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Preface

This compendium is meant as a terse replacement for, i.a., mathematically
less successful parts (Chapter 5, for example) of the book BRACEWELL R., The
Fourier Transform and Its Applications, McGraw-Hill, 2000.

In part, we transcend this book: the results named after Paley-Wiener and
Bochner-Schwartz are included together with some theory of generalized func-
tions: tempered distributions.

We mention two books for further study of distributions.

Folland G. B., Fourier Analysis and its Applications, Wadsworth & Brooks,
1992

Ho6rmander L., The Analysis of Linear Partial Differential Operators part I,
second edition, Springer-Verlag, 1990

The first book is fairly easy to read. The second contains a more compre-
hensive account. Both are available in the library at the Department, as well as
many more on the subject.

Our disposition is as follows. We start with the class § of infinitely dif-
ferentiable fuctions with rapid decay at infinity. The Fourier transform is an
isomorphism on §. Then we discuss the dual of S, &', which are generalized
functions called tempered distributions. As applications of the calculus within
this framework, we give relatively straight-forward proofs of Poisson’s Summation
Formula, the Sampling Theorem, convergence of Fourier series, and the Central
Limit Theorem. We characterize also the functions which have no frequency
content above a fixed value (Paley-Wiener), and the connection between auto-
correlation functions and probability measures (Bochner-Schwartz). We briefly
discuss the Radon transform (used in computer tomography and several other
contexts), antennas, and thin lenses. This is followed by some issues pertaining
to the transition between a continuous variable and its finite discrete counterpart
which can be handled by a computer.

Finally we sketch the idea behind the wavelet transform — a variant of (win-
dowed) Fourier transform which is becoming widely used in diverse applications
(storing fingerprints for example).

Mainly, we will use the notation of Bracewell. However, all results have ver-
sions in more than one dimension, and the proofs in higher dimensions do not,
in general, require any additional ideas.

In many places in the text, there are exhortations like ’verify!”. This means
that some, mostly minor and technical, details have been left out. The purpose
with these gaps is above all to make the ideas stand out more clearly; most of
the gaps will be discussed during the course.
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1 Generalized Functions

We will expand the concept function, and then conceive a function f as the values
of

[~ t@)ela)da

J —o0
as @ runs through a class of test functions. Note that this differs from the usual
way of looking at a function as, e.g., a graph.

This section starts with the test functions, which make up the class S.

We then treat the tempered distributions, S', an expansion of the function
concept, which simplifies calculations with, 7.a., sampled signals.

We end this section with some applications. Among other, we give simple
proofs of the Sampling Theorem, the Poisson Summation Formula. We also
discuss the connection between Fourier transforms and Fourier series.

When do distributions come more specifically into play?

Mathematical techniques are used to facilitate manipulation of mathematical
models, which fit 'reality’ more or less, as the case may be. From signal processing
we take two examples where distributions help. (Many applications can be found
in the theory of partial differential equations; cf. Example 2 in 2.2 below.)

1. We seek a signal of which the 'moving averages’ are known (or perhaps the
moving averages of those). Put differently, we seek the solution f to the

equation 1(,]/2,]/2) * f =g (1(,]/2,]/2) X 1(,]/27]/2) Xx f = h,)

2. Consider a low-pass filtered signal: no frequency content above the 'Nyquist
frequency’. Could this signal have maxima as close to each other as we wish,
or is there a minimal distance determined by the Nyquist frequency?

1.1 The Function Class S

Definition 1.1.1 The class 8 consists of complex-valued functions f of (one)
real variable, which are infinitely differentiable and satisfy

sup |22 DP f ()] < oo
x
for each choice of non-negative integers v, 3.

In other words: the function and all its derivatives decay faster than any power
function at infinity.

! Distributions were developed as an aid to the study of linear partial differential equations
and their solutions.



EXAMPLE 1 Let f(z) = e ® with a > 0. Then f € S holds, which may be
verified directly from the definition.

EXAMPLE 2 Verify also that f € § when f is given by (draw a picture!)

0 (x < a)
S U T
fle) =1 e @7 & (a<xz<D)
0 (b <x)
EXAMPLE 3 Let f be the function in the previous example with a = —b and

normalized to have integral 1. Let ¢ be an integrable function.? Define the
convolution (g > 0)

0l0) = [~ 1 Dygly) dy

—0 €' €

Then g. is infinitely differentiable, and converges to ¢ almost everywhere
(verify!).

Definition 1.1.2 The Fourier transform of a function f in & we denote by
f or Ff. It is given by

fls)= [ e ey do

The properties which make the class S suitable for Fourier transforms are con-
tained in the next lemma.

Lemma 1.1.1 Let f € §. Then holds for non-negative integers o, [

1. glx) =a°DPf(x) = g€ S

“S is closed under differentiation and under multiplication by polynomials”

2. fe8

“S is closed under Fourier transformation”

Proof: To prove the last property, it suffices to observe the following two equalities
(verify this!). Firstly, differentiation under the integral sign gives

Df(s) = [ e (<2mia) f(v) da

2 Lebesgue integrable for example. If this concept is unfamiliar, read ’continuous and Rie-
mann integrable’ and 'everywhere’.



The operation is allowed, since the resulting integral is absolutely and uniformly
convergent. Thus we have sup, |D”f(s)| < oo for each 8 > 0. Secondly, we get
by a partial integration

omisf(s) :/ e 25 D f (1) da

J =00

which yields sup, |s* f(s)| < oo for every a > 0.
Verify the first property!

EXAMPLE 4 Put f(z) = e ™. Then f = f. We verify this:

pis) = [ O:O ¢ 25 (_omiz)e ™ dy
= 7/0:0 e D f(x) da
= —2msf(s)

which implies f(s) = ¢ ™ since f(O) = [f(z)dx=1.

We will now show the key result: a function in & can be retrieved from its
Fourier transform.

Theorem 1.1 (Fourier’s Inversion Formula) Let f € S. Then holds
fla)= [ e f(s)ds

REMARK 1

1. The formula is valid in the distribution sense under weaker assumptions,
e.g., for f € L? (square integrable). Cf. Theorem 1.3 below.

2. The formula may be written F2f(z) = f(—x), which means that four
successive Fourier transformations produce the original function.

We write f(z) := f(—x); that is, F2f(z) = f(z).

3. Lemma 1.1.1 and Theorem 1.1 show that the Fourier transform is an iso-

morphism on S. (This includes the topology; see the proof of Proposition
1.2.2. below.)



Proof: 1t suffices to consider the case x = 0 (verify!). A

Suppose first that f(0) = 0. We will then show that [ f(s)ds = 0. Put
g(x) = f(x)/x and g € S follows (verify!). Furthermore —27if(s) = Dg(:
thus

—27ri/f(s) ds = /D.(}(S) ds =0

which proves the theorem in the case f(0) = 0.

If £(0) # 0, write
f@) = f&) = F(0)e ™ + f(0)e ™

Taking Fourier transform, integrating, and using what we just showed, we get

[ F(s)ds = £(0)

2

77’1’,’122

because the inversion formula holds for e according to Example 4 above. The
proof is done. 0

REMARK 2 The proof displays a technique which is frequently used: You split
the proof into two steps. First you show the statement for f € S with f(0) =0,
that is, for a subspace of §. Then a general function is split into a sum of two
terms: one term in the subspace and the behaviour of the other term (not in
the subspace) is also known. This then gives the general statement in a linear
setting.

1.2 The Class &’

We will now describe a generalization of the function concept, named tempered
distribution,® which allows a unified treatment of ideas like point mass, point
charge, impulse, shot signal, dipole moment etc.

Test functions will be denoted by Greek letters, for example ¢, in what follows,
while distributions will be written with capitals in italics, e.g., T'. The complex
numbers we denote C (in boldface). Furthermore we use the notation (g1, 2 in

)
<enp>i= [ ei)gals) do

Note that < -, - > is a scalar product only for real-valued functions.

Definition 1.2.1 A linear mapping

T: §35¢p—T(p)eC

3 The adjective ‘tempered’ denotes here ‘tempered (moderate) growth’. See Example 8
below.



15 called a tempered distribution if, for any sequence of test functions ¢, € S
with the property

Jim sup 2 DP o, (x)] = 0

for every choice of non-negative integers «, 3, holds that

lim T'(p,) =0

n— 00

The class of tempered distributions is written S'; and we often write T'(p) =
< T, >; in Example 5 below the reason for this will become apparent. A
sequence of test functions with the property above is said to converge to 0 in S.

An example of such a sequence is @, (z) = e””Q/n with n =1,2,.... Verify
that ¢, - 01 S.

Verify also that a tempered distribution is determined by its values on real-
valued test functions only.

EXAMPLE 5  Let |f(z)|/(1+ 2%)* be integrable for some o and put
T: §5¢p—< f,<,0>:/ f(z)p(x)de € C

We verify that the mapping 7' is a tempered distribution. The linearity is obvious.
Take a sequence ¢, — 01 S. Then we get

[ p@en(@ydel < [ 15@)/(+ ) dosup | (14 %) u(a)| - 0

which finishes the verification. Note that f could be a polynomial here for exam-
ple.

The distribution 7" in Example 5 is identified with the function f. This
identification has often proved difficult to get used to.

The function f is thus here not conceived of as the values f(z) as x varies,
but as the values < f, ¢ > as ¢ varies over S. We write T'= f in §'.

Verify that, if f and g both are continuous functions and f = ¢ in &' ("equal
as distributions’), that is < f,p >=< g,p > for all p € S, then f(z) = g(z)
holds for all x.

In the next example we treat a frequently used tempered distribution, the
§-distribution.”

ExaMpPLE 6 Consider the mapping
T: §3¢-—p(0)eC

Verify that T is a tempered distribution as was done in Example 5.

4 The notation derives from the name P A M Dirac.



REMARK 3 We counsel against the usage of the (abusive) notation like '6-
function’, '0(x)’, "[d(z)p(x)dz’, and so on. These suggest the erroneous con-
ception that the d-distribution has point values like functions, and introduce
unnecessary possibilities for misunderstanding. See also the Structure Theorem
1.2 below.

EXAMPLE 7 Put f,(z) = n'/2e ™ with n = 1,2,... . Verify that, f, € S'
and
fu() = 9(0) =d(p)

This may be written f, — ¢ in S’. We can thus say that f,, approximate ¢.

ExampLE 8 Continuous functions which are not tempered distributions grow
too fast at infinity: consider e”, for example. Take p(z) = e~ (1Ha)!/2 Obviously,
¢ € S but < el), o > diverges, and so e() does not belong to S'.°

EXAMPLE 9 In signal processing, the most widely used tempered distribution
is the pulse train Y, d,, where 0, (¢) = ¢(n), that is, 0 translated to the integer
n.% Se Remark 7 below.

Verify that the pulse train, which is the mapping
T: S3¢ -—> ¢(n)eC

is a tempered distribution. (Note that < Y, 0,, ¢ >:= >, ¢(n).)

The operations differentiation, multiplication by a function, translation, and
others, must be defined in such a way that they coincide with the usual ones
when the distribution is a function. For example, if f € § and ¢ € S then

<Df.¢>= [ Df@)p(@)de = [ [(2)Dp(x)dz = - < f, D¢ >

The other definitions below are motivated similarly.

Translation is denoted f,(z) := f(x — 7), 7 real. Multiplication by a function g
is defined under the weakest assumption on g for which the implication p € § =
gy € S holds true.

Definition 1.2.2 Let T' € &', ¢ € S, and let g be an infinitely differentiable
function with the property that, given the integer 5 > 0 there is an integer o such
that sup, (1 + |z|)*|DPg(x)| < .

<DT,op> = —<T,Dp>
<gl,p> = <T,gp>
<Tro> = <T p , >

5 Notation like e(), i.e., with the variable suppressed, is used to diminish the risk for
misunderstandings, in particular when we later discuss multiplication of a tempered distribution
by a function.

6 Bracewell’s notation with the Russian letter III, ’shah’, is awkward especially in connection
with changes of variable, and we will not use it.



Polynomials are thus allowed as ¢ in the definition, but not e”, for example.
The objects defined should be tempered distributions, which is the content of the
next proposition.

Proposition 1.2.1 For T € S§' and with g as in Definition 1.2.2 hold
DreS' ¢gTeS and T, € §'.

Proof: We prove the statement about ¢g7', and leave the other two as an exercise.
Linearity is obvious. Take now a sequence ¢, — 0 in S,

<gTl,op >=<T, gp, >

But, given «, 3, we have

sup(1 + [2])*| D" (g(@)¢n(2))] < C Zﬂsgp(l + |2))* [D” n ()]

which implies gp,, — 01in S, and ¢T € S’ follows. 0

Proposition 1.2.1 can be rephrased: The class S is closed under differentia-
tion, under multiplication with smooth functions which have tempered growth at
infinity, and under translation.

Note that polynomials satisfy the conditions for ¢ in Proposition 1.2.1.

We will now indicate a representation of a general tempered distribution in
terms of (distribution) derivatives of continuous functions. The example following
the theorem provides an illustration.

Theorem 1.2 (The Structure Theorem) Let T € S'. Then continuous func-
tions f;, j =1,2,..., and non-negative integers [3; exist, such that (in S')

T = ZDﬂjf_,-
J

Proof: See Appendix. 0

EXAMPLE 10  For f(z) = xy, the ramp function, and the Heaviside function
(step function) H, D*f = DH = § in S’ holds. We verify this. (¢ € S)
<D’f, o> = < f D>
= / vD?*p(x) dx

Jo

= —/ Dy(x)dx (=< DH, ¢ >)
Jo

= ¢(0)=<d,¢>



ExXAMPLE 11 Let f be the function f(z) = —2~3/2H(x)/2, where H again is
the Heaviside function. Define

1 (o)
<T,p>:= lim {—5 / 320 (x) do + e 2 p(0)}

6*)0+ €

T is called the finite part of f.

Verify that the continuous function g = 2(-)'/2H € &', that Dg = (-)~'/2H,
and that D?¢g = T in &' ! This motivates the definition of 7. The added terms
in the finite part of a function come from a series expansion of the test function

o(z).

We are now ready to define the Fourier transform of a tempered distribution.
Again, the definition is motivated by a formula for functions, the Plancherel
Formula (f € S, ¢ € S)

[ Fr@)e@)de = [ 1) Felo) da

The formula is verified directly by changing the order of integration. Note the
special case ¢ = (f)*, which is called Parseval’s Formula:"

[1F@)2ds = [ £ () da

Definition 1.2.3 Tuke T € S'. The Fourier transform of T, T = FT, is
given by

<T,p>=<T,¢>

Proposition 1.2.2 T € 8 implies T € S'.

Proof: Linearity is obvious. Take test functions ¢, — 0 in § and
<T,pp>=<T, 5, >

If we have ¢, — 0 in S, we are done. We have both

sup | Dgu(s)| < C [ logu(a)| da

and
sup |sgn(s)] < C / | D, ()| dx

But for the first integrand holds for example

[ron(@)] < (1 22) " sup(1+ 22 i ()

A similar argument for the last integrand gives ¢, — 0 in S, and the proof is
complete. (Verify the last estimate!) 0

" 1t is called Rayleigh’s Theorem in Bracewell’s book, but this naming is uncommon.



EXAMPLE 12 It is immediately seen that (8 > 0)
FDP§ = (2mi(-))”
F(-2ri()? = DPs
We verify the first statement for g = 0:
<Foo>=<§Fp>=Fp0)= /gp(T)dT
The rest is left as an exercise.
The central result is Fourier’s Inversion Formula, where T is defined by
<T,p>=<T,p>
Verify that T € S'.

Theorem 1.3 (Fourier’s Inversion Formula) Let T € S'. Then FFT =T
holds.

Proof: For p € § we have the same formula proved in Theorem 1.1, and so

<FT, o> = <FT,Fo>
= <T,FF¢>
= <T,p>
= <T,g0>

The proof is complete. 0

The Fourier transform effects of differentiation, translation, and multiplication
by certain functions in Proposition 1.2.1, is next. Recall the corresponding rules
for functions in S'!

Proposition 1.2.3 The Fourier transform is linear. Let T € S', and assume
that S s an infinitely differentiable function, such that, given 5 > 0, « exists,
and sup, (1 + |z|)?|DPS(z)| < oo.

The following equalities hold.

F(DT) =2mi()\FT  F(-2mi(-)T) = DFT
F(ST)=FS«FT  F((FS)*T)
F(T,) = e ™ OFT  F(e™OT) = (FT),

where the convolutions are defined in the proof below. Furthermore,

D(FS*T)=DFS«T = FS* DT



Proof: The linearity together with the first and the third equalities are directly
verified from the definition. Likewise, S € §'. (Perform the verifications!)

We will now define convolution of a general tempered distribution F1T € &'
with a tempered distribution FS € 8§’ with the property stated. The product
ST is in &', and we define FS = FT by F(ST) =: FS = FT ; the Fourier
transform determines the tempered distribution completely. The second equality
on that line follows from the definition (the first equality). The commutativity of
convolution, translation, and differentiation (the last line of the statement) follows
after Fourier transformation of what we just have shown, and since multiplication
by certain functions is associative in &’ when it is permitted. 0

Now we present a result, which is basic in most applications. It provides the
answer to the question What is the result after a division by x ¢

Lemma 1.2.1 ® Let T € 8, and assume that ()T = 0. Then there is a complex
number a such that

T =ad
Performing a Fourier transform in the lemma produces:

Consequence 1.2.1 Let T € §', and assume that DT = 0. Then there is a
complexr number a such that T = a.

Proof of Lemma 1.2.1: Assume that ¢ € S with ¢(0) = 0. For p(z) = ¢(x)/x
then ¢ € S holds (verify!), and

Take now ¢ € S arbitrarily, fix ¢; € S with ¢;(0) = 1, and write
o(x) = () — e(0)¢1(z) + (0)p1(x)
this yields (¢(0) — ¢(0)¢1(0) = 0)
T(p) = @(0)T (1) = T(p1)d ()

which proves the lemma with a = T'(¢). 0

8 This result is not immediately generalized to dimension 2 and higher.

10



ExAMPLE 13 Let H be the Heaviside function. Then

1

FH =500

J

+

DN | —

where

1 1
< ——,p>=1 -
2mi() YT T 30+ Jalse 2mim

(verify that (27i(-)) "' € &' V).
We show that

FH; = (2mi(-)) !
with H; = H — 1/2.% Recall that

DH, =DH =96
which implies

The lemma gives
FH, = (2mi(-))"" +ad
Note that FH; and (2mi(-))~' both are odd ((FH,)" = —FH,) while § is even

(verify!). Thus we infer a = 0, and the proof is done.

REMARK 4  The theory needed to answer the two questions posed (on page 1)
as specific examples when distributions are useful has now been described.

1.3 Some Applications

We will apply the theory developed in the foregoing to show key mathematical
results used for signal processing.

Theorem 1.4 (Poisson’s Summation Formula) Let ¢ € S. Then
> elsth= Y ke
k=—00 k=—oc

or, equivalently,

f{ifsk}: iék

k=—o0 k=—o00

9 2H, =: sign , where sign is called the sign function.

11



We give first a proof in dimension 1. Using Theorem 1.5 (which has other
elementary proofs using partial sums) below, we return (after Proposition 1.3.2)
and give a second proof, that works unaltered in higher dimensions.

Proof: We have

™) S 0 = Sk 0k (€206 = &)

A Fourier transformation gives

{ (Xk 0k)1 = 2 Ok (period 1)

{ e F 5y 0 = F Xy 0
(FXkorh =) (FXpor)r = F Xy 0k

Lemma 1.2.1 now gives constants ag, which all must be equal by the periodicity
(translation property), so that

fZ(sk:(IZ(Sk
k k

This equality applied to the test function e ™, which is its own Fourier trans-
form, gives a = 1. This finishes the proof.

EXAMPLE 14 Let ¢ € § with Fy(s) =0, |s| > 1. Then
> (n) = [ ola)do

The integral can apparently be replaced by a rectangular approximation centered
at the integers in this case!

Now a result concerning the convergence of Fourier series. A comparison
between the proof we give and an elementary one might be profitable.

Theorem 1.5 Suppose that the function f has period 1 and is twice continuously
differentiable. Then
f(.’l?) — Z Ck@kaa:
k

holds for all x, where the Fourier coefficients ¢y, are given by (k integer)
1 )
Ck :/ e 2T £ (1) da
0

12



Proof: Two partial integrations give ¢, = O(k™?), |k| — oo. The Fourier series
o
Z Cke%rikm
k=—00

then converges absolutely and uniformly. The sum is thus a continuous function
with period 1 and so belongs to §'.

It suffices to show equality in &', since both f and the Fourier series are
separately continuous functions. Equality in S’ is equivalent to

f= Z Ck O,
k
Poisson’s Summation Formula gives (¢ € S)

<fe>=[f@p@dr = [ f@)Y ¢+ h)ds

& 0
= Y crp(k) =< D b, 0 >
P k

which thus concludes the proof.

Now to a connection between Fourier transforms and Fourier series.
Proposition 1.3.1 For T € 8" with period 1
FT = Z ck5k
k

T = Z Ckg?ﬂik(')
k

holds with some numbers ¢, which, when T is for example an integrable function,
are the usual Fourier coefficients.

Proof: Verify the formulas! Assume now the formulas to hold, and that 7' = f,
where f is integrable. Take ¢ € S with p(k) =1 and p(z) =0, |z — k| > 1/2,
and we get by Poisson’s Summation Formula

e = FT(p)=T(Fp)
= | f@Few)de

J =00

13



o 1

= ¥ [ f@Fpla+n)da

n=-—0oo

= [f0) Y Feletnyda

n=-—oo

= [F0) % elme

n—=-—0oo

— /1 f(x)ef%rikm dx
0

Proposition 1.3.2 (Discrete Fourier Transform: DFT) Suppose that T e
S’ has period 1, and that T also is periodic. Then T has an integer period N and

T = > tig
k=—oc

T = Z Ck(sk/N
k=—oc

Both sequences have period N with the relations

N
NCk == Ztﬂikal/N (kzl,,N)
=1
N .
tl = ZC]CEQMM/N (]:1,,N)
k=1

Proof: That T has period 1 gives by the previous Proposition
o
T= >tk
k=—00

Here it is evident that if T" also has a period, this must be an integer N. This
implies that ¢,y = t; for all £ and yields in its turn

T: Z ckék/N
k=—00

Since 7" has period 1 it follows that ¢,y = ¢; for all k.

14



We now calculate T with the aid of the expression for 7.

k=—o00

= 7(% ik i 5k+zN)

k=1 [=—o00

tk@iQﬂ-ik(.)Nil Z 5l/N

1 [=—o00

I
hE

=~
Il

o0

N
_ Z (Nl Z thQﬂikl/N> 5l/N
k=1

[=—o00

The relation N = SN, te 2™*/N (k= 1,..,N) now follows. Verify the
remaining relation, and that

F Z (slN:Nil Z (sl/]\r

l=—0oc l=—0c

We now return to the Poisson Summation Formula, and give an alternative
proof which works unaltered in higher dimensions.

Proof of Theorem 1.4; alternative: Note that the function >, ¢(s+k) is infinitely
differentiable, and has period 1. We get by Theorem 1.5 (which can be proved
directly without invocation of Poisson’s Summation Formula: no circular argu-
ment)

) 1 )
Z @(9 + ]{‘) = Z e?mls / 672ml0 Z @(0_ + ]{‘) do
k 1 J0 P
. 1 .
— ZQQMlSZ/ 6727””@((]4— k) do
I 70
= eQmﬁls/ 271 5(o) do
I —0o0
— ZBQMZS@(Z) — 26727”15(,0([)
! !

The proof is complete. 0

The Sampling Theorem is next on our programme. The theorem shows the
possibility to reconstruct a function defined on the whole real axis in its entirety,

15



under certain conditions on its spectrum (Fourier transform), from knowledge of
its denumerable sample values only.

We write sinma/(7mx) =: sincx and 1(_y/9,1/9) , where the latter denotes the
cut-off function which takes the value 1 on (—1/2,1/2), and 0 elsewhere. Note
that f1(71/271/2) = sinc .

Theorem 1.6 (The Sampling Theorem) Suppose that f is a smooth func-
tion with moderate growth at infinity as in Definition 1.2.2, and with f(s) =
0, |s| >1/2. ' Then

f = sincx i f(k)ok

k=—oc

= i f(k)sinc (- — k)

k=—oc
holds in the subspace Sy, = {p € S; ¢(s) =0 for|s| > 1/2} C S.
Proof: The operations have been defined in Proposition 1.2.1 and 1.2.3, except

for the convolution with sinc. That this convolution is legitimate will be verifiable
when it is done below. We have

S FR)o =D
k k
(verify!). A Fourier transformation gives, using Poisson’s Summation Formula,

FO fk)op) =Ff«FY oo =Ffx> 6=> Ff(-—k)

where the last expression has period 1 and the sum reduces to exactly one term
on the interval (—1/2,1/2), where it coincides with f(s). Multiplication by the
cut-off function (verify legitimacy!) and an inverse Fourier transformation yields
the formula.

REMARK 5  We have chosen the sampling interval 1. If instead the sampling
interval is T and f(s) =0, |s| > 1/(2T) then

f= i f(ET) sinc (-/T — k)

which is seen by putting ¢g(z) = f(«T) and using the Sampling Theorem on the
function g.

10 £ ig then infinitely differentiable according to Paley & Wiener, Theorem 2.1 below.
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REMARK 6 In technical applications it is not possible to realize ¢ or sinc, and
neither f(s) =0, |s| > 1/2. However, approximations are possible, more or less
successful.

You could, for example, approximate ¢ with a function d € S, which is 0 out-
side (—1/2,1/2), non-negative, with integral 1, and with Fd # 0 on (—1/2,1/2).
Verify that there is a function d; such that (on S, see the Sampling Theorem)

f=dix_ f(n)d(-—n)

REMARK 7  Note the complication in Bracewell’s book (p. 223) with the symbol
[II(x) =32, 0(x—n): I1I(x/7) is interpreted there (7 > 0) as 7Y, (x —n7) which
then should be the same as Y, §(z/7 —n) (the origin of this lies in the following
formula in Bracewell’s book “0(z/7) = 76(x)” which in turn derives from the
misleading "formula’ “ [ 6(z) f(x) dz = f(0)").

Verify as a contrast the following scaling of Poisson’s Summation Formula
Y Feo(nt) = ||y w(n/7)

and write it with d’s.

Generally, changes of variable for distributions are somewhat intricate, which
might be guessed from the fact that the distributions are not defined pointwise
like functions. However, translations and scalings present no special problems, as
we have seen.

EXAMPLE 15 (Alias effect) Assume that ¢ € S with
pls) =0 ([s[=1) & |p(s)] <e (1/2<s] <1)

This small sideband at 1/2 < |s| < 1 outside the main allowed passband creates
an error, the alias effect, in the following approximations.

Hs) ~ S plme ™ (s <1/2)

n=—oo
o

plr) =~ /11//1 >

n=-—0oo

g0(77/)627rins‘| e?ﬂism ds

which may be estimated in terms of €. Estimate the maximal error as an exercise!

EXAMPLE 16 A direct example of the alias effect is provided by the function
f(z) = sin a for which the sample values at the integers f(n) = 0 for all n. (f has
its frequency content exactly at the critical limit 1/2: Ff = (010 — 6_1/2)/(21).)
The functions fy(z) = sinknz (k # 1 integer) all have the value 0 at the integer
points. The function f = f; has then infinitely many aliases for when sampling
at the integers: fr med k # 1 ett heltal.

Differently put: given any function f(x) = sinarz with a > 1/2, there is a
number b with |b| < 1/2 such that the function g(x) = sinbrz coincides with f
at all integer points. (Verify!)
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2 Analytic Continuation

Here we will discuss things which require some theory for functions of a complex
variable: the Paley-Wiener Theorem, the relation between the Laplace and the
Fourier transforms, and the problem of spectral factorization.

2.1 Paley & Wiener

The feature of Paley-Wiener’s Theorem is the absence of high frequencies in the
spectrum, which is characterized by regularity and specific conditions on the
growth of the function.

The theorem implies, among other things, that if a signal is ideally band-
pass filtered then it cannot be entirely localized to finite time interval (and con-
versely).'!

Theorem 2.1 (Paley & Wiener) Let f € S. Then (A >0)

f(s)=0,|s| > A
<
(x +1iy) entire
{ |f(x+iy)| < Cn(1+ 22 +y?) Ne2™ W for all N € N

REMARK 1  The theorem is valid also for f € &' and some integer N; the proof
then becomes more technically involved.

Proof: Suppose that f =0, [s| > A. We have
AL
fa) = [ e i(s)ds
_ / Z 27r7T9 )ds

n>0
2mix)" A A
_ Z( n') '[A‘q"f(s)ds

n>0

(uniform convergence). Since | [4, s f(s) ds| < C A" the radius of convergence
is infinite, and f can be continued to an analytic function in the entire complex
plane (f is an entire function).

Further we get ( (z + iy)*" f(z + iy) also entire)

A . . ~
@iy fla+ig)] = (2m) 2] [ e g () ds)
—A

< ON€27FA‘y‘

' The theorem is further used (through the Support Theorem) in the theory of partial
differential equations.
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which implies the desired inequality (verify!).
Conversely, assume that f(x + iy) is entire with

St iy)] < O(1+ a2 +32) '

Let s > A and Cauchy’s Integral Theorem gives for y < 0
f5) = [ e gy da
— / e*?ﬂi(m-kiy)s]c(x + ZU) dr

oo )
— / 6727r115627ry5f(m + 7y) dar
J—o00

(verify!). But (y < 0)
23| f(x +iy)| < Ce?™E=A (1 4 22) 71

which implies f(s) =0, s > A. (Verify the case s < —A!) The proof is complete.
a

2.2 The Fourier-Laplace Transform

Now to the relation between Laplace and Fourier transforms. Consider ¢ € S
with gH = f (f causal). Then

oo .
Ff(s) :/ e 2T f (1) dw
0
can clearly be continued to an analytic function of the complex variable s in the
lower half-plane s < 0.

Consider in particular p = 2wis, Rp > 0 :

p o
FIGe) = [ e f(a)da
27 Jo

Obviously, the right hand side is the one-sided Laplace transform of f. It is
now clear that the Laplace and the Fourier transforms determine each other
completely through the change of variable 2mis = p. Which transform to use
18 thus in principle an immaterial question. However, established practice in
engineering disciplines often makes a distinct choice depending on the application.
In mathematical literature there is also a common name, the Fourier-Laplace
Transform.

The one-sided Laplace transform of f € & may be written as the two-sided
Laplace transform of H f :

[C e @ f@yde = [T e @) de = FHF(E)

J—00 J0 21
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where we might have f # Hf. Results for the Fourier transform can now be
directly translated to results for the Laplace transform and vice versa. (Usually,
the integral in the two-sided Laplace transform converges in a vertical strip in
the complex plane, a < Rp < b .)

ExXAMPLE 1 If we denote the two-sided Laplace transform of f € S, when the
definition has meaning, by Lf (the one-sided will thus be £(H f)) then we get
(2mis = p)

LHDf) = FHDFf)=F{D(HS)— f(0)6} = 2mi(-) F(H[f) = f(0)
= ()L(H[) = f(0)
(recall that D(Hf) = fo+ HDf; fd = f(0)0).

This is the one-sided Laplace transform of the derivative of a function f
expressed in the same transform of the function and its value at 0.

We now show with the potential method how initial value problems may be
treated with the Fourier-Laplace transform.

EXAMPLE 2 (Bracewell, page 394) Consider the initial value problem

y(0) =1, y'(0) =0

First, we consider a general right hand side S € &', which is a function with
possibly a term Y5 ay0%) added. A fundamental solution (Green’s function,
potential function, impulse response)'? may be constructed, which yields the
solution for a general right-hand side S.

Consider, with such a right-hand side S, the initial value problem

Yy 3y +2y="5
y(0+) =1, ¢y'(0+) =0
The solution will be a tempered distribution which, apart from possibly a sum

of § and its derivatives, is a function (verify!).!3
The fundamental solution G is defined as the solution to the equation

G"+3G +2G =4 with G(z)=0, x<0

GG may be obtained by a Fourier transform, a partial fraction decomposition, and
an inverse Fourier transformation (verify!). this gives G(z) = (e * — e **)H(x)
here  draw the graph and realize why!

12 These are treated in courses on differential equations.
13 4(0+4) ete. denote limits of the function part. (Verify that these exist!)
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With z = G * S we get!
2'4+32 +22=5 and z(0+)=a, Z'(0+) =0

where a,b depend on S. (Apart from possibly ¢ and its derivatives, z becomes a
function.) When S = 2, we have z = 1.
Adding z and a suitable solution to the homogeneous equation, the desired
solution is obtained
y=z+ce V)4 cpe 20

The constants ¢y, ¢o are chosen such that y(0+) = 1, y'(0+) = 0, which is possible
(verify) since the solutions e=(), e72(), to the homogeneous equation are linearly
independent. When S = 2, we get ¢; = ¢y = 0.

In the case S = 2, we may alternatively put 7" = Hy; y is continuously
differentiable here. The equation becomes (compare Example 1)

T"+37T"+2T =2H + 36 + ¢

where the initial conditions now are incorporated into the right-hand side. The
solution is obtained by a Fourier transformation, simplification, and an inverse
Fourier transformation. It is 7' = H, which gives y = 1.

2.3 Spectral Factorization

We conclude with the problem of spectral factorization: assume that we have
observed the energy spectrum, |Ff|?, of, say, an electrical signal f € S . You
might think that f has the dimension Volt and the variable the dimension second.

Parseval’s Formula
J1r@Pde = [1F7()? ds

expresses then the total energy of the signal in two ways: |f(z)|® is the energy
density in time, while |Ff(s)|? is the energy density in frequency, energy spec-
trum.'®

The problem of spectral factorization is, given the energy spectrum|F f|?, to
find the function f. Consequently, all information about the phase of Ff is
missing.

The problem is, of course, not uniquely solvable. Clearly,

‘ 2

|Ff(s)? = e Ff(s))?

that is, multiplicating the Fourier transform with a phase factor ¢?(*) does not
change the energy spectrum.

4 Note that z = G = S is a particular solution as defined in elementary analysis courses.
15 The term power spectrum is used somewhat differently in connection with stationary
stochastic processes.
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In applications, it is not unusual that the function sought is causal. If we
know that f is causal (f = Hf) then the solution to the spectral factorization
problem is unique up to a constant factor of modulus 1.'% This is a consequence
of the representation for causal f

00 .
Ff(s) :/ e 2T f (1) dw

0
which can be continued to an analytic function in the lower half-plane Ss < 0.
Two analytic functions with the same modulus differ with at most a constant
factor of modulus 1.

16 If f is real-valued the solution is unique up to a change of sign.
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3 Two Probability Theorems

We will give a simple proof of the Central Limit Theorem, and then describe the
connection between autocorrelation functions and probability measures.

3.1 The Central Limit Theorem

The probability measure corresponding to the sum of n independent stochastic
variables with two equally likely outcomes may, normalized to mean value 0 and
variance 1, be represented by the convolution (the number of factors is n)

1 1 1 1
To=(50-1/ym+ 501 ym)* % (50 1ym+ 35 01/ym)
2 2 2 2
Theorem 3.1 (The Central Limit Theorem) With T,, as above, we have (in
S')

lim T, = —e
n—o00 A /27T

Proof: We have (in &)

2 ° 2 2
lim F7T,, = lim (cos ul ))" =20

n—»00 n—00 \/ﬁ

(verify the last elementary limit!) An inverse Fourier transformation gives the
result. 0

REMARK 1  The same proof may be used for the case with an arbitrary prob-
ability measure with finite variance (one such is the above % o1+ % d1).

3.2 Autocorrelation Functions

Definition 3.2.1 The autocorrelation function of a function ¢ € S is written
©* @ and is defined by

o) = [ lo+ u)p'(u) du

Note that
prp=px (o)
(p(z) := ¢(—x)). Furthermore, we have (¢ € S)
Flox o} =|Fol
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(verify!) Every such autocorrelation function has thus a non-negative Fourier
transform.'”

We will now (Theorem 3.2 and Remark 3) give an answer to the question:
Which objects have (like the autocorrelation function ¢ x ) Fourier transforms
that are bounded positive measures? 1t is precisely these measures which can
be normalized to probability measures, if divided by the total mass: the least

constant C' in the following definition.

Definition 3.2.2 Let T € §' and p € S.
T is called a tempered measure if, for all p € S with ¢ = 0 outside a fized
bounded interval,

T(p)| < Csup fp(o)]

holds. If C' is independent of the interval, the measure is called bounded.
T is called positive if T(p) > 0 for all ¢ > 0, and we write T > 0.
T is called positive definite if T (o * ) > 0 for all .

A motivation for the term ’positive definite’ appears in Example 2 below.

Proposition 3.2.1 LetT € §'. Then FT is positive if, and only if, T is positive
definite.
In addition, if T is positive then T is a (positive tempered) measure.

Proof: The following hold for all ¢ € S
FT(p) 20, ¢ >0 FT(|p]") > 0= T(px¢) >0

(verify the last step!) The first step (in the non-trivial direction) is verified by
putting, for 0 < ¢ € § with the value 0 outside a bounded interval,

Un(e) = (W) + ¢ )"

and noting that 12 tends to ¢ in S (verify!).

To prove the second statement, take real-valued (sic!) ¢, € S which are 0
outside a fixed bounded interval and with sup, |¢,(z)] — 0. Let 0 < ¢ € S be
1 on the interval, and take £ > 0 arbitrarily. For n large enough, ep + ¢, > 0
holds, which yields eT'(¢) £ T(¢,) > 0, or |T(p,)| < T(p). We get T(¢,) — 0,
which implies the desired inequality (verify!). The proof is complete. 0

7 o * ¢ is sometimes normalized through a division by the scaling factor [ |p(u)|* du, and is

then written 7. Then [4(s)ds =1 and ¥ > 0; whence probability measure.

24



EXAMPLE 1 If ¢ € § then ¢ x ¢ is positive definite (verify!).

EXAMPLE 2  Suppose f is a continuous function, and also a positive definite
tempered distribution. Then we have

[f(@)] < f(0) and f=f*

We verify this by writing

0< [ F@)exe)de= [ [ 1@+y)p@)e(—y) dudy

and choosing ¢ there which approximate 3-7_; z;0,, . This gives the condition
> flwj — w22 > 0
j.k

which is satisfied for all choices of z;, z; .
In the case 1 = 0, x9 = z, the condition implies that the matrix

[0 e

is Hermitian and positive (verify!). In particular, we get f = f*and |f(z)| < £(0),
which we wanted to prove.

Now the the matrix [f(z; — x))] is clearly Hermitian and positive. That this
matrix is positive definite means by definition (of positive definite matrices) that
equality in the condition is attained only when all z; = 0.'®

EXAMPLE 3 Let T € S’ be positive definite. Then 7 = T* holds, where
T*(p) := T (¢*)*. Verify this!

Verify also that 0 is a positive bounded measure with total mass 1 (as well as
any non-negative integrable function with integral 1). Moreover, verify that the
function f(z) = 2? is a positive unbounded measure.

Check finally that, e.g., the function f(z) = e®”, which does not belong to &',
still enjoys the first property in Definition 2. The function f is a positive measure
which is not tempered. We will not go into further details here.

Theorem 3.2 (Bochner) Suppose f € 8 is positive definite and a continuous
function. Then Ff is a bounded positive measure.

'8 It can be shown that (verify!), for a positive definite continuous function f € ', if | f(zo)| =

f(0) and |f(z)] < f(0), 0 <z <z, then Ff = >, ard(xta)/a, Where ), ar = f(0), ap >0,
and f(zg) = €>™@ £(0). In this case the matrix need not be positive definite (verify!).
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Proof: According to Proposition 3.2.1, Ff > 0 and is a positive measure. The
continuity of f will now yield finite total mass of Ff. Choose 0 < ¢ € § such
that ¢(0) = 1 and Fe(s) = 0, |s| > 1 (verify that this is possible!). Put
on(x) =p(z/n), n=1,2,....

We get (Ff >0, f continuous)

0<Filen) = f(Fea) = | | F@)Fulr)dr — f(0

Consider now an arbitrary bounded interval (a, b), and observe that ¢, (z) >
1 — ¢ holds in the interval if n is sufficiently large. Take ¢y € S that is 0 outside
the interval (a,b). Then (¢ > 0 arbitrary)

#u(r) £ (1 = e)y(z)/sup [i)(2)] > 0
follows, and thus!'®
(1= e)[Ff()l/sup|v(2)] < Fflen) < f0) +€
if n is large enough. Thus we have

[Ff ()] < f(0)sup [¢(z)]

The proof is complete. 0

REMARK 2  Using the more general concept of distribution (not only tempered
ones) and the corresponding definition of positive definite distribution, Schwartz’
Theorem holds: T is positive definite precisely when FT is a positive measure.
An idea for a proof is to regularize T' by convolving it with approximate d to a
continuous function, then use Bochner’s Theorem 3.2, and take limits.

In the tempered case, this is Proposition 3.2.1. There the positive measure is
a tempered distribution, which narrows the possibilities (see Example 3).

REMARK 3  For a positive measure with finite total mass, it can be shown that
its Fourier transform is a (positive definite) continuous function, the value of
which at 0 is the total mass of the measure.

19 Compare to the proof of Proposition 3.2.1.
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4 Selected Landings

We will land at selected places in Bracewell’s book, in about the order things
appear there. We start with the Uncertainty Relation, treat then Gibb’s Phe-
nomenon, followed by the Radon Transform. Our next landing is in antennas and
thin lenses. We conclude with a discussion of some issues concerning discretiza-
tion and Fourier transform.

4.1 The Uncertainty Relation

The Uncertainty Relation in quantum mechanics is mathematically the fact that
the two integrals

/Mﬁ@ﬁdr@4#/bfﬂ@ﬁ@)am /uﬂmﬁm

cannot both be small jointly. This is quantitatively expressed by the following
theorem.

Theorem 4.1 (The Uncertainty Relation) Let f € S with [|f(x)]?dr = 1.
Then )

5 < ([ IDf@)Fdn) ([ [af (@) dx)'?
holds.

Proof: The following identity is the foundation of the proof. (Verify the identity!)

f=D{()f} =)D

We now use the identity, a partial integration, and the Cauchy-Schwarz’ inequal-
ity.

1= [ 1w m*dm:/D{mfm}f(m)*dw/me(m)f(m)*dx
:*/Tf )Df(x dr—/Df Yo f(x)*d
< z/mfxﬁmﬂﬂ/mfxpmym

The proof is complete.
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4.2 Gibbs’ Phenomenon

The partial sums of a Fourier series belonging to a function with a jump dis-
continuity all display an overshoot close to that point. This is called Gibbs’
Phenomenon.

Let f and g have period 1, and let D?g be continuous. Then the Fourier series
of g converges uniformly to ¢ at all points (Theorem 1.5). Assume that

g 1(71/2,1/2) = (f - (H - 1/2)) 1(71/2,1/2)
This means that f has a unit jump at the integers and at the half-integers com-
pared to g; otherwise they have the same regularity. (Draw a picture!)
We will now investigate f — ¢g which is a square wave  Gibb’s Phenomenon
for f will be the same as for the square wave f — g (verify!). In the interval
(0,1/2) we consider the difference (which produces the overshoot)

N
Z Cn€27rin:13 — (H(:L‘) — 1/2) - _ Z Cn627rinm

n=—~n In|>N

(this may be shown to converge pointwise in 0 < |z| < 1/2).
Calculating the coefficients ¢,,, we have (with N = 2M + 1)
2

N M
2mine :
E Cn€ = E ———sin27(2k + 1)z
n=—N k=0 m(2k + 1) ( )

The smallest positive extremum point (put the derivative equal to 0) is here
x=1/(4M +4) =1/(2N + 2), which gives

. o 2
— 3 ™) = N = _sin(7(2k + 1)/(2M + 2))
Cn€ sin(7m
ot k:M+17T(2]{:+ 1)

When N — oo, it follows that M — oo and the right-hand side (which is a
Riemann sum) converges to

_ / ST e~ 0,0894899
1 ™

(where the value has been computed by MATHEMATICA).
The overshoot is thus about 9% of the jump as N — oc.

4.3 The Radon Transform

In dimension 2, the Radon transform of a function is its integral over all lines.
This transform is used, for example, in Computer Tomography (CT), in Mag-

netic Resonance Imaging (MRI), in Positron Emission Scanning (PET), and in
Synthetic Aperture Radar (SAR).2

20 In SAR, the lines are replaced by circles.
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In Computer Tomography, the function f(x) represents the absorption coeffi-
cient in the material (tissue) per unit length, and the absorption is observed for
X-rays traversing a cross-section of the object (body) along lines L

| fa)a

This is now in theory recorded for all lines L, and the task is to reproduce the
function values f(z) from the values of all the line integrals.?'

Definition 4.3.1 The Radon Transform of a function f € S is defined by

Rof(s)i= [ f(a)ds

Jx-0=s

where 0] = 1.2

Note that Ryf(s) = R_gf(—s), and that the requirement |#] = 1 is made to
have the line correspond bijectively, apart from a sign, to (6, s).

REMARK 1 The Abel Transform of the radial function f in dimension 2 is

defined by ((z > 0))
rdr

Af(x):=2 / r)———
fa) =2 f() s
and Af(—z):= Af(z).*

Verify that the Radon transform of a radial function coincides with its Abel
transform. This means that, for radial functions in dimension 2, composing an
Abel transform with a Hankel transform®* is the same as composing the Radon

transform and the Fourier transform.

REMARK 2 In dimension n > 3, the integration may be done in more than one
way. One is to integrate over the (n — 1)-dimensional (hyper-)plane z -0 = s ;
another is to integrate over the lines x = t + In, where [p| =1 and t-n = 0. In
applications, integration over lines is commonly used images in dimension 3 are
often built from plane slices, the latter being reconstructed from line integrals.

A natural question might now be: Which families of 'surfaces’ or 'lines’ are
admissible for a reconstruction of a function from values of its integrals over these
to be possible??’

21 The viability of this task was shown by Radon about a century ago.

22 The variable s has a different role in this section, and 6 denotes a point on the unit circle
(sphere)!

23 The last statement is used, but not explicitly made in Bracewell’s book.

24 The Fourier transform of a radial function is the Hankel Transform.

25 We refer to the book HELGASON S., The Radon Transform, Birkhiuser, 1980, where a
comprehensive treatment of the central issues may be found.
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REMARK 3 In implementations, problems arising from discretization, samp-
ling, and reconstruction, will arise.?® One such is that the Radon transform is
expressed in polar coordinates, while the reconstruction is done with the Fast
Fourier Transform in rectangular coordinates ...

We now show the theoretical result on which all of the techniques CT, PET,
MRI, and SAR are based.

Theorem 4.2 (Radon) Let f € S. Then
FRof(o) = Ffloh)
holds.

Proof: 1t suffices to consider the case § = (1,0), since a rotation of the coordi-
nate system in the (1, x9)-plane corresponds to the same rotation in the Fourier
domain. (Verify!)

We get, with § = (1,0), that = - § = z;, and thus

FRof(o) = /OO 672““/ [y, 2) daads
— //6727ria(],U).(ml,mg)f(xhx2) d.’Eld.Z'Q
= Ff(o0)
a

We end with a starting point for reconstruction of a function from its Radon
transform. Recall that the Hilbert transform corresponds to multiplication by
isign (+) in the Fourier domain, and that differentiation corresponds to multipli-
cation by 2mi(-).

ExamMpLE 1 Let f € §. Then, in dimension 2 after a change to polar coordi-
nates, (Rof(s) = R_of(—s))

flo) = [ emmers(e) de
_ / 270§ (50) o dodf
— 1/ / "7 FRy f (o) sign o dodf
= —1/(4m) /ehw(a'w*s)i sign o 2mio Ry f(s) dsdodf

where the integration, from the third equality sign on, is made over all real o,
i.e., also over negative values.

26 Further information on these matters is available in the book NATTERER F., The Mathe-
matics of Computerized Tomography, Wiley, 1986.
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4.4 Antennas and Thin Lenses

In this section, we discuss coherent electromagnetic radiation: the wavelength
(and the frequency) is thus fixed throughout.

First, we consider the relation between the aperture field and the direction
characteristics of an antenna, which is approximately given by the Fourier trans-
form.

Second, we will argue that a field in one focal plane of a thin convex lens
creates approximately its Fourier transform in the opposite focal plane.

Antennas

Here we just briefly reiterate the argument in Bracewell’s book, and use the same
notation.

Consider the case when the field in the aperture of the antenna may be de-
scribed by one position variable only: E(z)e™!, where w is the circular frequency.
At the point P at the distance r from the point z, the contribution to the far
field will be E(x)e™*e2""/A from the aperture field by Huyghens’ Principle, where
Aw/(2m) is the field propagation velocity. Let now R denote the distance between
the point = 0 and the point P, and € the angle between the horizontal axis
and the line through x = 0 and P.

The Cosine Theorem gives

r? = R? 4+ 2% — 2xRcos(f + 7/2)

r=R(142/R)sin6 + (/R)?) "’

For © < R (far away compared to the antenna dimensions), we approximately
have
r=R+xzsinf

which gives, after integration over x and with s = (sinf)/\, the field at P

6727riR/)\+iwt /OO E(m)efwria:s dr = e*?ﬂiR/)\+ithA1(s)

J =00
Since s = (sin#) /A, this is essentially the direction characteristics as |6 < 1.
EXAMPLE 2 For E = 1(_y/2,1/2), 0, 0_1/2 + 0172 The characteristics will be ap-
proximatively respectively sinc, 1, cos(m(-)/A).
A Thin Convex Lens

We will consider a thin convex lens with focal distance f and, in one focal plane,
the field E(z)e™'. We will restrict our discussion to the geometrical optics ap-
proximation and ’central rays’. Notation will found in the figure below.
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Suppose thus that the field in one focal plane is given by E(z)e™!, where w
is the circular frequency, and Aw/(27) is the field propagation velocity.

In the geometrical optics approximation, rays from a point z in one focal
plane is refracted to parallel rays by the lens, and the ray through the center is
not refracted. This implies that a ray from the point x to the point s has travel
length

(£ 152) "7 4 (12 + L)

which is, when |z| < f, |s| < f, approximatively 2f + (|z|* + |s]?)/(2f). The
assumption about central rays implies || &~ |s|, and so the approximate travel
length amounts to

2f + |alls|/f
By Huyghens’ Principle, the contribution from the point x to the field at the
point s is thus, since xs = —|xz||s| from the geometrical optics approximation,

E(z)ete=2m(2f=2s/f)/A " This yields, after an integration over z, the whole field
at the point s

6747rif/)\+iwt /E(m)EQﬂims/(fA) dr = 6747rif/)\+ith(7S/(f)\))

This may be expressed as the field in one focal plane generates its Fourier trans-
form in the other focal plane.
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ExXAMPLE 3 Let the function

;= [(1<1/2,1/2>((->1)/e)/e N WAVAR zén] Lo (|- /R)/ B

represent an infinite square lattice. The squares have edge-length ¢ and are
centered at the integer points n = (n;,ny). The lattice is circularly cut off with
an iris diaphragm of radius R.

A Fourier transform gives

~

i- [sinc(e(-)l)sinc(d-)z) Zan] « J(@nR| /(R )

= Zsinc(énl)sinc(enQ)Jl(27rR|(-) —nl)/|(-) — n

n

The graph of |f\2 below has been created by MATLAB. The computation required
about 40 Mflop to produce the graph from the 289 function values used. The
parameters were € = 2/3, 2rR = 20, —4 < s; < 4, —4 < sy < 4. (The intervals
were increased 0.001 at the boundary points.)
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4.5 Some Issues of Discretization
Sampling and Fourier Transformation

A numerical treatment of functions and Fourier transforms is commonly preceded
by an approximation. For example, a function f € S§ may be approximated
by a finite number of values, each value being represented by a finite decimal
expansion.?’

We will assume that a low-pass filtering has been performed, so that F f(s) =
0, |s| > 1/2. The Sampling Theorem then tells that the sample values f(n), n €
Z, contain the information about all other function values, and (|s| < 1/2)

Fi(s) =Y f(n)e ™ =Y fln)z " = F(z) *

In the example chosen here, f € S, in general there are infinitely many non-zero
sample values. Then all but a finite number, N say, have to be discarded. We
let, with A as in Approximation,

N—-1 )
ffA(S) = Z f(n)ef%rms
n=0

Put F, := N 'Ffs(v/N), fu. := f(n), and we get the Discrete Fourier Transform,
DFT. Compare Proposition 1.3.2 above!

N—-1

NE, = Y foe 7™V (0<v < N-1)
n=0

fo = S Fe™™N (0<n<N-1)
v=0

What is the error in the transform due to the approximations? A rough first
estimate shows (|s| < 1/2)

Ff(s) = Ffas) < > [f(n)]

n#0,..,N—1

where the error is expressed in the discarded values. The subsequent restriction
to F), entails no additional loss of information (verify!).

27 Round-off errors appearing when taking finite decimal expansions, quantization errors, are
usually supposed to be independent and normally distributed. We will subsequently assume
that the sample values are exact, and thus disregard quantization errors.

28 The z-transform of the sample sequence is the Fourier transform of the continuous time
signal with z = €>™% |s| < 1/2.
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Diverse Convolutions

The convolution of two tempered distributions which are continuous periodic
functions (with the same period) cannot be given meaning within our framework.
Verify this by considering the Fourier transform of a proposed convolution.

However, a periodic convolution of two periodic functions f och g, both with
period 1, may be defined by

f@gla) = [ f - y)oly)dy

where f ® ¢ gets period 1. The periodic convolution corresponds to multiplication
of the Fourier coefficients (verify!).

Note that a function which is 0 outside a bounded interval can be treated as
periodic without loss of information (keeping in mind that it is not periodic but
0 outside the original interval!).

For sequences, {f,}, {gn}, the standard definition of convolution

(f *9)n Z Jn-kGk

k=—o00

corresponds to a multiplication of their z-transforms. If the sequences have finite
length M (i.e. the value is 0 except for M consecutive ones) and N respectively,
then the convolution will, in general, have length M + N — 1. (Verify!)

Two sequences of length N, {f,} and {g,}, may be continued periodically
and then a periodic convolution may be defined:

f®9 an kGk

which has the same period N. For the Fourier transforms above, F, and G,
(which also may be continued with period N) this convolution again corresponds
to multiplication (verify!).

The periodic convolution and the usual one coincide z'f the sequences are ex-
tended by zeroes so as to double their length. Let {fn}n 0 1 n}N ' both have
length N, and let {f°}, {¢°} be the same with N — 1 zeroes appended at one
end, say. Then

@)= (fxg)n (0<n<2N-2)

holds. Verify this!

Fast Fourier Transform: FFT

We describe the key idea behind a fast algorithm, FFT, to compute the Fourier
transform of sequences of certain lengths N. We take N = 2" but the same
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idea applies in the case N = pips---p, with p, prime numbers. The number of
operations multiply-add becomes N 2log N, when N = 27
Let first N = 2. We have

X():.TO—F.’L‘]
Xy =x9— 14

Clearly, 2 operations were needed.
Let next N = 4. We have

X(): To + T + ) + T3

Xi= 29 + 7 — Ty — 1x3
X2 = Ty — Ty + Ty — T3
X3 = Ty — 7:.7,'] — Ty —+ 7:.7,'3

Here, the case N = 2 may be used on the 2 couples (xq,z5) and (z7,x3), and
then 4 operations performed; thus a total of 8 operations.
Let finally N = 8. Partition the sequence into 2 groups:

(.’E(],.Z'Q,.’E4,.’E6) and ($1,$3,.’E5,Z‘7)

Use the case N = 4 on each group. Verify that an additional 8 operations
conclude the calculation! (1 per coefficient.)

Hopefully, the key idea behind the FFT is now discernible. This constitutes
the main loop in the design of computer implementations for general N = 2730

How many operations are needed in the general case N = pyps---p, 7

ExampLE 4  Multiplication of two numbers corresponds to a convolution of
their digit sequences in any base. (Compare the z-transform.)

If both numbers have N = 2" digits, a straight-forward calculation of the
convolution would need N? multiply-add operations — this is a quadratic de-
pendence on the number of digits. If, instead, both sequences are first treated
with FFT, then pointwise multiplied, and finally given an inverse FFT, then the
number of operations will be N +3N “log N which grows considerably slower
than quadratic in the number of digits.

A practical problem in the usage of FFT is that not all sequences have length
N = 2". This problem, and the problem of discarding sample values, will be
topics in computer exercises.

29 A straight-forward calculation of the transform requires in this case N (N —1) multiply-adds
(verify!)

30 A discussion of the mathematical ramifications of the main idea, and some historical
material, may be found in AUSLANDER L. & TOLIMIERI R., Is computing with the finite
Fourier transform pure or applied mathematics? Bull. Amer. Math. Soc. 1:6 (1979), 847-897.
(The department library has the journal.)
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5 Wavelet Analysis — a Sketch

A drawback with the Fourier transform is that a local change at one frequency
influences the corresponding function globally: a change in one term of the Fourier
series alters the function everywhere.

One way to circumvent this drawback is to perform a wavelet transform.®'

A given function f € L? (|f]* integrable) is decomposed into a sum

o0

fle)= > a2 P2 e 1)

kJ=—o00

where

ai= [ f)2 o2 e ) d
In more condensed notation, this becomes

o0

f: Z afk,ﬂ/)k,l where Cl/k,z:(falbk,z)

k,J=—o00

Each term is, apart from a scale factor, a dilated and translated version of
a single function, the wavelet 1) € L2, which will be mainly localized in a time
interval. If a narrow frequency band is desired, the price is worsened localizaton
in time, and conversely, due to the Uncertainty Relation.??

Note that the scale doubles when £ is increased to £k +1  this is the reason
for the minus sign in 27%.33

The wavelet system may be chosen orthogonal or not, depending on the spe-
cific application.

The wavelet transform has, as the Fourier transform, both a continuous, a
discrete, and a finite version. We only discuss the discrete and finite version
here.34

Computationally, the wavelet algorithm is better than the FFT: the number
of operations multiply-add is at most (n + 1) 25! when the sequence length is
2K where n is a constant depending on the wavelet used. For the Haar system,
n=1.

31 Another way would be to perform a ’windowed Fourier transform’, which means first
looking through a 'window’ cut out of the function and then Fourier transform that part. This
latter procedure turns out to be considerably more costly in terms of computational operations.

32 The sum will converge in L?, and equality will hold almost everywhere, in most cases.

33 Some authors use the reversed convention with the scale of the variable increasing as the
index decreases. With this other convention, the scale of subspaces below will then be increasing
instead of decreasing with the index.

34 A good reference for wavelet theory is the book INGRID DAUBECHIES, Ten Lectures on
Wavelets, STAM, Philadephia, 1992. Daubechies has personally contributed to the development
of the theory. See also the introductory book J BERGH, F EKSTEDT, M LINDBERG, Wavelets,
Studentlitteratur, Lund, 1999.
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In what follows, we describe the arguments for a general orthogonal system
of wavelets, which are real-valued and correspond to a finite transform in each
step. Then we discuss the algorithms, and we exemplify with the Haar system.
Finally, we interprete the analysis in terms of a scale of subspaces of L?, with
pertinent projections and orthogonal complements.

5.1 Wavelets

We start from the function ¢ € L' L? with [¢ # 0, the scaling function,
which satisfies a recurrence equation

o(z) = 3 22620 — )
k=0
together with the orthogonality conditions
/(/5(3: —m)p(x) dr = dmo

The function is thus normalized by ([ ¢?)"/? = (2¢_,¢7)"/? = 1 (The terms in
the right-hand side are orthogonal).

For the Haar system, ¢ = 1), n =1, and ¢y = ¢; = 2~

Note that 0 < z < n/2 implies —k < 2x — k < n — k. Thus, if ¢(x) = 0
outside the interval (0,n) (see the next exercise), then its values in (0,n/2) are
determined by its values at the integers in (0,n). In the Haar system, (¢ has a
jump discontinuity at 0 and at 1), we will put ¢(0) =1 and ¢(1) = 0.

A Fourier transformation of the recurrence equation gives

1/2.

Fo(s) = Fo(s/2) 9-1/2 Zi: cre ™R = Fo(s/2)p(s/2)

Note that p(0) =1 follows here. A reiteration gives

Fo(s) = Fo(s/2") Ml p(s/2")

and, when N — oo,
Fo(s) = Fo(0) I p(s/2")

In the Haar system, the left-hand side is the function e~™**sinc s, which thus is
expressed as an infinite product.

Exercise 5.1.1 Show that the last equation implies that ¢(x) = 0 outside (0,n).

Apparently, the polynomial p or its coefficients ¢, contain all information
about the function ¢. In the algorithms, nothing but these coefficients appear.
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The ortonormality for the integer translates of ¢ above becomes by Parseval’s
Formula

Omo = /fqﬁ(s) (672”"”.7:¢(5))* ds

o

_ /0 e?ﬂims Z |f¢(8+ l)|2 ds
: l=—0c
which implies
1= ) [Fo(s+ D= Y [Folls +1)/2)]lp((s +1)/2)
l=—0c l=—0c

This yields (consider [ even and odd respectively in the sum; p has period 1)
p(s)[* + [p(s + 1/2) =1

or
n
Z CrromCk = 0 (1)
k=0
From ¢, we define the function ¢, the wavelet, which will satisfy the two
central requirements

[ v@)ole —m)dz =0

for all integers m, and
) = Y d 2620 — k)
k

These mean that linear combinations of integer translates of ¢ are orthogonal to
such of ¢, and that 1 is a linear combination of half-integer translates av ¢ in the
halved scale. A normalization is also done here by ([ %)% = (¥, d?)"/? = 1.

We will now argue that the coefficients d; are practically determined by the
coefficients ¢;. Parseval and recurrence give, with ¢(s) := 2-1/2 Sk dre 2™ and
using the same calculations as before (verify!), the condition

p(s)q(s) +p(s+1/2)"q(s +1/2) =0
This is fulfilled (essentially only) by
q(s) _ 6727r72(s+1/2)p(s + 1/2)*

which implies ¢(0) = 0 by the identity for the polynomial p above and p(0) = 1.
The condition becomes

1

S dicriom = Y. (—1)fer pepiom =0 (2)
k

k=—n+1
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(verify!) Consequently, we have

1

ba)= Y (~1fFe26(2x — k)

k=—n+1

[ ¥(@)dz = Fp(0) = Fo(0)q(0) = 0

When ¢ = 191y, ¥ = 1(0,1/2) — 1(1/2,1) and is called the Haar function.
The orthogonality condition (|k| + |I| # 0)

/1”(27% ~DY(z)de =0

is thus fulfilled for &£ = 0.
Orthogonality for £ = —1 follows from

1

/w(m ~Dp@)dr= Y (—1)mcl,m/¢(2x ~ D622 — m)d =0

m=—n-+1

In the same way, we get the orthogonality for all £ # 0.

5.2 Fast Wavelet Transform: FWT

The algorithms are founded on the following observation. The equations (1)
and (2) may be interpreted as that the matrices L*L and H*H below represent
projections with orthogonal values (more about this presently). The matrices L
and H contain only the coefficients in the polynomial p. 3°

[L]ij = Cj—2; [H}ij = (_l)jcl+2i7j

If the signal to be transformed has length N = 2% we choose 0 < i < 2K-1 -1
and 0 < j < 2K — 1 in the first step. For the Haar system, if N = 22 and the
signal is the column vector = =[xy x; x9 w3]* we have

Lr = 27 '"2xg+ 20 o9+ 23]
L'Lx = 1/2[xg+ 21 xo+ 21 T3+ 23 9+ 23]
Hx = 272z —xy xy — x)*
H*Hr = 1/2[xg—x1 —xo+71 T9 — 23 — Ty + x3]"

35 In the review article by G Strang, Wavelets and dilation equations: a brief introduction,
SIAM Review 31 (4), 1989, 614-627, the coefficient index in the definition of the matrix L has
erroneously been given the wrong sign. The matrix H is similarly wrong. This means that,
given the recurrence equation, the matrices in the article belong to the functions ¢(n — ) and

W(n — ).
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The notation L and H are chosen to indicate low-pass and high-pass filter re-
spectively; the reason is explained below.

The following matrix conditions are equivalent to the polynomial ones for p
and ¢ (which in turn are equivalent to (1) and (2)).

HL*=0 (& LH*=0) (3)
LL*=E & HH' =E (4)
L'L+H*H = E (5)

The wavelet anaysis of the signal x means, in step 1, to calculate Lz and Hz,
which both will be half as long as . The last step of the reconstruction will be to
calculate L* Lz and H*Hx from Lx and Hz, and sum them: L*Lx+ H*Hx = x.
If the signal length is N = 2% the analysis will be a reiteration (at most) K
times of step 1 on the result of operating with L in the previous step; for the
reconstruction the corresponding procedure is applied.

Exercise 5.2.1 Do the entire analysis above for N = 22 and compare step by
step to the FFT.

The vector x — L*Lx = H*Hx is the projection on a “high-frequency’ com-
ponent of x, while x — H*Hx = L*Lx is the projection on a ’low-frequency’
component. The components are orthogonal by (3):

H*Hx(L*Lz)* = H'Hxx"L*L = H*"HL*Lzx™ = 0
In addition, we have from (4)
(H*H)? = H*HH'H = H*H & (L*L)? = L*'LL*L = L*L

that is, H*H and L*L are projections.

The condition (5) therefore means that we can divide any vector into orthog-
onal components: one with the high frequencies and one with the low.

A natural question, which we now turn to, is:

What is the connection between the results of the steps in the
algorithm and the sample values and the wavelet coefficients
of the continuous-time signal?

Write the low-pass filtered continuous-time signal x(t), with Fz(s) = 0 for
|s| > 1/2, and where the sample values z(l) are approximated to 0 outside the

integers 0,1,2, ... ,2K — 1, as (the index a as in approzimation)
2K 2K
z, =sinc x Y z(1)6 = D x(l)sinc(- — 1)
1=0 1=0
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The starting point of the analysis is (the index w as in wavelet)

2K 1 2K 1
re=6 Y e = 3 2e(- 1)
1=0 1=0
After a Fourier transformation, we have
2K 1 ‘
Fro(s) = L apam(s) Y x(l)e >
1=0
2K ‘
Fry(s) = Fé(s) > z(l)e 2!
1=0

The function z,, will apparently contain the same information as the function z,
precisely when the condition Fé(s) #0 < 1(_1/2,1/2)(s) # 0 is fulfilled.

REMARK 1 The wavelet analysis is thus not performed directly on the low-pass
filtered signal, but after a filtering which adds alias effects if F¢(s) # 0 outside
(—1/2,1/2), most prominently in the smallest scales. High (low) frequencies will
then seem to contain more (less) energy than their part of the energy spectrum of
the signal. If F¢(s) decays slowly to 0 outside (—1/2,1/2), this influence will be
clear. To avoid such effects in the analysis result, a pre-filtering can be performed,
or perhaps choose another ¢ to start with.

Exercise 5.2.2 Show that, in S',
2K 1 2K 1
> xmng(n(- — 1) = Fe(0) > 6,

1=0 =0

How does a change of ¢(x) to n'/?¢(nz) affect the recurrence equation?

Consequently, we now assume that (z; := z(l))
2K 1

o= Y mo(- — 1)
1=0

represents (after filtering) the usual approximation to finitely many sample values
of the given low-pass filtered continuous-time signal x.
To simplify the notation, we will in the sequel use the scalar product in L?

(1.9) = [ F@)g(e)" da

and, e.g.,

¢k,l(x) = 27k/2¢(27k.1' — l)
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Given the coefficients z;, 7 = 0,1,2,...,2% — 1, the relation of which to the
signal x was just discussed, we have x,, as the input for the analysis

oK1

Tw = Y Tido,

Jj=0

The wavelet coefficients a;; are then, using definitions and orthogonality, given
by

2K 1

a1, = (5511);1/)1,7:) = Z xj((ﬁﬂ,jawl,i)
j=0
1

2K 1
Z T Z (‘1 k ¢077¢021+k)
7=0 k=—n+1
2K 1 '
(1) o
>z~ 1) e
Jj=0
Here we have now seen the matrix H in action. The matrix L acts in a corre-

sponding way:

oK1
bui = (mwa¢1ﬂ):: 2: 7U(¢OJ’¢L0
j=0
2K _q n
— Z Z ¢0,]7 ¢0 21+k)
7: :
2K 1
= D wg
=0

The terms high-pass and low-pass filter is motivated by F1(0) = 0 and F¢(0) #
0, respectively (both are more or less localized around 0) in the equality

2K-1_1 2K-1_1
Fry = >, auFu+ >, biuFoéuy
1=0 =0
2K-1_1
= 2Fp(25) Y are '™+ 2F(2s) Z it
1=0 =0

In the Haar system, F¢(s) = e ™ sinc s.

Exercise 5.2.3 Show that, in the Haar system,

Fi(s) = ie ™ sin(rs/2) sinc(s/2)
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5.3 A Scale of Subspaces

Let ¢ and ¢ be as before, and put 1} as the set of all finite linear combinations
of integer translates of ¢, ¢(x — k), together with their limits in L2

Let V; be the corresponding with 271/2¢(2 ' — k): doubled scale — thus the
index 1 (> 0). The recurrence equation gives V; C V. By definition, the set W;
of all finite linear combinations of the integer translates 27'/2(27 'z — k), and
their limits in L?, is a subset of V4. From the equalities (1) and (2), we infer

Vi=W, @V, and W, LV

With V, and W, as the set of finite linear combinations of the integer translates
27k2h(27Fx — 1) and 27%/2¢)(2 %2 — 1), respectively, and their limits in L?, we
have a scale of subspaces in L2,

{0yc .. cVipgpCcViCViiC ... CL?
for all integers k, where
Vil =W, @ Vi, and W, LV,
Furthermore, it can be shown that

UVk:L2 and ﬂVk:{O}
k k

where also limits in L? are counted as belonging to the union (’the closed hull is
L*).

If we let P, and @) denote the orthogonal projections of V;_; on V;, and Wy,
respectively, then P, 4+ ), becomes the identity mapping on Vj_;.

In the algorithms, the equality

Vo=W WP ... Wk P Vk

was used together with the projections P, and Q. The signal length is 2% and it
is supposed to belong to Vj. The analysis algorithm means successive projections
on the orthogonal subspaces. The factor H in the projection @y = H*H gives
the wavelet coefficients as coefficents in the linear combination of (2 %z — 1),
that is, in the scale 2*.
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A Appendix

Here we give a proof of the Structure Theorem 1.2 for tempered distributions. A
characterization concludes the appendix.

Theorem A.1 (The Structure Theorem 1.2) Let T € S'. Then continuous
functions f;, j =1,2,..., and non-negative integers (;, exist such that (in S')

T= % Df

j=—o0

The somewhat technical proof is based on Lemma A.1.1 — 3, and on a result
(which we do not prove here) from Integration Theory. (None of these results
will be used in the rest of the course.)

Lemma A.1.1 Let T € 8" and ¢ € S with p(x) = 0 for x & (a,b), which is a
finite interval.
Then a non-negative integer [ and a constant C' exist so that (for these @)

| <T,p>| < Csup|[Dp(a)

Proof of Lemma A.1.1: Assume the contrary, that is, 8, — oo and ¢,, n =
1,2, ..., exist such that
sup | D¢, (2)| — 0
T

but
| <T,on>|>1

Now ¢, — 0 in § follows, since, given «, 3, take n such that 3, > [, and we get

sup(1 + Jal)*[D%pa(0)] < Capsup|Du(e)

< Capsup |DPr e, ()] — 0

where the last inequality derives from

enl@) =1 [ Dinly)dyl < (b= ) sup D)

We have now a contradiction: ¢, — 0in S and | < T,p, > | > 1. This
proves the lemma.

The smallest admissible § in Lemma A.1.1 is called the order of T' in (a,b).
When the order is 0, T" is called a (tempered) measure in (a,b).
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Lemma A.1.2 Assume that DT has order f > 1 in (a,b). Then T has order
g —1.

Proof of Lemma A.1.2: Let DT have order § > 1 in (a,b), and let ¢ be as in
Lemma A.1.1. We show that T" then has order at most § — 1.
We have
| < DT, > | < Csup|DPp(x)

and thus
| <T,D¢ > | < Csup|DPy()|

which is the desired inequality, though only in a subspace of those functions which
are derivatives. Fix now ¢g as in Lemma A.1.1 with [ ¢o(x) dz = 1. Taking ¢ as
in Lemma A.1.1, we have 3¢

ota) = D1 v dy— [ ey dy [ vty d) +eula) [ v0) dy

which yields (verify that the expression in curly brackets has the desired proper-
ties!)

(< T>| < Clow D[ vy [ dy [ vw)dy
< T > [ () )
Clsup(ID* () |+ 1D ()l [ wly)dy))

+ [ vt an

< Csup|D? "(x)|

IN

where the last inequality is obtained as in the proof of Lemma A.1.1. This shows
that the order of T is at most  — 1. (Verify ’at most’!) The proof is done.

We will now prove the existence of a primitive distribution.

Lemma A.1.3 Let T € §'. Then S € 8 exists with DS =T.
Proof of Lemma A.1.3: If S existed, we would have (¢ € S)

<T,o>=<DS ¢o>=—-<85 Dp>

36 Compare the proof of Fourier’s Inversion Formula.

46



This equation defines S on the subspace of derivatives in §. Taking ¢, as in the
proof of Lemma A.1.2, we write again (¢ € S)

v@) =1 vy [

T

o) dy [ bl dy} + o) [ o) dy

We define S(gy) = k and now have S defined on the whole S. It remains to show
that ¢, — 0 in S entails S(¢,,) — 0, which is done as in the proof of Lemma
A.1.1. (Verify that the object to be differentiated is in S, and the last statement!)

O

Proof of Theorem 1.2: To enable the use of Lemma A.1.1, where the interval is
finite, we partition 7" into a sum.

Take W € S such that ¥(z) > 0 when z € (—1,1), and ¥(z) = 0 otherwise.
(Cf. Example 1.1.2.) Put ¢,(z) = U(z —n)/ ¥, ¥(z — v) with n integer. This
constitutes a partition of unity, that is, >°,, ¥, = 1 and ¢,, € S (verify!).

By Proposition 1.2.1, we may write 7' = Y, ¢, T in &' (verify!). Each term
gives, for ¢ € S with ¢(z) = 0 outside (n — 1,n + 1), invoking Lemma A.1.1,

| < T, o> = | < T, hnp > |
< ngp | D {py, (x)p(2) }]
< Csup |D¢(z)]

that is, ¢, T has order (3, in (n — 1,n+ 1). By Lemma A.1.2 and Lemma A.1.3,
there is a measure S, with D?» S, =4, T. Now we cite, without proof, a result of
which the proof requires knowledge about the Lebesgue integral: Every measure
is (in 8') the second derivative of a continuous function This results provides a
continuous function f, with D»*2f, =, T i §'. Consequently, we have (with
new [, two units bigger)

T=> Df,

and the proof is complete.

A characterization of tempered distributions is also obtained using the same
technique.

Proposition A.1.1 Let T : S — C be linear. Then T is a tempered distribution
if, and only if, a constant C' and integers «, B exist, such that (p € S)

T(p)| < Csup {(1 +lz)* > Dkw(m)l}

k<p
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Proof: The ’if” part follows immediately from the definition of tempered distribu-
tion. The ’only if’ part follows by an obvious modification of the proof of Lemma
A.1.1. (Verify!)

48



Index

H, 7 measure, 24, 45, 47
7?, 9 multiply-add, 36
(J;: g) order, 45
Op; 6 Paley-Wiener’s theorem, 18
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positron emission scanning - PET, 28
primitive distribution, 46
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z-transform, 34

Radon transform, 29
ramp function, 7
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sampling theorem, 16
Schwartz’ theorem, 26
spectral factorization, 21
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synthetic aperture radar - SAR, 28

central limit theorem, 23

computer tomography - CT, 28 total mass. 24

energy density, 21

uncertainty relation, 27
energy spectrum, 21

wavelet transform, 37
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Fourier series, 13

Fourier transform, 2, 8
Fourier-Laplace transform, 19

Gibbs’ phenomenon, 28
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Heaviside function, 7

initial value problems, 20
Laplace transform, 19
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