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Prefa
eThis 
ompendium is meant as a terse repla
ement for, i.a., mathemati
allyless su

essful parts (Chapter 5, for example) of the book Bra
ewell R., TheFourier Transform and Its Appli
ations, M
Graw-Hill, 2000.In part, we trans
end this book: the results named after Paley-Wiener andBo
hner-S
hwartz are in
luded together with some theory of generalized fun
-tions: tempered distributions.We mention two books for further study of distributions.Folland G. B., Fourier Analysis and its Appli
ations, Wadsworth & Brooks,1992Hörmander L., The Analysis of Linear Partial Di�erential Operators part I,se
ond edition, Springer-Verlag, 1990The �rst book is fairly easy to read. The se
ond 
ontains a more 
ompre-hensive a

ount. Both are available in the library at the Department, as well asmany more on the subje
t.Our disposition is as follows. We start with the 
lass S of in�nitely dif-ferentiable fu
tions with rapid de
ay at in�nity. The Fourier transform is anisomorphism on S. Then we dis
uss the dual of S, S 0, whi
h are generalizedfun
tions 
alled tempered distributions. As appli
ations of the 
al
ulus withinthis framework, we give relatively straight-forward proofs of Poisson's SummationFormula, the Sampling Theorem, 
onvergen
e of Fourier series, and the CentralLimit Theorem. We 
hara
terize also the fun
tions whi
h have no frequen
y
ontent above a �xed value (Paley-Wiener), and the 
onne
tion between auto-
orrelation fun
tions and probability measures (Bo
hner-S
hwartz). We brie�ydis
uss the Radon transform (used in 
omputer tomography and several other
ontexts), antennas, and thin lenses. This is followed by some issues pertainingto the transition between a 
ontinuous variable and its �nite dis
rete 
ounterpartwhi
h 
an be handled by a 
omputer.Finally we sket
h the idea behind the wavelet transform � a variant of (win-dowed) Fourier transform whi
h is be
oming widely used in diverse appli
ations(storing �ngerprints for example).Mainly, we will use the notation of Bra
ewell. However, all results have ver-sions in more than one dimension, and the proofs in higher dimensions do not,in general, require any additional ideas.In many pla
es in the text, there are exhortations like 'verify!'. This meansthat some, mostly minor and te
hni
al, details have been left out. The purposewith these gaps is above all to make the ideas stand out more 
learly; most ofthe gaps will be dis
ussed during the 
ourse.i
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1 Generalized Fun
tionsWe will expand the 
on
ept fun
tion, and then 
on
eive a fun
tion f as the valuesof Z 1�1 f(x)'(x) dxas ' runs through a 
lass of test fun
tions. Note that this di�ers from the usualway of looking at a fun
tion as, e.g., a graph.This se
tion starts with the test fun
tions, whi
h make up the 
lass S.We then treat the tempered distributions, S 0, an expansion of the fun
tion
on
ept, whi
h simpli�es 
al
ulations with, i.a., sampled signals.1We end this se
tion with some appli
ations. Among other, we give simpleproofs of the Sampling Theorem, the Poisson Summation Formula. We alsodis
uss the 
onne
tion between Fourier transforms and Fourier series.When do distributions 
ome more spe
i�
ally into play?Mathemati
al te
hniques are used to fa
ilitate manipulation of mathemati
almodels, whi
h �t 'reality' more or less, as the 
ase may be. From signal pro
essingwe take two examples where distributions help. (Many appli
ations 
an be foundin the theory of partial di�erential equations; 
f. Example 2 in 2.2 below.)1. We seek a signal of whi
h the 'moving averages' are known (or perhaps themoving averages of those). Put di�erently, we seek the solution f to theequation 1(�1=2;1=2) � f = g (1(�1=2;1=2) � 1(�1=2;1=2) � f = h).2. Consider a low-pass �ltered signal: no frequen
y 
ontent above the 'Nyquistfrequen
y'. Could this signal have maxima as 
lose to ea
h other as we wish,or is there a minimal distan
e determined by the Nyquist frequen
y?1.1 The Fun
tion Class SDe�nition 1.1.1 The 
lass S 
onsists of 
omplex-valued fun
tions f of (one)real variable, whi
h are in�nitely di�erentiable and satisfysupx jx�D�f(x)j <1for ea
h 
hoi
e of non-negative integers �; �.In other words: the fun
tion and all its derivatives de
ay faster than any powerfun
tion at in�nity.1 Distributions were developed as an aid to the study of linear partial di�erential equationsand their solutions. 1



Example 1 Let f(x) = e�ax2 with a > 0. Then f 2 S holds, whi
h may beveri�ed dire
tly from the de�nition.Example 2 Verify also that f 2 S when f is given by (draw a pi
ture!)f(x) = 8>><>>: 0 (x � a)e� 1(x�a)2� 1(x�b)2 (a < x < b)0 (b � x)Example 3 Let f be the fun
tion in the previous example with a = �b andnormalized to have integral 1. Let g be an integrable fun
tion.2 De�ne the
onvolution (" > 0) g"(x) = Z 1�1 1"f(x� y" )g(y) dyThen g" is in�nitely di�erentiable, and 
onverges to g almost everywhere(verify!).De�nition 1.1.2 The Fourier transform of a fun
tion f in S we denote byf̂ or Ff . It is given by f̂(s) = Z 1�1 e�2�isxf(x) dxThe properties whi
h make the 
lass S suitable for Fourier transforms are 
on-tained in the next lemma.Lemma 1.1.1 Let f 2 S. Then holds for non-negative integers �; �1. g(x) = x�D�f(x)) g 2 S�S is 
losed under di�erentiation and under multipli
ation by polynomials�2. f̂ 2 S�S is 
losed under Fourier transformation�Proof: To prove the last property, it su�
es to observe the following two equalities(verify this!). Firstly, di�erentiation under the integral sign givesDf̂(s) = Z 1�1 e�2�isx(�2�ix)f(x) dx2 Lebesgue integrable for example. If this 
on
ept is unfamiliar, read '
ontinuous and Rie-mann integrable' and 'everywhere'. 2



The operation is allowed, sin
e the resulting integral is absolutely and uniformly
onvergent. Thus we have sups jD�f̂(s)j < 1 for ea
h � � 0. Se
ondly, we getby a partial integration 2�isf̂(s) = Z 1�1 e�2�isxDf(x) dxwhi
h yields sups js�f̂(s)j <1 for every � � 0.Verify the �rst property!
Example 4 Put f(x) = e��x2. Then f̂ = f . We verify this:Df̂(s) = Z 1�1 e�2�isx(�2�ix)e��x2 dx= i Z 1�1 e�2�isxDf(x) dx= �2�sf̂(s)whi
h implies f̂(s) = e��s2 sin
e f̂(0) = R f(x) dx = 1.We will now show the key result: a fun
tion in S 
an be retrieved from itsFourier transform.Theorem 1.1 (Fourier's Inversion Formula) Let f 2 S. Then holdsf(x) = Z 1�1 e2�isxf̂(s) dsRemark 11. The formula is valid in the distribution sense under weaker assumptions,e.g., for f 2 L2 (square integrable). Cf. Theorem 1.3 below.2. The formula may be written F2f(x) = f(�x), whi
h means that foursu

essive Fourier transformations produ
e the original fun
tion.We write �f(x) := f(�x); that is, F2f(x) = �f(x).3. Lemma 1.1.1 and Theorem 1.1 show that the Fourier transform is an iso-morphism on S. (This in
ludes the topology; see the proof of Proposition1.2.2. below.) 3



Proof: It su�
es to 
onsider the 
ase x = 0 (verify!).Suppose �rst that f(0) = 0. We will then show that R f̂(s) ds = 0. Putg(x) = f(x)=x and g 2 S follows (verify!). Furthermore �2�if̂(s) = Dĝ(s) andthus �2�i Z f̂(s) ds = Z Dĝ(s) ds = 0whi
h proves the theorem in the 
ase f(0) = 0.If f(0) 6= 0, write f(x) = f(x)� f(0)e��x2 + f(0)e��x2Taking Fourier transform, integrating, and using what we just showed, we getZ f̂(s) ds = f(0)be
ause the inversion formula holds for e��x2 a

ording to Example 4 above. Theproof is done.Remark 2 The proof displays a te
hnique whi
h is frequently used: You splitthe proof into two steps. First you show the statement for f 2 S with f(0) = 0,that is, for a subspa
e of S. Then a general fun
tion is split into a sum of twoterms: one term in the subspa
e and the behaviour of the other term (not inthe subspa
e) is also known. This then gives the general statement in a linearsetting.1.2 The Class S 0We will now des
ribe a generalization of the fun
tion 
on
ept, named tempereddistribution,3 whi
h allows a uni�ed treatment of ideas like point mass, point
harge, impulse, shot signal, dipole moment et
.Test fun
tions will be denoted by Greek letters, for example ', in what follows,while distributions will be written with 
apitals in itali
s, e.g., T . The 
omplexnumbers we denote C (in boldfa
e). Furthermore we use the notation ('1; '2 inS) < '1; '2 > := Z 1�1 '1(x)'2(x) dxNote that < � ; � > is a s
alar produ
t only for real-valued fun
tions.De�nition 1.2.1 A linear mappingT : S 3 ' �! T (') 2 C3 The adje
tive 'tempered' denotes here 'tempered (moderate) growth'. See Example 8below. 4



is 
alled a tempered distribution if, for any sequen
e of test fun
tions 'n 2 Swith the property limn!1 supx jx�D�'n(x)j = 0for every 
hoi
e of non-negative integers �; �, holds thatlimn!1T ('n) = 0The 
lass of tempered distributions is written S 0; and we often write T (') =:< T; ' >; in Example 5 below the reason for this will be
ome apparent. Asequen
e of test fun
tions with the property above is said to 
onverge to 0 in S.An example of su
h a sequen
e is 'n(x) = e�x2=n with n = 1; 2; : : : . Verifythat 'n ! 0 i S.Verify also that a tempered distribution is determined by its values on real-valued test fun
tions only.Example 5 Let jf(x)j=(1 + x2)� be integrable for some � and putT : S 3 ' �!< f; ' >= Z 1�1 f(x)'(x) dx 2 CWe verify that the mapping T is a tempered distribution. The linearity is obvious.Take a sequen
e 'n ! 0 i S. Then we getj Z 1�1 f(x)'n(x) dxj � Z 1�1 jf(x)=(1 + x2)�j dx supx j(1 + x2)�'n(x)j ! 0whi
h �nishes the veri�
ation. Note that f 
ould be a polynomial here for exam-ple.The distribution T in Example 5 is identi�ed with the fun
tion f . Thisidenti�
ation has often proved di�
ult to get used to.The fun
tion f is thus here not 
on
eived of as the values f(x) as x varies,but as the values < f; ' > as ' varies over S. We write T = f in S 0.Verify that, if f and g both are 
ontinuous fun
tions and f = g in S 0 ('equalas distributions'), that is < f; ' >=< g; ' > for all ' 2 S, then f(x) = g(x)holds for all x.In the next example we treat a frequently used tempered distribution, theÆ-distribution.4Example 6 Consider the mappingT : S 3 ' �! '(0) 2 CVerify that T is a tempered distribution as was done in Example 5.4 The notation derives from the name P A M Dira
.5



Remark 3 We 
ounsel against the usage of the (abusive) notation like 'Æ-fun
tion', 'Æ(x)', 'R Æ(x)'(x) dx', and so on. These suggest the erroneous 
on-
eption that the Æ-distribution has point values like fun
tions, and introdu
eunne
essary possibilities for misunderstanding. See also the Stru
ture Theorem1.2 below.Example 7 Put fn(x) = n1=2e�n�x2 with n = 1; 2; : : : . Verify that, fn 2 S 0and fn(')! '(0) = Æ(')This may be written fn ! Æ in S 0. We 
an thus say that fn approximate Æ.Example 8 Continuous fun
tions whi
h are not tempered distributions growtoo fast at in�nity: 
onsider ex, for example. Take '(x) = e�(1+x2)1=2 . Obviously,' 2 S but < e(�); ' > diverges, and so e(�) does not belong to S 0.5Example 9 In signal pro
essing, the most widely used tempered distributionis the pulse train Pn Æn, where Æn(') = '(n), that is, Æ translated to the integern.6 Se Remark 7 below.Verify that the pulse train, whi
h is the mappingT : S 3 ' �!Xn '(n) 2 Cis a tempered distribution. (Note that < Pn Æn; ' > := Pn '(n).)The operations di�erentiation, multipli
ation by a fun
tion, translation, andothers, must be de�ned in su
h a way that they 
oin
ide with the usual oneswhen the distribution is a fun
tion. For example, if f 2 S and ' 2 S then< Df; ' >= Z Df(x)'(x) dx = � Z f(x)D'(x) dx = � < f;D' >The other de�nitions below are motivated similarly.Translation is denoted f� (x) := f(x� �); � real. Multipli
ation by a fun
tion gis de�ned under the weakest assumption on g for whi
h the impli
ation ' 2 S )g' 2 S holds true.De�nition 1.2.2 Let T 2 S 0; ' 2 S, and let g be an in�nitely di�erentiablefun
tion with the property that, given the integer � � 0 there is an integer � su
hthat supx(1 + jxj)�jD�g(x)j <1.< DT; ' > := � < T;D' >< gT; ' > := < T; g' >< T� ; ' > := < T; '�� >5 Notation like e(�), i.e., with the variable suppressed, is used to diminish the risk formisunderstandings, in parti
ular when we later dis
uss multipli
ation of a tempered distributionby a fun
tion.6 Bra
ewell's notation with the Russian letter III, 'shah', is awkward espe
ially in 
onne
tionwith 
hanges of variable, and we will not use it.6



Polynomials are thus allowed as g in the de�nition, but not ex, for example.The obje
ts de�ned should be tempered distributions, whi
h is the 
ontent of thenext proposition.Proposition 1.2.1 For T 2 S 0 and with g as in De�nition 1.2.2 holdDT 2 S 0; gT 2 S 0 and T� 2 S 0.Proof: We prove the statement about gT , and leave the other two as an exer
ise.Linearity is obvious. Take now a sequen
e 'n ! 0 in S,< gT; 'n >=< T; g'n >But, given �; �, we havesupx (1 + jxj)�jD�(g(x)'n(x))j � CX��� supx (1 + jxj)�� jD�'n(x)jwhi
h implies g'n ! 0 in S, and gT 2 S 0 follows.Proposition 1.2.1 
an be rephrased: The 
lass S 0 is 
losed under di�erentia-tion, under multipli
ation with smooth fun
tions whi
h have tempered growth atin�nity, and under translation.Note that polynomials satisfy the 
onditions for g in Proposition 1.2.1.We will now indi
ate a representation of a general tempered distribution interms of (distribution) derivatives of 
ontinuous fun
tions. The example followingthe theorem provides an illustration.Theorem 1.2 (The Stru
ture Theorem) Let T 2 S 0. Then 
ontinuous fun
-tions fj, j = 1; 2; : : :, and non-negative integers �j exist, su
h that (in S 0)T =Xj D�jfjProof: See Appendix.Example 10 For f(x) = x+, the ramp fun
tion, and the Heaviside fun
tion(step fun
tion) H, D2f = DH = Æ in S 0 holds. We verify this. (' 2 S)< D2f; ' > = < f;D2' >= Z 10 xD2'(x) dx= � Z 10 D'(x) dx (=< DH;' >)= '(0) =< Æ; ' >7



Example 11 Let f be the fun
tion f(x) = �x�3=2H(x)=2, where H again isthe Heaviside fun
tion. De�ne< T; ' > := lim�!0+f�12 Z 1� x�3=2'(x) dx + ��1=2'(0)gT is 
alled the �nite part of f .Verify that the 
ontinuous fun
tion g = 2(�)1=2H 2 S 0, that Dg = (�)�1=2H,and that D2g = T in S 0 ! This motivates the de�nition of T . The added termsin the �nite part of a fun
tion 
ome from a series expansion of the test fun
tion'(x).We are now ready to de�ne the Fourier transform of a tempered distribution.Again, the de�nition is motivated by a formula for fun
tions, the Plan
herelFormula (f 2 S; ' 2 S)Z Ff(x)'(x) dx = Z f(x)F'(x) dxThe formula is veri�ed dire
tly by 
hanging the order of integration. Note thespe
ial 
ase ' = (f̂)�, whi
h is 
alled Parseval's Formula:7Z jf̂(s)j2 ds = Z jf(x)j2 dxDe�nition 1.2.3 Take T 2 S 0. The Fourier transform of T , T̂ = FT , isgiven by < T̂ ; ' > :=< T; '̂ >Proposition 1.2.2 T 2 S 0 implies T̂ 2 S 0.Proof: Linearity is obvious. Take test fun
tions 'n ! 0 in S and< T̂ ; 'n >=< T; '̂n >If we have '̂n ! 0 in S, we are done. We have bothsups jD'̂n(s)j � C Z jx'n(x)j dxand sups js'̂n(s)j � C Z jD'n(x)j dxBut for the �rst integrand holds for examplejx'n(x)j � (1 + x2)�1 supx (1 + x2)2j'n(x)jA similar argument for the last integrand gives '̂n ! 0 in S, and the proof is
omplete. (Verify the last estimate!)7 It is 
alled Rayleigh's Theorem in Bra
ewell's book, but this naming is un
ommon.8



Example 12 It is immediately seen that (� � 0)FD�Æ = (2�i(�))�F(�2�i(�))� = D�ÆWe verify the �rst statement for � = 0:< FÆ; ' >=< Æ;F' >= F'(0) = Z '(x) dxThe rest is left as an exer
ise.The 
entral result is Fourier's Inversion Formula, where �T is de�ned by< �T ; ' > :=< T; �' >Verify that �T 2 S 0.Theorem 1.3 (Fourier's Inversion Formula) Let T 2 S 0. Then FFT = �Tholds.Proof: For ' 2 S we have the same formula proved in Theorem 1.1, and so< F2T; ' > = < FT;F' >= < T;FF' >= < T; �' >= < �T ; ' >The proof is 
omplete.The Fourier transform e�e
ts of di�erentiation, translation, and multipli
ationby 
ertain fun
tions in Proposition 1.2.1, is next. Re
all the 
orresponding rulesfor fun
tions in S !Proposition 1.2.3 The Fourier transform is linear. Let T 2 S 0, and assumethat S is an in�nitely di�erentiable fun
tion, su
h that, given � � 0, � exists,and supx(1 + jxj)�jD�S(x)j <1.The following equalities hold.F(DT ) = 2�i(�)FT F(�2�i(�)T ) = DFTF(ST ) = FS � FT F((FS) � T ) = �SFTF(T�) = e�2�i�(�)FT F(e2�i�(�)T ) = (FT )�where the 
onvolutions are de�ned in the proof below. Furthermore,D(FS � T ) = DFS � T = FS �DT9



Proof: The linearity together with the �rst and the third equalities are dire
tlyveri�ed from the de�nition. Likewise, S 2 S 0. (Perform the veri�
ations!)We will now de�ne 
onvolution of a general tempered distribution FT 2 S 0with a tempered distribution FS 2 S 0 with the property stated. The produ
tST is in S 0, and we de�ne FS � FT by F(ST ) =: FS � FT ; the Fouriertransform determines the tempered distribution 
ompletely. The se
ond equalityon that line follows from the de�nition (the �rst equality). The 
ommutativity of
onvolution, translation, and di�erentiation (the last line of the statement) followsafter Fourier transformation of what we just have shown, and sin
e multipli
ationby 
ertain fun
tions is asso
iative in S 0 when it is permitted.Now we present a result, whi
h is basi
 in most appli
ations. It provides theanswer to the question What is the result after a division by x ?Lemma 1.2.1 8 Let T 2 S 0, and assume that (�)T = 0. Then there is a 
omplexnumber a su
h that T = aÆPerforming a Fourier transform in the lemma produ
es:Consequen
e 1.2.1 Let T 2 S 0, and assume that DT = 0. Then there is a
omplex number a su
h that T = a.Proof of Lemma 1.2.1: Assume that  2 S with  (0) = 0. For '(x) =  (x)=xthen ' 2 S holds (verify!), andT ( ) = T ((�)') = (�)T (') = 0Take now ' 2 S arbitrarily, �x '1 2 S with '1(0) = 1, and write'(x) = '(x)� '(0)'1(x) + '(0)'1(x)this yields ('(0)� '(0)'1(0) = 0)T (') = '(0)T ('1) = T ('1)Æ(')whi
h proves the lemma with a = T ('1).8 This result is not immediately generalized to dimension 2 and higher.10



Example 13 Let H be the Heaviside fun
tion. ThenFH = 12�i(�) + 12Æwhere < 12�i(�) ; ' >= lim�!0+ Zjxj>� 12�ix'(x) dx(verify that (2�i(�))�1 2 S 0 !).We show that FH1 = (2�i(�))�1with H1 = H � 1=2.9 Re
all thatDH1 = DH = Æwhi
h implies 2�i(�)FH1 = 1The lemma gives FH1 = (2�i(�))�1 + aÆNote that FH1 and (2�i(�))�1 both are odd ((FH1)� = �FH1) while Æ is even(verify!). Thus we infer a = 0, and the proof is done.Remark 4 The theory needed to answer the two questions posed (on page 1)as spe
i�
 examples when distributions are useful has now been des
ribed.1.3 Some Appli
ationsWe will apply the theory developed in the foregoing to show key mathemati
alresults used for signal pro
essing.Theorem 1.4 (Poisson's Summation Formula) Let ' 2 S. Then1Xk=�1 '̂(s+ k) = 1Xk=�1'(k)e�2�iksor, equivalently, Ff 1Xk=�1 Ækg = 1Xk=�1 Æk9 2H1 =: sign , where sign is 
alled the sign fun
tion.11



We give �rst a proof in dimension 1. Using Theorem 1.5 (whi
h has otherelementary proofs using partial sums) below, we return (after Proposition 1.3.2)and give a se
ond proof, that works unaltered in higher dimensions.Proof: We have ( (Pk Æk)1 = Pk Æk (period 1)e2�i(�)Pk Æk = Pk Æk (e2�i(�)Æk = Æk)A Fourier transformation gives( e2�i(�)FPk Æk = FPk Æk((FPk Æk)1 =) (FPk Æk)�1 = FPk ÆkLemma 1.2.1 now gives 
onstants ak, whi
h all must be equal by the periodi
ity(translation property), so that FXk Æk = aXk ÆkThis equality applied to the test fun
tion e��x2 , whi
h is its own Fourier trans-form, gives a = 1. This �nishes the proof.
Example 14 Let ' 2 S with F'(s) = 0; jsj � 1. ThenXn '(n) = Z '(x) dxThe integral 
an apparently be repla
ed by a re
tangular approximation 
enteredat the integers in this 
ase!Now a result 
on
erning the 
onvergen
e of Fourier series. A 
omparisonbetween the proof we give and an elementary one might be pro�table.Theorem 1.5 Suppose that the fun
tion f has period 1 and is twi
e 
ontinuouslydi�erentiable. Then f(x) =Xk 
ke2�ikxholds for all x, where the Fourier 
oe�
ients 
k are given by (k integer)
k = Z 10 e�2�ikxf(x) dx12



Proof: Two partial integrations give 
k = O(k�2); jkj ! 1. The Fourier series1Xk=�1 
ke2�ikxthen 
onverges absolutely and uniformly. The sum is thus a 
ontinuous fun
tionwith period 1 and so belongs to S 0.It su�
es to show equality in S 0, sin
e both f and the Fourier series areseparately 
ontinuous fun
tions. Equality in S 0 is equivalent tof̂ =Xk 
kÆkPoisson's Summation Formula gives (' 2 S)< f̂; ' >= Z f(x)'̂(x) dx = Z 10 f(x)Xk '̂(x + k) dx= Z 10 f(x)Xk e�2�ikx'(k) dx= Xk '(k) Z 10 f(x)e�2�ikx dx= Xk 
k'(k) =<Xk 
kÆk; ' >whi
h thus 
on
ludes the proof.Now to a 
onne
tion between Fourier transforms and Fourier series.Proposition 1.3.1 For T 2 S 0 with period 1FT = Xk 
kÆkT = Xk 
ke2�ik(�)holds with some numbers 
k whi
h, when T is for example an integrable fun
tion,are the usual Fourier 
oe�
ients.Proof: Verify the formulas! Assume now the formulas to hold, and that T = f ,where f is integrable. Take ' 2 S with '(k) = 1 and '(x) = 0; jx � kj > 1=2,and we get by Poisson's Summation Formula
k = FT (') = T (F')= Z 1�1 f(x)F'(x) dx13



= 1Xn=�1 Z 10 f(x)F'(x+ n) dx= Z 10 f(x) 1Xn=�1F'(x+ n) dx= Z 10 f(x) 1Xn=�1'(n)e�2�inx dx= Z 10 f(x)e�2�ikx dx
Proposition 1.3.2 (Dis
rete Fourier Transform: DFT) Suppose that T̂ 2S 0 has period 1, and that T also is periodi
. Then T has an integer period N andT = 1Xk=�1 tkÆkT̂ = 1Xk=�1 
kÆk=NBoth sequen
es have period N with the relationsN
k = NXl=1 tle�2�ikl=N (k = 1; :::; N)tl = NXk=1 
ke2�ikl=N (l = 1; :::; N)Proof: That T̂ has period 1 gives by the previous PropositionT = 1Xk=�1 tkÆkHere it is evident that if T also has a period, this must be an integer N . Thisimplies that tk+N = tk for all k and yields in its turnT̂ = 1Xk=�1 
kÆk=NSin
e T̂ has period 1 it follows that 
k+N = 
k for all k.14



We now 
al
ulate T̂ with the aid of the expression for T .FT = F 1Xk=�1 tkÆk= F 0� NXk=1 tk 1Xl=�1 Æk+lN1A= NXk=1 tke�2�ik(�)N�1 1Xl=�1 Æl=N= 1Xl=�1 N�1 NXk=1 tke�2�ikl=N! Æl=NThe relation N
k = PNl=1 tle�2�ikl=N (k = 1; :::; N) now follows. Verify theremaining relation, and thatF 1Xl=�1 ÆlN = N�1 1Xl=�1 Æl=NWe now return to the Poisson Summation Formula, and give an alternativeproof whi
h works unaltered in higher dimensions.Proof of Theorem 1.4; alternative: Note that the fun
tionPk '̂(s+k) is in�nitelydi�erentiable, and has period 1. We get by Theorem 1.5 (whi
h 
an be proveddire
tly without invo
ation of Poisson's Summation Formula: no 
ir
ular argu-ment) Xk '̂(s+ k) = Xl e2�ils Z 10 e�2�il�Xk '̂(� + k) d�= Xl e2�ilsXk Z 10 e�2�il�'̂(� + k) d�= Xl e2�ils Z 1�1 e�2�il�'̂(�) d�= Xl e2�ils �'(l) = Xl e�2�ils'(l)The proof is 
omplete.The Sampling Theorem is next on our programme. The theorem shows thepossibility to re
onstru
t a fun
tion de�ned on the whole real axis in its entirety,15



under 
ertain 
onditions on its spe
trum (Fourier transform), from knowledge ofits denumerable sample values only.We write sin�x=(�x) =: sin
 x and 1(�1=2;1=2) , where the latter denotes the
ut-o� fun
tion whi
h takes the value 1 on (�1=2; 1=2), and 0 elsewhere. Notethat F1(�1=2;1=2) = sin
 .Theorem 1.6 (The Sampling Theorem) Suppose that f is a smooth fun
-tion with moderate growth at in�nity as in De�nition 1.2.2, and with f̂(s) =0; jsj � 1=2. 10 Then f = sin
 � 1Xk=�1 f(k)Æk= 1Xk=�1 f(k) sin
 (� � k)holds in the subspa
e Slp = f' 2 S; '̂(s) = 0 for jsj � 1=2g � S.Proof: The operations have been de�ned in Proposition 1.2.1 and 1.2.3, ex
eptfor the 
onvolution with sin
. That this 
onvolution is legitimate will be veri�ablewhen it is done below. We haveXk f(k)Æk = fXk Æk(verify!). A Fourier transformation gives, using Poisson's Summation Formula,F(Xk f(k)Æk) = Ff � FXk Æk = Ff �Xk Æk =Xk Ff(� � k)where the last expression has period 1 and the sum redu
es to exa
tly one termon the interval (�1=2; 1=2), where it 
oin
ides with f̂(s). Multipli
ation by the
ut-o� fun
tion (verify legitima
y!) and an inverse Fourier transformation yieldsthe formula.Remark 5 We have 
hosen the sampling interval 1. If instead the samplinginterval is T and f̂(s) = 0; jsj � 1=(2T ) thenf = 1Xk=�1 f(kT ) sin
 (�=T � k)whi
h is seen by putting g(x) = f(xT ) and using the Sampling Theorem on thefun
tion g.10 f is then in�nitely di�erentiable a

ording to Paley & Wiener, Theorem 2.1 below.16



Remark 6 In te
hni
al appli
ations it is not possible to realize Æ or sin
, andneither f̂(s) = 0; jsj � 1=2. However, approximations are possible, more or lesssu

essful.You 
ould, for example, approximate Æ with a fun
tion d 2 S, whi
h is 0 out-side (�1=2; 1=2), non-negative, with integral 1, and with Fd 6= 0 on (�1=2; 1=2).Verify that there is a fun
tion d1 su
h that (on Slp, see the Sampling Theorem)f = d1 �Xn f(n)d(� � n)Remark 7 Note the 
ompli
ation in Bra
ewell's book (p. 223) with the symbolIII(x) = Pn Æ(x�n): III(x=�) is interpreted there (� > 0) as � Pn Æ(x�n�) whi
hthen should be the same as Pn Æ(x=� �n) (the origin of this lies in the followingformula in Bra
ewell's book �Æ(x=�) = �Æ(x)� whi
h in turn derives from themisleading 'formula' �R Æ(x)f(x) dx = f(0)�).Verify as a 
ontrast the following s
aling of Poisson's Summation FormulaXn F'(n�) = j� j�1Xn '(n=�)and write it with Æ's.Generally, 
hanges of variable for distributions are somewhat intri
ate, whi
hmight be guessed from the fa
t that the distributions are not de�ned pointwiselike fun
tions. However, translations and s
alings present no spe
ial problems, aswe have seen.Example 15 (Alias e�e
t) Assume that ' 2 S with'̂(s) = 0 (jsj � 1) & j'̂(s)j < � (1=2 < jsj < 1)This small sideband at 1=2 < jsj < 1 outside the main allowed passband 
reatesan error, the alias e�e
t, in the following approximations.'̂(s) � 1Xn=�1'(n)e�2�ins (jsj < 1=2)'(x) � Z 1=2�1=2 " 1Xn=�1'(n)e�2�ins# e2�isx dswhi
h may be estimated in terms of �. Estimate the maximal error as an exer
ise!Example 16 A dire
t example of the alias e�e
t is provided by the fun
tionf(x) = sin �x for whi
h the sample values at the integers f(n) = 0 for all n. (f hasits frequen
y 
ontent exa
tly at the 
riti
al limit 1/2: Ff = (Æ1=2 � Æ�1=2)=(2i).)The fun
tions fk(x) = sin k�x (k 6= 1 integer) all have the value 0 at the integerpoints. The fun
tion f = f1 has then in�nitely many aliases for when samplingat the integers: fk med k 6= 1 ett heltal.Di�erently put: given any fun
tion f(x) = sin a�x with a � 1=2, there is anumber b with jbj < 1=2 su
h that the fun
tion g(x) = sin b�x 
oin
ides with fat all integer points. (Verify!) 17



2 Analyti
 ContinuationHere we will dis
uss things whi
h require some theory for fun
tions of a 
omplexvariable: the Paley-Wiener Theorem, the relation between the Lapla
e and theFourier transforms, and the problem of spe
tral fa
torization.2.1 Paley & WienerThe feature of Paley-Wiener's Theorem is the absen
e of high frequen
ies in thespe
trum, whi
h is 
hara
terized by regularity and spe
i�
 
onditions on thegrowth of the fun
tion.The theorem implies, among other things, that if a signal is ideally band-pass �ltered then it 
annot be entirely lo
alized to �nite time interval (and 
on-versely).11Theorem 2.1 (Paley & Wiener) Let f 2 S. Then (A > 0)f̂(s) = 0; jsj � A()( f(x+ iy) entirejf(x+ iy)j � CN(1 + x2 + y2)�Ne2�Ajyj for all N 2 NRemark 1 The theorem is valid also for f 2 S 0 and some integer N ; the proofthen be
omes more te
hni
ally involved.Proof: Suppose that f̂ = 0; jsj � A. We havef(x) = Z A�A e2�ixsf̂(s) ds= Z A�A Xn�0 (2�ixs)nn! f̂(s) ds= Xn�0 (2�ix)nn! Z A�A snf̂(s) ds(uniform 
onvergen
e). Sin
e j R A�A snf̂(s) dsj � CAn+1 the radius of 
onvergen
eis in�nite, and f 
an be 
ontinued to an analyti
 fun
tion in the entire 
omplexplane (f is an entire fun
tion).Further we get ( (x + iy)2Nf(x+ iy) also entire)j(x+ iy)2Nf(x+ iy)j = (2�)�2N j Z A�A e2�i(x+iy)sD2N f̂(s) dsj� CNe2�Ajyj11 The theorem is further used (through the Support Theorem) in the theory of partialdi�erential equations. 18



whi
h implies the desired inequality (verify!).Conversely, assume that f(x+ iy) is entire withjf(x+ iy)j � C(1 + x2 + y2)�1e2�AjyjLet s > A and Cau
hy's Integral Theorem gives for y < 0f̂(s) = Z 1�1 e�2�ixsf(x) dx= Z 1�1 e�2�i(x+iy)sf(x + iy) dx= Z 1�1 e�2�ixse2�ysf(x+ iy) dx(verify!). But (y < 0)e2�ysjf(x+ iy)j � Ce2�y(s�A)(1 + x2)�1whi
h implies f̂(s) = 0; s > A. (Verify the 
ase s < �A !) The proof is 
omplete.2.2 The Fourier-Lapla
e TransformNow to the relation between Lapla
e and Fourier transforms. Consider g 2 Swith gH = f (f 
ausal). ThenFf(s) = Z 10 e�2�isxf(x) dx
an 
learly be 
ontinued to an analyti
 fun
tion of the 
omplex variable s in thelower half-plane =s < 0.Consider in parti
ular p = 2�is; <p > 0 :Ff( p2�i) = Z 10 e�pxf(x) dxObviously, the right hand side is the one-sided Lapla
e transform of f . It isnow 
lear that the Lapla
e and the Fourier transforms determine ea
h other
ompletely through the 
hange of variable 2�is = p. Whi
h transform to useis thus in prin
iple an immaterial question. However, established pra
ti
e inengineering dis
iplines often makes a distin
t 
hoi
e depending on the appli
ation.In mathemati
al literature there is also a 
ommon name, the Fourier-Lapla
eTransform.The one-sided Lapla
e transform of f 2 S may be written as the two-sidedLapla
e transform of Hf :Z 1�1 e�pxH(x)f(x) dx = Z 10 e�pxf(x) dx = F(Hf)( p2�i)19



where we might have f 6= Hf . Results for the Fourier transform 
an now bedire
tly translated to results for the Lapla
e transform and vi
e versa. (Usually,the integral in the two-sided Lapla
e transform 
onverges in a verti
al strip inthe 
omplex plane, a < <p < b .)Example 1 If we denote the two-sided Lapla
e transform of f 2 S, when thede�nition has meaning, by Lf (the one-sided will thus be L(Hf)) then we get(2�is = p)L(HDf) = F(HDf) = FfD(Hf)� f(0)Æg = 2�i(�)F(Hf)� f(0)= (�)L(Hf)� f(0)(re
all that D(Hf) = fÆ +HDf ; fÆ = f(0)Æ).This is the one-sided Lapla
e transform of the derivative of a fun
tion fexpressed in the same transform of the fun
tion and its value at 0.We now show with the potential method how initial value problems may betreated with the Fourier-Lapla
e transform.Example 2 (Bra
ewell, page 394) Consider the initial value problem( y00 + 3y0 + 2y = 2y(0) = 1; y0(0) = 0First, we 
onsider a general right hand side S 2 S 0, whi
h is a fun
tion withpossibly a term PNk=0 akÆ(k) added. A fundamental solution (Green's fun
tion,potential fun
tion, impulse response)12 may be 
onstru
ted, whi
h yields thesolution for a general right-hand side S.Consider, with su
h a right-hand side S, the initial value problem( y00 + 3y0 + 2y = Sy(0+) = 1; y0(0+) = 0The solution will be a tempered distribution whi
h, apart from possibly a sumof Æ and its derivatives, is a fun
tion (verify!).13The fundamental solution G is de�ned as the solution to the equationG00 + 3G0 + 2G = Æ with G(x) = 0; x < 0G may be obtained by a Fourier transform, a partial fra
tion de
omposition, andan inverse Fourier transformation (verify!). this gives G(x) = (e�x � e�2x)H(x)here � draw the graph and realize why!12 These are treated in 
ourses on di�erential equations.13 y(0+) et
. denote limits of the fun
tion part. (Verify that these exist!)20



With z = G � S we get14z00 + 3z0 + 2z = S and z(0+) = a; z0(0+) = bwhere a; b depend on S. (Apart from possibly Æ and its derivatives, z be
omes afun
tion.) When S = 2, we have z = 1.Adding z and a suitable solution to the homogeneous equation, the desiredsolution is obtained y = z + 
1e�(�) + 
2e�2(�)The 
onstants 
1; 
2 are 
hosen su
h that y(0+) = 1; y0(0+) = 0, whi
h is possible(verify) sin
e the solutions e�(�); e�2(�); to the homogeneous equation are linearlyindependent. When S = 2, we get 
1 = 
2 = 0.In the 
ase S = 2, we may alternatively put T = Hy; y is 
ontinuouslydi�erentiable here. The equation be
omes (
ompare Example 1)T 00 + 3T 0 + 2T = 2H + 3Æ + Æ0where the initial 
onditions now are in
orporated into the right-hand side. Thesolution is obtained by a Fourier transformation, simpli�
ation, and an inverseFourier transformation. It is T = H, whi
h gives y = 1.2.3 Spe
tral Fa
torizationWe 
on
lude with the problem of spe
tral fa
torization: assume that we haveobserved the energy spe
trum, jFf j2, of, say, an ele
tri
al signal f 2 S . Youmight think that f has the dimension Volt and the variable the dimension se
ond.Parseval's Formula Z jf(x)j2 dx = Z jFf(s)j2 dsexpresses then the total energy of the signal in two ways: jf(x)j2 is the energydensity in time, while jFf(s)j2 is the energy density in frequen
y, energy spe
-trum.15The problem of spe
tral fa
torization is, given the energy spe
trumjFf j2, to�nd the fun
tion f . Consequently, all information about the phase of Ff ismissing.The problem is, of 
ourse, not uniquely solvable. Clearly,jFf(s)j2 = jei�(s)Ff(s)j2that is, multipli
ating the Fourier transform with a phase fa
tor ei�(s) does not
hange the energy spe
trum.14 Note that z = G � S is a parti
ular solution as de�ned in elementary analysis 
ourses.15 The term power spe
trum is used somewhat di�erently in 
onne
tion with stationarysto
hasti
 pro
esses. 21



In appli
ations, it is not unusual that the fun
tion sought is 
ausal. If weknow that f is 
ausal (f = Hf) then the solution to the spe
tral fa
torizationproblem is unique up to a 
onstant fa
tor of modulus 1.16 This is a 
onsequen
eof the representation for 
ausal fFf(s) = Z 10 e�2�isxf(x) dxwhi
h 
an be 
ontinued to an analyti
 fun
tion in the lower half-plane =s < 0.Two analyti
 fun
tions with the same modulus di�er with at most a 
onstantfa
tor of modulus 1.

16 If f is real-valued the solution is unique up to a 
hange of sign.22



3 Two Probability TheoremsWe will give a simple proof of the Central Limit Theorem, and then des
ribe the
onne
tion between auto
orrelation fun
tions and probability measures.3.1 The Central Limit TheoremThe probability measure 
orresponding to the sum of n independent sto
hasti
variables with two equally likely out
omes may, normalized to mean value 0 andvarian
e 1, be represented by the 
onvolution (the number of fa
tors is n)Tn = (12 Æ�1=pn + 12 Æ1=pn) � � � � � (12 Æ�1=pn + 12 Æ1=pn)Theorem 3.1 (The Central Limit Theorem) With Tn as above, we have (inS 0) limn!1Tn = 1p2�e�(�)2=2Proof: We have (in S 0)limn!1FTn = limn!1(
os 2�(�)pn )n = e�2�2(�)2(verify the last elementary limit!) An inverse Fourier transformation gives theresult.Remark 1 The same proof may be used for the 
ase with an arbitrary prob-ability measure with �nite varian
e (one su
h is the above 12 Æ�1 + 12 Æ1).3.2 Auto
orrelation Fun
tionsDe�nition 3.2.1 The auto
orrelation fun
tion of a fun
tion ' 2 S is written' ? ' and is de�ned by ' ? '(x) := Z '(x+ u)'�(u) duNote that ' ? ' = ' � ('�)�( �'(x) := '(�x)). Furthermore, we have (' 2 S)Ff' ? 'g = jF'j223



(verify!) Every su
h auto
orrelation fun
tion has thus a non-negative Fouriertransform.17We will now (Theorem 3.2 and Remark 3) give an answer to the question:Whi
h obje
ts have (like the auto
orrelation fun
tion ' ? ') Fourier transformsthat are bounded positive measures? It is pre
isely these measures whi
h 
anbe normalized to probability measures, if divided by the total mass: the least
onstant C in the following de�nition.De�nition 3.2.2 Let T 2 S 0 and ' 2 S.T is 
alled a tempered measure if, for all ' 2 S with ' = 0 outside a �xedbounded interval, jT (')j � C supx j'(x)jholds. If C is independent of the interval, the measure is 
alled bounded.T is 
alled positive if T (') � 0 for all ' � 0, and we write T � 0.T is 
alled positive de�nite if T (' ? ') � 0 for all '.A motivation for the term 'positive de�nite' appears in Example 2 below.Proposition 3.2.1 Let T 2 S 0 . Then FT is positive if, and only if, T is positivede�nite.In addition, if T is positive then T is a (positive tempered) measure.Proof: The following hold for all ' 2 SFT (') � 0; ' � 0, FT (j'j2) � 0, T (' ? ') � 0(verify the last step!) The �rst step (in the non-trivial dire
tion) is veri�ed byputting, for 0 �  2 S with the value 0 outside a bounded interval, n(x) = ( (x) + e�x2=n)1=2and noting that  2n tends to  in S (verify!).To prove the se
ond statement, take real-valued (si
!) 'n 2 S whi
h are 0outside a �xed bounded interval and with supx j'n(x)j ! 0. Let 0 � ' 2 S be1 on the interval, and take " > 0 arbitrarily. For n large enough, "' � 'n � 0holds, whi
h yields "T (')� T ('n) � 0, or jT ('n)j � "T ('). We get T ('n)! 0,whi
h implies the desired inequality (verify!). The proof is 
omplete.17 ' ?' is sometimes normalized through a division by the s
aling fa
tor R j'(u)j2 du, and isthen written 
. Then R 
̂(s) ds = 1 and �
 � 0; when
e probability measure.24



Example 1 If ' 2 S then ' ? ' is positive de�nite (verify!).Example 2 Suppose f is a 
ontinuous fun
tion, and also a positive de�nitetempered distribution. Then we havejf(x)j � f(0) and �f = f �We verify this by writing0 � Z f(x)' ? '(x) dx = Z Z f(x+ y)'(x)'(�y)� dxdyand 
hoosing ' there whi
h approximate Pnj=1 zjÆxj . This gives the 
onditionXj;k f(xj � xk)zjz�k � 0whi
h is satis�ed for all 
hoi
es of xj; zj .In the 
ase x1 = 0; x2 = x, the 
ondition implies that the matrix" f(0) f(x)f(�x) f(0) #is Hermitian and positive (verify!). In parti
ular, we get �f = f � and jf(x)j � f(0),whi
h we wanted to prove.Now the the matrix [f(xj � xk)℄ is 
learly Hermitian and positive. That thismatrix is positive de�nite means by de�nition (of positive de�nite matri
es) thatequality in the 
ondition is attained only when all zj = 0.18Example 3 Let T 2 S 0 be positive de�nite. Then �T = T � holds, whereT �(') := T ('�)�. Verify this!Verify also that Æ is a positive bounded measure with total mass 1 (as well asany non-negative integrable fun
tion with integral 1). Moreover, verify that thefun
tion f(x) = x2 is a positive unbounded measure.Che
k �nally that, e.g., the fun
tion f(x) = ex2 , whi
h does not belong to S 0,still enjoys the �rst property in De�nition 2. The fun
tion f is a positive measurewhi
h is not tempered. We will not go into further details here.Theorem 3.2 (Bo
hner) Suppose f 2 S 0 is positive de�nite and a 
ontinuousfun
tion. Then Ff is a bounded positive measure.18 It 
an be shown that (verify!), for a positive de�nite 
ontinuous fun
tion f 2 S 0, if jf(x0)j =f(0) and jf(x)j < f(0); 0 < x < x0, then Ff =Pk akÆ(k+�)=x0 where Pk ak = f(0); ak � 0,and f(x0) = e2�i�f(0). In this 
ase the matrix need not be positive de�nite (verify!).25



Proof: A

ording to Proposition 3.2.1, Ff � 0 and is a positive measure. The
ontinuity of f will now yield �nite total mass of Ff . Choose 0 � ' 2 S su
hthat '(0) = 1 and F'(s) = 0; jsj � 1 (verify that this is possible!). Put'n(x) = '(x=n); n = 1; 2; : : : .We get (Ff � 0, f 
ontinuous)0 � Ff('n) = f(F'n) = Zjxj�1=n f(x)F'n(x) dx �! f(0)Consider now an arbitrary bounded interval (a; b), and observe that 'n(x) �1� " holds in the interval if n is su�
iently large. Take  2 S that is 0 outsidethe interval (a; b). Then (" > 0 arbitrary)'n(x)� (1� ") (x)= supx j (x)j � 0follows, and thus19(1� ")jFf( )j= supx j (x)j � Ff('n) � f(0) + "if n is large enough. Thus we havejFf( )j � f(0) supx j (x)jThe proof is 
omplete.Remark 2 Using the more general 
on
ept of distribution (not only temperedones) and the 
orresponding de�nition of positive de�nite distribution, S
hwartz'Theorem holds: T is positive de�nite pre
isely when FT is a positive measure.An idea for a proof is to regularize T by 
onvolving it with approximate Æ to a
ontinuous fun
tion, then use Bo
hner's Theorem 3.2, and take limits.In the tempered 
ase, this is Proposition 3.2.1. There the positive measure isa tempered distribution, whi
h narrows the possibilities (see Example 3).Remark 3 For a positive measure with �nite total mass, it 
an be shown thatits Fourier transform is a (positive de�nite) 
ontinuous fun
tion, the value ofwhi
h at 0 is the total mass of the measure.
19 Compare to the proof of Proposition 3.2.1.26



4 Sele
ted LandingsWe will land at sele
ted pla
es in Bra
ewell's book, in about the order thingsappear there. We start with the Un
ertainty Relation, treat then Gibb's Phe-nomenon, followed by the Radon Transform. Our next landing is in antennas andthin lenses. We 
on
lude with a dis
ussion of some issues 
on
erning dis
retiza-tion and Fourier transform.4.1 The Un
ertainty RelationThe Un
ertainty Relation in quantum me
hani
s is mathemati
ally the fa
t thatthe two integralsZ jDf(x)j2 dx (= 4�2 Z jsFf(s)j2 ds) and Z jxf(x)j2 dx
annot both be small jointly. This is quantitatively expressed by the followingtheorem.Theorem 4.1 (The Un
ertainty Relation) Let f 2 S with R jf(x)j2 dx = 1.Then 12 � (Z jDf(x)j2 dx)1=2(Z jxf(x)j2 dx)1=2holds.Proof: The following identity is the foundation of the proof. (Verify the identity!)f = Df(�)fg � (�)DfWe now use the identity, a partial integration, and the Cau
hy-S
hwarz' inequal-ity. 1 = Z f(x)f(x)� dx = Z Dfxf(x)gf(x)� dx� Z xDf(x)f(x)� dx= � Z xf(x)Df(x)� dx� Z Df(x)xf(x)� dx� 2(Z jDf(x)j2 dx)1=2(Z jxf(x)j2 dx)1=2The proof is 
omplete.
27



4.2 Gibbs' PhenomenonThe partial sums of a Fourier series belonging to a fun
tion with a jump dis-
ontinuity all display an overshoot 
lose to that point. This is 
alled Gibbs'Phenomenon.Let f and g have period 1, and let D2g be 
ontinuous. Then the Fourier seriesof g 
onverges uniformly to g at all points (Theorem 1.5). Assume thatg 1(�1=2;1=2) = (f � (H � 1=2)) 1(�1=2;1=2)This means that f has a unit jump at the integers and at the half-integers 
om-pared to g ; otherwise they have the same regularity. (Draw a pi
ture!)We will now investigate f � g whi
h is a square wave � Gibb's Phenomenonfor f will be the same as for the square wave f � g (verify!). In the interval(0; 1=2) we 
onsider the di�eren
e (whi
h produ
es the overshoot)NXn=�N 
ne2�inx � (H(x)� 1=2) = � Xjnj>N 
ne2�inx(this may be shown to 
onverge pointwise in 0 < jxj < 1=2).Cal
ulating the 
oe�
ients 
n, we have (with N = 2M + 1)NXn=�N 
ne2�inx = MXk=0 2�(2k + 1) sin 2�(2k + 1)xThe smallest positive extremum point (put the derivative equal to 0) is herex = 1=(4M + 4) = 1=(2N + 2), whi
h gives� Xjnj>N 
ne�in=(N+1) = � 1Xk=M+1 2�(2k + 1) sin(�(2k + 1)=(2M + 2))When N ! 1, it follows that M ! 1 and the right-hand side (whi
h is aRiemann sum) 
onverges to� Z 11 sin�x�x dx � 0; 0894899(where the value has been 
omputed by Mathemati
a).The overshoot is thus about 9% of the jump as N !1.4.3 The Radon TransformIn dimension 2, the Radon transform of a fun
tion is its integral over all lines.This transform is used, for example, in Computer Tomography (CT), in Mag-neti
 Resonan
e Imaging (MRI), in Positron Emission S
anning (PET), and inSyntheti
 Aperture Radar (SAR).2020 In SAR, the lines are repla
ed by 
ir
les.28



In Computer Tomography, the fun
tion f(x) represents the absorption 
oe�-
ient in the material (tissue) per unit length, and the absorption is observed forX-rays traversing a 
ross-se
tion of the obje
t (body) along lines LZL f(x(l)) dlThis is now in theory re
orded for all lines L, and the task is to reprodu
e thefun
tion values f(x) from the values of all the line integrals.21De�nition 4.3.1 The Radon Transform of a fun
tion f 2 S is de�ned byR�f(s) := Zx��=s f(x) dxwhere j�j = 1.22Note that R�f(s) = R��f(�s), and that the requirement j�j = 1 is made tohave the line 
orrespond bije
tively, apart from a sign, to (�; s).Remark 1 The Abel Transform of the radial fun
tion f in dimension 2 isde�ned by ((x > 0)) Af(x) := 2 Zr>x f(r) r drpr2 � x2and Af(�x) := Af(x).23Verify that the Radon transform of a radial fun
tion 
oin
ides with its Abeltransform. This means that, for radial fun
tions in dimension 2, 
omposing anAbel transform with a Hankel transform24 is the same as 
omposing the Radontransform and the Fourier transform.Remark 2 In dimension n � 3, the integration may be done in more than oneway. One is to integrate over the (n � 1)-dimensional (hyper-)plane x � � = s ;another is to integrate over the lines x = t + l�, where j�j = 1 and t � � = 0. Inappli
ations, integration over lines is 
ommonly used � images in dimension 3 areoften built from plane sli
es, the latter being re
onstru
ted from line integrals.A natural question might now be: Whi
h families of 'surfa
es' or 'lines' areadmissible for a re
onstru
tion of a fun
tion from values of its integrals over theseto be possible?2521 The viability of this task was shown by Radon about a 
entury ago.22 The variable s has a di�erent role in this se
tion, and � denotes a point on the unit 
ir
le(sphere)!23 The last statement is used, but not expli
itly made in Bra
ewell's book.24 The Fourier transform of a radial fun
tion is the Hankel Transform.25 We refer to the book Helgason S., The Radon Transform, Birkhäuser, 1980, where a
omprehensive treatment of the 
entral issues may be found.29



Remark 3 In implementations, problems arising from dis
retization, samp-ling, and re
onstru
tion, will arise.26 One su
h is that the Radon transform isexpressed in polar 
oordinates, while the re
onstru
tion is done with the FastFourier Transform in re
tangular 
oordinates ...We now show the theoreti
al result on whi
h all of the te
hniques CT, PET,MRI, and SAR are based.Theorem 4.2 (Radon) Let f 2 S. ThenFR�f(�) = Ff(��)holds.Proof: It su�
es to 
onsider the 
ase � = (1; 0), sin
e a rotation of the 
oordi-nate system in the (x1; x2)-plane 
orresponds to the same rotation in the Fourierdomain. (Verify!)We get, with � = (1; 0), that x � � = x1, and thusFR�f(�) = Z 1�1 e�2�i�s Zx1=s f(x1; x2) dx2ds= Z Z e�2�i�(1;0)�(x1;x2)f(x1; x2) dx1dx2= Ff(��)We end with a starting point for re
onstru
tion of a fun
tion from its Radontransform. Re
all that the Hilbert transform 
orresponds to multipli
ation byi sign (�) in the Fourier domain, and that di�erentiation 
orresponds to multipli-
ation by 2�i(�).Example 1 Let f 2 S. Then, in dimension 2 after a 
hange to polar 
oordi-nates, (R�f(s) = R��f(�s))f(x) = Z e2�ix��Ff(�) d�= Z e2�i���xFf(��)� d�d�= 1=2 Z e2�i���xFR�f(�)� sign� d�d�= �1=(4�) Z e2�i�(��x�s)i sign� 2�i�R�f(s) dsd�d�where the integration, from the third equality sign on, is made over all real �,i.e., also over negative values.26 Further information on these matters is available in the book Natterer F., The Mathe-mati
s of Computerized Tomography , Wiley, 1986.30



4.4 Antennas and Thin LensesIn this se
tion, we dis
uss 
oherent ele
tromagneti
 radiation: the wavelength(and the frequen
y) is thus �xed throughout.First, we 
onsider the relation between the aperture �eld and the dire
tion
hara
teristi
s of an antenna, whi
h is approximately given by the Fourier trans-form.Se
ond, we will argue that a �eld in one fo
al plane of a thin 
onvex lens
reates approximately its Fourier transform in the opposite fo
al plane.AntennasHere we just brie�y reiterate the argument in Bra
ewell's book, and use the samenotation.Consider the 
ase when the �eld in the aperture of the antenna may be de-s
ribed by one position variable only: E(x)ei!t, where ! is the 
ir
ular frequen
y.At the point P at the distan
e r from the point x, the 
ontribution to the far�eld will be E(x)ei!te�2�ir=� from the aperture �eld by Huyghens' Prin
iple, where�!=(2�) is the �eld propagation velo
ity. Let now R denote the distan
e betweenthe point x = 0 and the point P , and � the angle between the horizontal axisand the line through x = 0 and P .The Cosine Theorem givesr2 = R2 + x2 � 2xR 
os(� + �=2)or r = R �1 + 2(x=R) sin � + (x=R)2�1=2For x � R (far away 
ompared to the antenna dimensions), we approximatelyhave r = R + x sin �whi
h gives, after integration over x and with s = (sin �)=�, the �eld at Pe�2�iR=�+i!t Z 1�1E(x)e�2�ixs dx = e�2�iR=�+i!tÊ(s)Sin
e s = (sin �)=�, this is essentially the dire
tion 
hara
teristi
s as j�j � 1.Example 2 For E = 1(�1=2;1=2), Æ, Æ�1=2 + Æ1=2 The 
hara
teristi
s will be ap-proximatively respe
tively sin
, 1, 
os(�(�)=�).A Thin Convex LensWe will 
onsider a thin 
onvex lens with fo
al distan
e f and, in one fo
al plane,the �eld E(x)ei!t. We will restri
t our dis
ussion to the geometri
al opti
s ap-proximation and '
entral rays'. Notation will found in the �gure below.31



Suppose thus that the �eld in one fo
al plane is given by E(x)ei!t, where !is the 
ir
ular frequen
y, and �!=(2�) is the �eld propagation velo
ity.
6x f f 6
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In the geometri
al opti
s approximation, rays from a point x in one fo
alplane is refra
ted to parallel rays by the lens, and the ray through the 
enter isnot refra
ted. This implies that a ray from the point x to the point s has travellength �f 2 + jsj2�1=2 + �f 2 + jxj2�1=2whi
h is, when jxj � f; jsj � f , approximatively 2f + (jxj2 + jsj2)=(2f). Theassumption about 
entral rays implies jxj � jsj, and so the approximate travellength amounts to 2f + jxjjsj=fBy Huyghens' Prin
iple, the 
ontribution from the point x to the �eld at thepoint s is thus, sin
e xs = �jxjjsj from the geometri
al opti
s approximation,E(x)ei!te�2�i(2f�xs=f)=�. This yields, after an integration over x, the whole �eldat the point se�4�if=�+i!t Z E(x)e2�ixs=(f�) dx = e�4�if=�+i!tÊ(�s=(f�))This may be expressed as the �eld in one fo
al plane generates its Fourier trans-form in the other fo
al plane. 32



Example 3 Let the fun
tionf = "�1(�1=2;1=2)((�)1)=�)=� 1(�1=2;1=2)((�)2=�)=�� �Xn Æn# 1(0;1)(j � j=R)=R2represent an in�nite square latti
e. The squares have edge-length � and are
entered at the integer points n = (n1; n2). The latti
e is 
ir
ularly 
ut o� withan iris diaphragm of radius R.A Fourier transform givesf̂ = "sin
(�(�)1)sin
(�(�)2)Xn Æn# � J1(2�Rj � j)=(Rj � j)= Xn sin
(�n1)sin
(�n2)J1(2�Rj(�)� nj)=j(�)� njThe graph of jf̂ j2 below has been 
reated byMatLab. The 
omputation requiredabout 40 M�op to produ
e the graph from the 289 fun
tion values used. Theparameters were � = 2=3; 2�R = 20; �4 < s1 < 4; �4 < s2 < 4. (The intervalswere in
reased 0.001 at the boundary points.)
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4.5 Some Issues of Dis
retizationSampling and Fourier TransformationA numeri
al treatment of fun
tions and Fourier transforms is 
ommonly pre
ededby an approximation. For example, a fun
tion f 2 S may be approximatedby a �nite number of values, ea
h value being represented by a �nite de
imalexpansion.27We will assume that a low-pass �ltering has been performed, so that Ff(s) =0; jsj � 1=2. The Sampling Theorem then tells that the sample values f(n); n 2Z, 
ontain the information about all other fun
tion values, and (jsj < 1=2)Ff(s) =Xn f(n)e�2�ins =Xn f(n)z�n = F (z) 28In the example 
hosen here, f 2 S, in general there are in�nitely many non-zerosample values. Then all but a �nite number, N say, have to be dis
arded. Welet, with A as in Approximation,FfA(s) := N�1Xn=0 f(n)e�2�insPut F� := N�1FfA(�=N); fn := f(n), and we get the Dis
rete Fourier Transform,DFT. Compare Proposition 1.3.2 above!NF� = N�1Xn=0 fne�2�in�=N (0 � � � N � 1)fn = N�1X�=0 F�e2�in�=N (0 � n � N � 1)What is the error in the transform due to the approximations? A rough �rstestimate shows (jsj < 1=2)jFf(s)� FfA(s)j � Xn6=0;:::;N�1 jf(n)jwhere the error is expressed in the dis
arded values. The subsequent restri
tionto F� entails no additional loss of information (verify!).27 Round-o� errors appearing when taking �nite de
imal expansions, quantization errors, areusually supposed to be independent and normally distributed. We will subsequently assumethat the sample values are exa
t, and thus disregard quantization errors.28 The z-transform of the sample sequen
e is the Fourier transform of the 
ontinuous timesignal with z = e2�is; jsj < 1=2. 34



Diverse ConvolutionsThe 
onvolution of two tempered distributions whi
h are 
ontinuous periodi
fun
tions (with the same period) 
annot be given meaning within our framework.Verify this by 
onsidering the Fourier transform of a proposed 
onvolution.However, a periodi
 
onvolution of two periodi
 fun
tions f o
h g, both withperiod 1, may be de�ned byf h* g(x) := Z 10 f(x� y)g(y) dywhere f h* g gets period 1. The periodi
 
onvolution 
orresponds to multipli
ationof the Fourier 
oe�
ients (verify!).Note that a fun
tion whi
h is 0 outside a bounded interval 
an be treated asperiodi
 without loss of information (keeping in mind that it is not periodi
 but0 outside the original interval!).For sequen
es, ffng ; fgng, the standard de�nition of 
onvolution(f � g)n = 1Xk=�1 fn�kgk
orresponds to a multipli
ation of their z-transforms. If the sequen
es have �nitelength M (i.e. the value is 0 ex
ept for M 
onse
utive ones) and N respe
tively,then the 
onvolution will, in general, have length M +N � 1. (Verify!)Two sequen
es of length N , ffng and fgng, may be 
ontinued periodi
allyand then a periodi
 
onvolution may be de�ned:(f h* g)n := N�1Xk=0 fn�kgkwhi
h has the same period N . For the Fourier transforms above, F� and G�,(whi
h also may be 
ontinued with period N) this 
onvolution again 
orrespondsto multipli
ation (verify!).The periodi
 
onvolution and the usual one 
oin
ide if the sequen
es are ex-tended by zeroes so as to double their length. Let ffngN�1n=0 ; fgngN�1n=0 both havelength N , and let ff 0ng ; fg0ng be the same with N � 1 zeroes appended at oneend, say. Then (f 0 h* g0)n = (f � g)n (0 � n � 2N � 2)holds. Verify this!Fast Fourier Transform: FFTWe des
ribe the key idea behind a fast algorithm, FFT, to 
ompute the Fouriertransform of sequen
es of 
ertain lengths N . We take N = 2n, but the same35



idea applies in the 
ase N = p1p2 � � � pn with pi prime numbers. The number ofoperations multiply-add be
omes N 2logN , when N = 2n.29Let �rst N = 2. We have X0 = x0 + x1X1 = x0 � x1Clearly, 2 operations were needed.Let next N = 4. We haveX0 = x0 + x1 + x2 + x3X1 = x0 + ix1 � x2 � ix3X2 = x0 � x1 + x2 � x3X3 = x0 � ix1 � x2 + ix3Here, the 
ase N = 2 may be used on the 2 
ouples (x0; x2) and (x1; x3), andthen 4 operations performed; thus a total of 8 operations.Let �nally N = 8. Partition the sequen
e into 2 groups:(x0; x2; x4; x6) and (x1; x3; x5; x7)Use the 
ase N = 4 on ea
h group. Verify that an additional 8 operations
on
lude the 
al
ulation! (1 per 
oe�
ient.)Hopefully, the key idea behind the FFT is now dis
ernible. This 
onstitutesthe main loop in the design of 
omputer implementations for general N = 2n.30How many operations are needed in the general 
ase N = p1p2 � � � pn ?Example 4 Multipli
ation of two numbers 
orresponds to a 
onvolution oftheir digit sequen
es in any base. (Compare the z-transform.)If both numbers have N = 2n digits, a straight-forward 
al
ulation of the
onvolution would need N2 multiply-add operations � this is a quadrati
 de-penden
e on the number of digits. If, instead, both sequen
es are �rst treatedwith FFT, then pointwise multiplied, and �nally given an inverse FFT, then thenumber of operations will be N +3N 2logN � whi
h grows 
onsiderably slowerthan quadrati
 in the number of digits.A pra
ti
al problem in the usage of FFT is that not all sequen
es have lengthN = 2n. This problem, and the problem of dis
arding sample values, will betopi
s in 
omputer exer
ises.29 A straight-forward 
al
ulation of the transform requires in this 
aseN(N�1)multiply-adds(verify!)30 A dis
ussion of the mathemati
al rami�
ations of the main idea, and some histori
almaterial, may be found in Auslander L. & Tolimieri R., Is 
omputing with the �niteFourier transform pure or applied mathemati
s? Bull. Amer. Math. So
. 1:6 (1979), 847�897.(The department library has the journal.) 36



5 Wavelet Analysis � a Sket
hA drawba
k with the Fourier transform is that a lo
al 
hange at one frequen
yin�uen
es the 
orresponding fun
tion globally: a 
hange in one term of the Fourierseries alters the fun
tion everywhere.One way to 
ir
umvent this drawba
k is to perform a wavelet transform.31A given fun
tion f 2 L2 (jf j2 integrable) is de
omposed into a sumf(x) = 1Xk;l=�1ak;l2�k=2 (2�kx� l)where ak;l = Z f(x)2�k=2 (2�kx� l)� dxIn more 
ondensed notation, this be
omesf = 1Xk;l=�1ak;l k;l where ak;l = (f;  k;l)Ea
h term is, apart from a s
ale fa
tor, a dilated and translated version ofa single fun
tion, the wavelet  2 L2, whi
h will be mainly lo
alized in a timeinterval. If a narrow frequen
y band is desired, the pri
e is worsened lo
alizatonin time, and 
onversely, due to the Un
ertainty Relation.32Note that the s
ale doubles when k is in
reased to k + 1 � this is the reasonfor the minus sign in 2�k.33The wavelet system may be 
hosen orthogonal or not, depending on the spe-
i�
 appli
ation.The wavelet transform has, as the Fourier transform, both a 
ontinuous, adis
rete, and a �nite version. We only dis
uss the dis
rete and �nite versionhere.34Computationally, the wavelet algorithm is better than the FFT: the numberof operations multiply-add is at most (n + 1) 2K+1 when the sequen
e length is2K, where n is a 
onstant depending on the wavelet used. For the Haar system,n = 1.31 Another way would be to perform a 'windowed Fourier transform', whi
h means �rstlooking through a 'window' 
ut out of the fun
tion and then Fourier transform that part. Thislatter pro
edure turns out to be 
onsiderably more 
ostly in terms of 
omputational operations.32 The sum will 
onverge in L2, and equality will hold almost everywhere, in most 
ases.33 Some authors use the reversed 
onvention with the s
ale of the variable in
reasing as theindex de
reases. With this other 
onvention, the s
ale of subspa
es below will then be in
reasinginstead of de
reasing with the index.34 A good referen
e for wavelet theory is the book Ingrid Daube
hies, Ten Le
tures onWavelets, SIAM, Philadephia, 1992. Daube
hies has personally 
ontributed to the developmentof the theory. See also the introdu
tory book J Bergh, F Ekstedt, M Lindberg, Wavelets,Studentlitteratur, Lund, 1999. 37



In what follows, we des
ribe the arguments for a general orthogonal systemof wavelets, whi
h are real-valued and 
orrespond to a �nite transform in ea
hstep. Then we dis
uss the algorithms, and we exemplify with the Haar system.Finally, we interprete the analysis in terms of a s
ale of subspa
es of L2, withpertinent proje
tions and orthogonal 
omplements.5.1 WaveletsWe start from the fun
tion � 2 L1 TL2 with R � 6= 0, the s
aling fun
tion,whi
h satis�es a re
urren
e equation�(x) = nXk=0 
k21=2�(2x� k)together with the orthogonality 
onditionsZ �(x�m)�(x) dx = Æm0The fun
tion is thus normalized by (R �2)1=2 = (Pnk=0 
2k)1=2 = 1 (The terms inthe right-hand side are orthogonal).For the Haar system, � = 1(0;1), n = 1, and 
0 = 
1 = 2�1=2.Note that 0 � x � n=2 implies �k � 2x � k � n � k. Thus, if �(x) = 0outside the interval (0; n) (see the next exer
ise), then its values in (0; n=2) aredetermined by its values at the integers in (0; n). In the Haar system, (� has ajump dis
ontinuity at 0 and at 1), we will put �(0) = 1 and �(1) = 0.A Fourier transformation of the re
urren
e equation givesF�(s) = F�(s=2) 2�1=2 nXk=0 
ke��iks := F�(s=2)p(s=2)Note that p(0) = 1 follows here. A reiteration givesF�(s) = F�(s=2N) �Nk=1p(s=2k)and, when N !1, F�(s) = F�(0)�1k=1p(s=2k)In the Haar system, the left-hand side is the fun
tion e��is sin
 s, whi
h thus isexpressed as an in�nite produ
t.Exer
ise 5.1.1 Show that the last equation implies that �(x) = 0 outside (0; n).Apparently, the polynomial p or its 
oe�
ients 
k 
ontain all informationabout the fun
tion �. In the algorithms, nothing but these 
oe�
ients appear.38



The ortonormality for the integer translates of � above be
omes by Parseval'sFormula Æm0 = Z F�(s) �e�2�imsF�(s)�� ds= Z 10 e2�ims 1Xl=�1 jF�(s+ l)j2 dswhi
h implies1 � 1Xl=�1 jF�(s+ l)j2 = 1Xl=�1 jF�((s+ l)=2)j2jp((s+ l)=2)j2This yields (
onsider l even and odd respe
tively in the sum; p has period 1)jp(s)j2 + jp(s+ 1=2)j2 � 1or nXk=0 
k+2m
k = 0 (1)From �, we de�ne the fun
tion  , the wavelet, whi
h will satisfy the two
entral requirements Z  (x)�(x�m) dx = 0for all integers m, and  (x) =Xk dk 21=2�(2x� k)These mean that linear 
ombinations of integer translates of  are orthogonal tosu
h of �, and that  is a linear 
ombination of half-integer translates av � in thehalved s
ale. A normalization is also done here by (R  2)1=2 = (Pk d2k)1=2 = 1.We will now argue that the 
oe�
ients dk are pra
ti
ally determined by the
oe�
ients 
k. Parseval and re
urren
e give, with q(s) := 2�1=2Pk dke�2�iks andusing the same 
al
ulations as before (verify!), the 
onditionp(s)�q(s) + p(s+ 1=2)�q(s+ 1=2) = 0This is ful�lled (essentially only) byq(s) = e�2�i(s+1=2)p(s+ 1=2)�whi
h implies q(0) = 0 by the identity for the polynomial p above and p(0) = 1.The 
ondition be
omesXk dk
k+2m = 1Xk=�n+1(�1)k
1�k
k+2m = 0 (2)39



(verify!) Consequently, we have (x) = 1Xk=�n+1(�1)k
1�k21=2�(2x� k)and (q(0) = 0) Z  (x) dx = F (0) = F�(0)q(0) = 0When � = 1(0;1),  = 1(0;1=2) � 1(1=2;1) and is 
alled the Haar fun
tion.The orthogonality 
ondition (jkj+ jlj 6= 0)Z  (2�kx� l) (x) dx = 0is thus ful�lled for k = 0.Orthogonality for k = �1 follows fromZ  (2x� l) (x) dx = 1Xm=�n+1(�1)m
1�m Z  (2x� l)�(2x�m) dx = 0In the same way, we get the orthogonality for all k 6= 0.5.2 Fast Wavelet Transform: FWTThe algorithms are founded on the following observation. The equations (1)and (2) may be interpreted as that the matri
es L�L and H�H below representproje
tions with orthogonal values (more about this presently). The matri
es Land H 
ontain only the 
oe�
ients in the polynomial p. 35[L℄ij = 
j�2i [H℄ij = (�1)j
1+2i�jIf the signal to be transformed has length N = 2K, we 
hoose 0 � i � 2K�1�1and 0 � j � 2K � 1 in the �rst step. For the Haar system, if N = 22 and thesignal is the 
olumn ve
tor x = [x0 x1 x2 x3℄� we haveLx = 2�1=2[x0 + x1 x2 + x3℄�L�Lx = 1=2[x0 + x1 x0 + x1 x2 + x3 x2 + x3℄�Hx = 2�1=2[x0 � x1 x2 � x3℄�H�Hx = 1=2[x0 � x1 � x0 + x1 x2 � x3 � x2 + x3℄�35 In the review arti
le by G Strang, Wavelets and dilation equations: a brief introdu
tion,SIAM Review 31 (4), 1989, 614-627, the 
oe�
ient index in the de�nition of the matrix L haserroneously been given the wrong sign. The matrix H is similarly wrong. This means that,given the re
urren
e equation, the matri
es in the arti
le belong to the fun
tions �(n� x) and (n� x). 40



The notation L and H are 
hosen to indi
ate low-pass and high-pass �lter re-spe
tively; the reason is explained below.The following matrix 
onditions are equivalent to the polynomial ones for pand q (whi
h in turn are equivalent to (1) and (2)).HL� = 0 (& LH� = 0) (3)LL� = E & HH� = E (4)L�L+H�H = E (5)The wavelet anaysis of the signal x means, in step 1, to 
al
ulate Lx and Hx,whi
h both will be half as long as x. The last step of the re
onstru
tion will be to
al
ulate L�Lx and H�Hx from Lx and Hx, and sum them: L�Lx+H�Hx = x.If the signal length is N = 2K, the analysis will be a reiteration (at most) Ktimes of step 1 on the result of operating with L in the previous step; for there
onstru
tion the 
orresponding pro
edure is applied.Exer
ise 5.2.1 Do the entire analysis above for N = 22 and 
ompare step bystep to the FFT.The ve
tor x � L�Lx = H�Hx is the proje
tion on a 'high-frequen
y' 
om-ponent of x, while x � H�Hx = L�Lx is the proje
tion on a 'low-frequen
y'
omponent. The 
omponents are orthogonal by (3):H�Hx(L�Lx)� = H�Hxx�L�L = H�HL�Lxx� = 0In addition, we have from (4)(H�H)2 = H�HH�H = H�H & (L�L)2 = L�LL�L = L�Lthat is, H�H and L�L are proje
tions.The 
ondition (5) therefore means that we 
an divide any ve
tor into orthog-onal 
omponents: one with the high frequen
ies and one with the low.A natural question, whi
h we now turn to, is:What is the 
onne
tion between the results of the steps in thealgorithm and the sample values and the wavelet 
oe�
ientsof the 
ontinuous-time signal?Write the low-pass �ltered 
ontinuous-time signal x(t), with Fx(s) = 0 forjsj � 1=2, and where the sample values x(l) are approximated to 0 outside theintegers 0; 1; 2; ::: ; 2K � 1, as (the index a as in approximation)xa = sin
 � 2K�1Xl=0 x(l)Æl = 2K�1Xl=0 x(l)sin
( � � l)41



The starting point of the analysis is (the index w as in wavelet)xw = � � 2K�1Xl=0 x(l)Æl = 2K�1Xl=0 x(l)�( � � l))After a Fourier transformation, we haveFxa(s) = 1(�1=2;1=2)(s) 2K�1Xl=0 x(l)e�2�islFxw(s) = F�(s) 2K�1Xl=0 x(l)e�2�islThe fun
tion xw will apparently 
ontain the same information as the fun
tion xapre
isely when the 
ondition F�(s) 6= 0 , 1(�1=2;1=2)(s) 6= 0 is ful�lled.Remark 1 The wavelet analysis is thus not performed dire
tly on the low-pass�ltered signal, but after a �ltering whi
h adds alias e�e
ts if F�(s) 6= 0 outside(�1=2; 1=2), most prominently in the smallest s
ales. High (low) frequen
ies willthen seem to 
ontain more (less) energy than their part of the energy spe
trum ofthe signal. If F�(s) de
ays slowly to 0 outside (�1=2; 1=2), this in�uen
e will be
lear. To avoid su
h e�e
ts in the analysis result, a pre-�ltering 
an be performed,or perhaps 
hoose another � to start with.Exer
ise 5.2.2 Show that, in S 0,2K�1Xl=0 xl n�(n( � � l))! F�(0) 2K�1Xl=0 xlÆlHow does a 
hange of �(x) to n1=2�(nx) a�e
t the re
urren
e equation?Consequently, we now assume that (xl := x(l))xw = 2K�1Xl=0 xl�( � � l))represents (after �ltering) the usual approximation to �nitely many sample valuesof the given low-pass �ltered 
ontinuous-time signal x.To simplify the notation, we will in the sequel use the s
alar produ
t in L2(f; g) := Z f(x)g(x)� dxand, e.g., �k;l(x) := 2�k=2�(2�kx� l)42



Given the 
oe�
ients xj, j = 0; 1; 2; :::; 2K � 1, the relation of whi
h to thesignal x was just dis
ussed, we have xw as the input for the analysisxw = 2K�1Xj=0 xj�0;jThe wavelet 
oe�
ients a1;i are then, using de�nitions and orthogonality, givenby a1;i = (xw;  1;i) = 2K�1Xj=0 xj(�0;j;  1;i)= 2K�1Xj=0 xj 1Xk=�n+1(�1)k
1�k(�0;j; �0;2i+k)= 2K�1Xj=0 xj(�1)j
1+2i�jHere we have now seen the matrix H in a
tion. The matrix L a
ts in a 
orre-sponding way: b1;i = (xw; �1;i) = 2K�1Xj=0 xj(�0;j; �1;i)= 2K�1Xj=0 xj nXk=0 
k(�0;j; �0;2i+k)= 2K�1Xj=0 xj
j�2iThe terms high-pass and low-pass �lter is motivated by F (0) = 0 and F�(0) 6=0, respe
tively (both are more or less lo
alized around 0) in the equalityFxw = 2K�1�1Xl=0 a1;lF 1;l + 2K�1�1Xl=0 b1;lF�1;l= 2F (2s) 2K�1�1Xl=0 a1;le�4�ils + 2F�(2s) 2K�1�1Xl=0 b1;le�4�ilsIn the Haar system, F�(s) = e��is sin
 s.Exer
ise 5.2.3 Show that, in the Haar system,F (s) = i e��is sin(�s=2) sin
(s=2)43



5.3 A S
ale of Subspa
esLet � and  be as before, and put V0 as the set of all �nite linear 
ombinationsof integer translates of �, �(x� k), together with their limits in L2.Let V1 be the 
orresponding with 2�1=2�(2�1x� k): doubled s
ale � thus theindex 1 (> 0). The re
urren
e equation gives V1 � V0. By de�nition, the set W1of all �nite linear 
ombinations of the integer translates 2�1=2 (2�1x � k), andtheir limits in L2, is a subset of V0. From the equalities (1) and (2), we inferV0 = W1 M V1 and W1?V1With Vk andWk as the set of �nite linear 
ombinations of the integer translates2�k=2�(2�kx � l) and 2�k=2 (2�kx � l), respe
tively, and their limits in L2, wehave a s
ale of subspa
es in L2,f0g � ::: � Vk+1 � Vk � Vk�1 � ::: � L2for all integers k, whereVk�1 = Wk M Vk and Wk?VkFurthermore, it 
an be shown that[k Vk = L2 and \k Vk = f0gwhere also limits in L2 are 
ounted as belonging to the union ('the 
losed hull isL2').If we let Pk and Qk denote the orthogonal proje
tions of Vk�1 on Vk and Wk,respe
tively, then Pk +Qk be
omes the identity mapping on Vk�1.In the algorithms, the equalityV0 = W1 M W2 M ::: M WK M VKwas used together with the proje
tions Pk and Qk. The signal length is 2K, and itis supposed to belong to V0. The analysis algorithm means su

essive proje
tionson the orthogonal subspa
es. The fa
tor H in the proje
tion Qk = H�H givesthe wavelet 
oe�
ients as 
oe�
ents in the linear 
ombination of  (2�kx � l),that is, in the s
ale 2k.
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A AppendixHere we give a proof of the Stru
ture Theorem 1.2 for tempered distributions. A
hara
terization 
on
ludes the appendix.Theorem A.1 (The Stru
ture Theorem 1.2) Let T 2 S 0. Then 
ontinuousfun
tions fj; j = 1; 2; : : :, and non-negative integers �j, exist su
h that (in S 0)T = 1Xj=�1D�jfjThe somewhat te
hni
al proof is based on Lemma A.1.1 � 3, and on a result(whi
h we do not prove here) from Integration Theory. (None of these resultswill be used in the rest of the 
ourse.)Lemma A.1.1 Let T 2 S 0 and ' 2 S with '(x) = 0 for x 62 (a; b), whi
h is a�nite interval.Then a non-negative integer � and a 
onstant C exist so that (for these ')j < T; ' > j � C supx jD�'(x)jProof of Lemma A.1.1: Assume the 
ontrary, that is, �n ! 1 and 'n, n =1; 2; : : :, exist su
h that supx jD�n'n(x)j �! 0but j < T; 'n > j � 1Now 'n ! 0 in S follows, sin
e, given �; �, take n su
h that �n � �, and we getsupx (1 + jxj)�jD�'n(x)j � Ca;b supx jD�'n(x)j� Ca;b supx jD�n'n(x)j �! 0where the last inequality derives fromj'n(x)j = j Z xa D'n(y) dyj � (b� a) supx jD'n(x)jWe have now a 
ontradi
tion: 'n ! 0 in S and j < T; 'n > j � 1. Thisproves the lemma.The smallest admissible � in Lemma A.1.1 is 
alled the order of T in (a; b).When the order is 0, T is 
alled a (tempered) measure in (a; b).45



Lemma A.1.2 Assume that DT has order � � 1 in (a; b). Then T has order� � 1.Proof of Lemma A.1.2: Let DT have order � � 1 in (a; b), and let ' be as inLemma A.1.1. We show that T then has order at most � � 1.We have j < DT; ' > j � C supx jD�'(x)jand thus j < T;D' > j � C supx jD�'(x)jwhi
h is the desired inequality, though only in a subspa
e of those fun
tions whi
hare derivatives. Fix now '0 as in Lemma A.1.1 with R '0(x) dx = 1. Taking  asin Lemma A.1.1, we have 36 (x) = DfZ xa  (y) dy� Z xa '0(y) dy Z ba  (y) dyg+ '0(x) Z ba  (y) dywhi
h yields (verify that the expression in 
urly bra
kets has the desired proper-ties!) j < T;  > j � Cfsupx jD�(Z xa  (y) dy � Z xa '0(y) dy Z ba  (y) dyj+j < T; '0 > Z ba  (y) dyjg� Cfsupx (jD��1 (x)j+ jD��1'0(x)jj Z ba  (y) dy)j)+j Z ba  (y) dy)jg� C supx jD��1 (x)jwhere the last inequality is obtained as in the proof of Lemma A.1.1. This showsthat the order of T is at most � � 1. (Verify 'at most' !) The proof is done.We will now prove the existen
e of a primitive distribution.Lemma A.1.3 Let T 2 S 0. Then S 2 S 0 exists with DS = T .Proof of Lemma A.1.3: If S existed, we would have (' 2 S)< T; ' > = < DS; ' > = � < S;D' >36 Compare the proof of Fourier's Inversion Formula.46



This equation de�nes S on the subspa
e of derivatives in S. Taking '0 as in theproof of Lemma A.1.2, we write again ( 2 S) (x) = DfZ x�1  (y) dy � Z x�1 '0(y) dy Z 1�1  (y) dyg+ '0(x) Z 1�1  (y) dyWe de�ne S('0) = k and now have S de�ned on the whole S. It remains to showthat  n ! 0 in S entails S( n) ! 0, whi
h is done as in the proof of LemmaA.1.1. (Verify that the obje
t to be di�erentiated is in S, and the last statement!)Proof of Theorem 1.2: To enable the use of Lemma A.1.1, where the interval is�nite, we partition T into a sum.Take 	 2 S su
h that 	(x) > 0 when x 2 (�1; 1), and 	(x) = 0 otherwise.(Cf. Example 1.1.2.) Put  n(x) = 	(x � n)=P� 	(x � �) with n integer. This
onstitutes a partition of unity, that is, Pn  n = 1 and  n 2 S (verify!).By Proposition 1.2.1, we may write T = Pn  nT in S 0 (verify!). Ea
h termgives, for ' 2 S with '(x) = 0 outside (n� 1; n+ 1), invoking Lemma A.1.1,j <  nT; ' > j = j < T;  n' > j� C supx jD�nf n(x)'(x)gj� C supx jD�n'(x)jthat is,  nT has order �n in (n� 1; n+ 1). By Lemma A.1.2 and Lemma A.1.3,there is a measure Sn with D�nSn =  nT . Now we 
ite, without proof, a result ofwhi
h the proof requires knowledge about the Lebesgue integral: Every measureis (in S 0) the se
ond derivative of a 
ontinuous fun
tion This results provides a
ontinuous fun
tion fn with D�n+2fn =  nT i S 0. Consequently, we have (withnew �n two units bigger) T =Xn D�nfnand the proof is 
omplete.A 
hara
terization of tempered distributions is also obtained using the samete
hnique.Proposition A.1.1 Let T : S !C be linear. Then T is a tempered distributionif, and only if, a 
onstant C and integers �; � exist, su
h that (' 2 S)jT (')j � C supx 24(1 + jxj)� Xk�� jDk'(x)j3547



Proof: The 'if' part follows immediately from the de�nition of tempered distribu-tion. The 'only if' part follows by an obvious modi�
ation of the proof of LemmaA.1.1. (Verify!)
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