals 30.

We are also going to use a biorthogonal symmetric basis. The synthesis
scaling function is a hat function and the analysis wavelet has two vanishing
moments. This has the name bior2.2 . We now have different filters in the
analysis and synthesis parts. Change the programme so that it performs a
biorthogonal wavelet transform. Modify the threshold so the compression
ratio is the same as above.

3.1 Exercise 2

Compare the three compressed images; the figure command might be useful
for displaying several images at once. Rank the image qualities from best
to worst and write a table with the chosen thresholds and corresponding
compression ratios.

What is the difference between and characteristics of each of the three
compressed images?

4 Fourier Based Compression

Finally, we shall compare the wavelet methods above with the discrete cosine
transform. This transform is the basis of the most popular compression sys-
tem today: JPEG. The image is first divided into 8×8 blocks and then a 2D
discrete cosine transform is applied to each block. The objective being the
same as with the wavelet transform – to obtain a space-frequency decomposi-
tion of the image. (Using a wavelet transform we really obtain a space-scale

3



decomposition). If the image contains correlations in space and frequency
the transform will have most of its energy packed into a few number of large
coefficients.

So what is the discrete cosine transform? It is really just a discrete Fourier
transform where we have taken care of the boundary coefficients in a special
way. Let us say we have a periodic signal f(t) with period T . If f(0) �= f(T−)
we will have a discontinuity at t = 0 (or t = T ). This will cause the Fourier
coefficients to decay slower towards large frequencies and the packing of the
coefficients is decreased. If we instead define the 2T -periodic signal g(t) as

g(t) =

{
f(t) 0 ≤ t < T,

f(−t) −T < t ≤ 0.

it will be continuous at time t = −T, 0, and T , see Figure 1. The symmetry
of g will cause all the sine terms in the Fourier series to be zero and what is
left is called the cosine transform. In the discrete case we just have a signal
x = (x0, x1, ..., xN−1) with period N that is periodized in the same way to
get period 2N ; we then get the discrete cosine transform. The programme
dctcompress.m will compress an image using the discrete cosine transform.
Modify the threshold so that you can compare the result with the previous
ones.

4.1 Exercise 3

The so called blocking effect should now be clearly visible. Why does this
blocking occur? Is it the same type of blocking as in the Haar case? How
well does it perform compared to the three wavelet bases?

4



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: Top: f(t) with period T = 1. Bottom: g(t) with period T = 2.

5


