Telefon: Magnus Goffeng, tel. 0762-721860

MMA410, TMA 462 Fourier and Wavelet Analysis

 $2007{-}12{-}19~\mathrm{kl.}~8.30{-}13.30$

1. Compute the Fourier transform of

$$f(x) = \begin{cases} 2x & 0 < x < a \\ 1 - x & a < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

for
$$0 < a < 1$$
. (5p)

- 2. Prove that $|f * g| \leq \int_{-\infty}^{\infty} |FG| d\xi$, if F and G are the Fourier transforms of F and G respectively. How does this relation change depending on the definition of the Fourier transform that is used? (5p)
- 3. Write down a reasonable definition of an *even* tempered distribution, and prove that δ'' is even. (5p)
- 4. Let $\{\psi_{j,k}\}$ be an orthonormal basis in $L^2(\mathbb{R})$. Put $\Psi(t) = 2^{1/2}\psi(2t)$, and define $\Psi_{j,k}$ by rescaling and translation in the same way as the $\psi_{j,k}$ are obtained from the wavelet ϕ . Prove that $\{\Psi_{j,k}\}$ is an orthonormal system that is not a Riesz basis. (5p)
- 5. Let $f(x,y) = \operatorname{sinc}(x)^2 \operatorname{sinc}(2y)^2$, and let $R_{\theta}f(r)$ be the Radon transform of f. Show that for a given angle θ , it is enough to sample $R_{\theta}f(r)$ at discrete points $\{r_j\}$. How densely must it be sampled? (5p)