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PROBLEMS

1. What condition must F(s) satisfy in order that flx) = 0 asx — Foo?
2. Prove that|F(s)P is an even function if f(x) is redl.

3. The Fourier transform in the limit of sgn x is (ims)™!. What conditions for the existence
of Fourier transforms are violated by these two functions? (sgn x equals 1 when x is
positive and —1 when x is negative.)
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5. Verify that the function cos x violates one of the conditions for existence of a Fourier
transform. Prove that exp (—ax?) cos x meets this condition for any positive value of a.

6. Give the odd and even parts of H (), €%, e *H(x), where H(x) is E&% for positive x and
zero for negative x.

7. Graph the odd and even parts of [1 + (x — 1AL

8. Show that the even part of the product of two functiors is equal to the product of the
odd parts plus the product of the even parts.

9. Investigate the relationship of F Ff to f when f is neither even nor odd.

! @ Show that FFFFf=f
11. Ttis asserted that the odd part of log xis a constant. Could this be correct?

12. s an odd function of an odd function an odd function? What can be said about odd
functions of even functions and even functions of odd funhctions?

(
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Hm./\w8<m that the Fourier transform of a real odd function is imaginary and odd. Does it
matter whether the transform is the plus-i or minus-i type?

14. An mbmrwgmmmb. function is one for which f(x) = —f*(—x). Prove that its real part is
odd and its imaginary part even and thus that its Fourier transform is imaginary. >

15. Point out the fallacy in the following reasoning. “Let f(x) be an odd function. Then the
value of f(—a) must be —f(a); but this is not the same as f(1). Therefore an odd function
cannot be even.”

16. Let the odd and even parts of a function f(x) be o(x) and e(x). Show that, irrespective of
shifts of the origin of x,
—éo lo(x)[* dx + hos le(x)[? dx = const.
mﬂ/\zg.m that the oma and even parts into which a function is analyzed depend upon the
- choice of the origin of abscissas. Yet the sum of the integrals of the squares of the odd

and even parts is a constant that is independent of the choice of origin. What is the con-
stant?

N

18. Let axes of symmetry of a real function f(x) be defined by values of a such that if 0 and
¢ are the odd and even parts of flx — 4), then

fo*dx — [ € dx
Jo*dx + [ e dx
has a maximum or minimum with respect to variation of a. Show that all functions

have at least one axis of symmetry. If there is more than one axis of symmetry, can there
be arbitrary numbers of each of the two kinds of axis?

19. Note that cos  is fully even and has no odd part, and that shift of origin causes the even
part to diminish and the odd part to grow until in due course the function becomes
fully odd. In fact the even part of any periodic function will wax and wane relative to
the odd part as the origin shifts. Consider means of assigning “abscissas of symmetry”
and quantitative measures of “degree of symmetry” that will be independent of the ori-
gin of x. Test the reasonableness of your conclusions—for example, on the functions of
period 2 which in the range -1 <x < 1 are given by A(x), A(x) — 1, A(x) — I See
Chapter 4 for triangle-function notation A(x). &> )

20. The function f(x) is equal to unity when x lies between ~} and § and is zero outside.
UEHS accurate loci on the complex plane of F(s) from which values of F(0), FG), F(1),
F(13), and F(2) can be measured.

21. ,.Eﬁ function f(x) is equal to 100 when x differs by less than 0.01 from 1,2, 3, 4, or 5 and
is zero elsewhere. Draw a locus on the complex plane of F(s) from which F(0.05) can be
measured in amplitude and phase.

22. Self-transforming functions. Long-published tables of Fourier transforms have included
two functions that transform into themselves, namely exp(—m?) and sech x. In 1956, M(x)
joined this select group. When impulses are included, other examples, such as 1 + &(x),

can be given. Propose a general construction for self-transforming functions. >
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Frequency Frequency

(a) (b)

Fig.3.12  Spectra of X radiation from molybdenum: (a) power spectrum; (b) cumu-

lative spectrum.

line. Now we can consider a cumulative distribution function which gives the

amount of energy in the range O tos:
[Fpe)r as.

Any spectral lines would then appear as finite discontinuities in the cumulative
energy spectrum as suggested by Fig. 3.12, and some mathematical convenience
would be gained by using the cumulative spectrum in conjunction with Stieltjes
integral notation. The convenience is especially marked when it is a question of

using the theory of distributions for some question of rigor. However, the matter
is purely one of notation, and in cases where we have to represent concentrations
ed in the given context,

of energy within bands much narrower than can be resolv
we shall use the delta-symbol notation described later.

2
APPENDIX

We prove that the autocorrelation of the real nonzero function f(x) is a maximum

at the origin, that is,
o0 o
[ st +0au< |7 0P d
Let € be a real number. Then, if x #0,

[ (f) + eftu + 2 du >0

[ LR+ 2e] 7 fOOfC DB & (ftu+oPdu>0
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that is, a€ +be+c >0,
where % a
a=c= 2
IO

b=2[" f)f(u + ) du.

Z.O<<\ nm _”HJO Q,SWQHNU,O OXMVHO onim e€ HH—W% not —um Zero, _HH_.N_H is, if it __mm (0] _mm_ root
SS1
’ '’ 4
T 4gc < 0.

Hence in this case b/2 < g, or

[* e+ xa
=<1

[ tfep au \

The ality i i =
ﬂoSMMWm mMMmM&mWMﬁMMHmMmMMMTI 0; .Q.ubm,mhﬂsmdm% the autocorrelation function can
. e origin. The ar; t is th i
o . : ; gument is the one used to est:
fhe 8¢ warz Bm@cmrq and readily generalizes to give the simila I\ e the
plex autocorrelation function. ¢ result for the

Exercise. Extend the ar i i
. gument with a view t i i
not be achieved by any value of x save zero. © showing that the equaliy can-

]
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|
PROBLEMS

1. Calculate the following serial i Umm;
Nmnmvwm o fhe follo g serial products, checking the results by s ation. Draw
a) {691720101} * {3811
) {11111}+{1111} )
(c) {142353345769} *{11}
(@) {142353345769} {31
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@ ﬁﬁummimuoﬁ*ﬁwﬂ:
1

142353345769} {131
mw MquSSﬁB;EEmNS * {1 uww: w
(h) ﬁmwuuwwowaMNMHHmHm.NmmNS*A
O {1111
() {1100101}%{1100101}
(9 {1100101}*{1010011}
o {abcde}*{edcba}
(m) {131}%{100000*1}
m) {131} %{122}
(0) Multiply 131 by 122
(p) Multiply 10,301 by 10,202
(@ {181} *{122)
(r) Comment on the smoothness of your res
two given sequences.
(s) Consider the result of i
cients. ) dink
i same property you discovere .
va Wﬂ%wﬂ%ﬂ“wﬂmﬂﬂw MMMTMMME a A%mswno discerning what leads to serial prod-
ucts which are even.
(v) Master the implication of n,
perform serial multiplication.

lts in d and f relative to the longer of the

in conjunction with Pascal’s pyramid of binomial coeffi-

o,p,and 4, and design a mechanical desk computer to

2. Derive the following results, where H(x) is the Heaviside unit step function (Chap-

ter 4):
2H(x) * H(x) = (26— $2 — 2x — 2)H(x)
[sinx H(x)]** = I(sinx — x cos x)H(x)
1 — PH@E)] * [¢HE)] = xH®)
L w (o100 = (& = H)
[EH))¥ = x*H(x)
(eH(x)]** = p’e'H(x)

. . o f
Prove the commutative property of convolution, that is, that f *§ =g f

W

Prove the associative rule f * (g * hy=(f*g*h

'S

Prove the distributive rule for addition fr(gth=f*g+ f*h

and h. Show that the self-convolutions of f, g and
ginal functions. >

ut

The function f is the convolution of g ar
1 are related in the same way as the ori,

o

~

m\uw*:\mros\?m»w*wuQ*%*?#S.

Show that if a is a constant, a(f * g)=@f)*g= f * (ag)-

@

9. Establish a theorem involving f(g * ). >

i iti i —y) = C*(u), and
i i hermitian, that is, that C(—4) = C (u),

t the autocorrelation function 1s her: & ] <
mc. MMMMM Mﬂﬁ when the autocorrelation function is real it is even. Note that if the autoco
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relation function is imaginary it is also odd; give some thought to devising a function
with an odd autocorrelation function. )

11. Prove that the sum and product of two autocorrelation functions are each hermitian. >

-

; ﬂun. ter the origin of f(x) until f * fl, is a maximum. Investigate the assertion that the
new origin defines an axis of maximum symmetry, making any necessary modification.
Investigate the merits of the parameter

f*flo
f* flo

| to be considered a measure of “degree of evenness.”

13. Show that if f(x) is real,

[* s@pmyax= [ tpax - [7 o@ras,

-0 —oo

and note that the left-hand side is the central value of the self-convolution of f(x); that

is, f * flo-
14. Find reciprocal sequences for {1331} and {1464 1}.
15. Find reciprocal sequences for {11} and {11 1}.

16. Establish a general procedure for finding the reciprocal of finite or semi-infinite
sequences and test it on the following cases: '

(6432168421 ...}
{64644832201274 ...}

s 2w nir
1 e V0 A|v ~2/10 A v ..o A]v e v
A e Peos| 75 e Peos{ T e cos{ 7o

17. Find approximate numerical values for a function f(x) such that
f@x) * [e7H(x)]

is zero when evaluated numerically by serial multiplication of values taken at intervals
of 0.2 in x, except at the origin. Normalize f(x) so that its integral is approximately
unity. > .

18. The cross correlation g % h is to be normalized to unity at its maximum value. It is ar-
gued that

0= | (g0 — hu + 9P = [ gau—2 [ glwhu + vyau + [ w2 au,
and therefore that

%w?vi:+xv§m&w~§+w%rnmxug.
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. . .
Consequently (g * h)/M is the desired quantity. Correct the fallacy in this argumen
19. Barker code. Calculate the autocorrelation sequence of
(11111-1-111-11-11}
code of length 13 (Pettit, 1967). By coin tossing,

is sequence is known as the Barker : oy
M.Mﬂmmw:mﬂ a similar 13-element sequence at random and calculate its autocorrelatio

*.nobmmbm_mnwz% . . .
@\. Nw:mmﬂﬁ M.Mnmﬁr of Em%noHZoann h(x) of the given functions f(x) and g(x), Hmvmrhm

both axes with numerical values.

f® g0

i f val-
(b) Label any interesting points of h(x) with letters A, B, C, . .. and make a table of v;

ues such as the following:
Interesting
point x h(x)
A
B

C

i i — 2). What is the
21. Self-convolution of sinc function. Let f(x) = sinc (x + 2) + sinc (x — 2) a

self-convolution of f(x)?
22. Convolution. In the integral

[ sx = gt

make the substitution
u=x—4a,

_where 4 is a constant. Then

[ e = wigo) du = |7 @)t = ) = S0 [ stwya
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Is this correct? If not, where is the fallacy in the derivation?

d HU Optical sound track. The optical sound track on old motion-picture film has a breadth
"'b, and it is scanned by a slit of width w. With appropriate normalization, we may say
that the scanning introduces convolution by a rectangle function of unit height and
- width w. In a certain movie theater the projectionist clumsily dropped the whole pro-
jector on the floor and after that the slit was always inclined at a small angle € to the
striations on the sound track instead of making an angle of zero with them.
(#) What function now describes the convolution that takes place?
(b) Describe qualitatively the effect on the sound reproduction.

24. Numerical convolution compared with analytic. The exponential function e™ may be
represented discretely by the sequence

{a} ={1 0368 0135 0.050 ...}

(a) Calculate the serial product or “autocorrelation sum” !

2 i)
j=01,..
and make an accurate graph.
(b) Calculate the “autocorrelation function”

Rr) = |7 f@fte+ 7 dx

00
—00
when
e* x>0

xgnﬁo <0,

and superimpose a graph of R(7) on the previous graph.

() Naturally the continuous graph of R(r) does not pass exactly through the points cal-
culated from part a. Discuss the discrepancy in terms of round-off error, normaliza-
tion, or any other effects which you think may account for the disagreement.

25. Two-dimensional convolution. The autocorrelation of two disks of unit diameter
arises in the theory of optical instruments with circular apertures (and describes the
two-dimensional transfer function). It is known as the Chinese hat function. Show that

TI(r) #* TI(r) = chat? = 3[cos L7 — #(1 — AT AWV >
26. Two-dimensional autocorrelation. The two-dimensional autocorrelation function of
- O)II(y) is A(x)A(y). The central value is unity.
(a) Verify that the contour A(x)A(y) = €, where € is small compared with unity, is ap-
proximately square.
(b) Verify that the contour A(x)A(y) = 1 — 8, where 8 is small compared with unity, is
also approximately square. )
-(c) Choosing & = €, would you say that the two contours are equally square?
27. Autocorrelation of a convolution. Show that

(fre)*x(f*g)=(fxf)*(g*xg)
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28. Deconvolution. Three sequences are related by convolution as follows:

?cfnn..,w*@owpww.:WM?DP&...%

If the sequences {by} and {c;} are given, show that the rule for inverting the convolution

to obtain {a} is

k-1
a = byt An_ﬂ - a\.w_iv.

j=0
Write a computer subprogram for inverting convolution.

29. Transmission line echoes. When a current impulse is ._..aonwmm w.;q a Mmbmmnnmmmwwm:“m.

. that is short-circuited at the far end the <o:wm.m appearing at the input Mﬂnﬂ:ﬂmﬁ e

quence of equispaced impulses with oOmMﬁn_MnWm me = W.MN 2 W m .v.w AMV T ot

( i impulse of voltage is applied is {i} =41 =2 272 < -+ - 1) t

MWMwmmwmumM%wS Find two M:Sﬂosm o(t) and i(t) such that p(#)I() and i(£)IL(E) re
spectively evoke the impulse trains. >

30. Deconvolution. Let {b;} be an unknown sequence Mbm Hmmo?%w W MH!HH How H»H\Wm%www %MW
the jodic sequence of which one period 1S : ]
_MM }* Mﬁ%mw {0}. >mmb the previous problem, let 3@ = {ay} * ?& vm mEMP Hw MM_ H%M
ﬁmo that convolving {a} with {bg} + {p} will also yield Twﬁ If ¢=m Hmmmmm %MM can e
deconvolution rule given above recover the unknown {b;}? What, in fact,

convolution algorithm produce? >

i ith N elements, smooth it by
d of convolution. Specify a long data sequence f wi . )
* M%MMOHWSM: with g = m» 641}, and obtain the glapsed time. We know that

frg=g* f, but does elapsed time depend on which sequence comes first? Does the

time become proportional to N 2 as N increases? >

Notation for Some Useful Functions

Zmﬁ% useful functions in Fourier analysis have to be defined piecewise because
of abrupt changes. For example, we may consider the function f(x) such that
0 x<0
flx)y=4qx O0=<x<1
1 x> 1

This function, though simple in itself, is awkwardly expressed in comparison with
a function such as, for example, 1 + x2, whose algebraic expression compactly
states, over the infinite range of x, the arithmetical operations by which it is
formed. For many mathematical purposes a function which is piecewise analytic
is not simple to deal with, but for physical purposes, a “sloping step function,”
or “ramp-step function,” may be at least as simple as a smoother function.

Fourier himself was concerned with the representation of functions given
graphically, and according to English mathematician and historian E. W. Hobson
“was the first fully to grasp the idea that a single function may consist of detached
portions given arbitrarily by a graph.”

To regain compactness and clarity of notation, we introduce a number of sim-
ple functions embodying various kinds of abrupt behavior. Also included here is
a section dealing with sinc x, the important interpolating function, which is the
transform of a discontinuous function, and some reference material on notations
for the Gaussian function.

]
RECTANGLE FUNCTION OF UNIT HEIGHT AND BASE, I1(x)

The rectangle function of unit height and base, which is illustrated in Fig. 4.1, is
defined by .

55
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i :
PROBLEMS

1. Show that

a

EARnTWV a>0
H(ax + b) =
(ax + b) m?-u 2 <0,

it e H(ax + b) = :AR + wvm@ +H Ai“ B .mvmﬁua.

2. Discuss the function 3[1 + x/ (x?)] used by Cauchy.
. L ¢
3. Show that the operation H(x) * is an integrating operation in the sense tha

Hx) * [fWHE) = || fdx

4. Calculate (d/dx) [T1(x) * H(x)] and prove that (@)% f(x) * Hx)] = f(x).

5. By evaluating the integral, prove that sinc x * sinc x = sinc x.

6. Prove that sinc x * Jo(mx) = Jo(mm)-

7. Prove that 4 sinc 4x * sinx = sinx.>

8. Show that T(x) = H(x +3) — Hx — B
=Hi+x)+HG-% -1

HG - ) L

Ysgn (x +3) — sgn (x — 2)]

I

and that TI(2) = TI(x/2}).

9. Show that

I

TI(x) * TI(x)

A TG Hix+ )~ T * = D

f(x) and note that f (x) = sgn x is a solution.

10. Experiment with the equation flf )] = the general solution compactly with

Find other solutions and attempt to write down
the aid of step-function notation.

11. Show that erf x = 2@(2lox) — 1, where

O(x) = _

* \Ht_ml ?[20" du.
—o g(2m)
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12. Show that the first derivative of A(x) is given by
A(x) = IEAWV sgnx
and calculate the second derivative. >
13. In abbreviated notation the relation of A(x) to I1(x) could be written A = II * I or
A = TI*% Show that
¥ = I # A = j(x + 13PT(x + 1) + § — )II(x) + 3x — WLPII(x — 1).
Show also that
¥ = 5(x + 13H(x + 13) — 3(x + D?H(x + 1) + 3(x — §’H(x — 3)
~3x — WPH( - 1)
1

14. Examine the derivatives of IT* at x = 3+ and x = 1}* and reach some conclusion
about the continuity of slope and curvature.

15.

o

Show that (d/dx)|x| = sgn x and that (d/dx) sgn x = 28(x). Comment on the fact that

x| g2
2 [2xH(x)] = 26(x). >

16. Notation. Prove that
H(x)* H(x + 1) — H(x) * H(x — 1) = A(x),

or, if the RHS is not correct, derive the correct expression.

17. Notation. Prove that

2 [A@F) = ~AW sgnx,

or, if the RHS is not correct, derive the correct expression.

18. Derivatives of the sinc function. Show that

cosTx  sinmx
x e’
2 2x +

sinc”(x) = —— cos mx + ————sin mx.
.x Y

sinc’(x) =

19. Integrals of the jinc function. When the jinc function was introduced it was mentioned
that fi°jincr 27 dr =1, ie., regarded as a function of radius in two dimensions,
the volume under the jinc function is unity. Confirm that %, jinc x dx is also equal to
unity. >
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alized function p(x):

Wgﬁ@mg dx = — Wg p(X)F'(x) dx.
Similarly, Wg pICOF(x) dx = (-1 _Mo p(6)F®(x) dx.

Since by definition F)(x) exists, however large 7 may be, it follows that we have
ed function, for any .

an interpretation for the nth derivative of a generaliz

Differentiation of ordinary functions. OmsmnmmNmQ?ﬂnmodmwo%mmm&mn,\w-
tives of all orders, and if an ordinary function could be regarded as a generalized
function, then there would be a satisfactory basis for formulas such as .

& —_—
2 () = o)

If f(x) is an ordinary function and we form a sequence f.(x) such that

timg [ f@FG) x = [ fere ax

70
where F(x) is any particularly well-behaved function, then the sequence defines
a generalized function, which we may denote by the same symbol f(x). The sym-
bol f(x) then has two meanings. We shall limit attention to functions f(x) which
as |x| — oo behave as |x|™N for some value of N.
A suitable sequence f,(x) is given by

[rtem ) x [ fla)e

With this enlargement of the notion of generalized functions we can embrace
the unit step function H(x) as a generalized function and assign meaning to its

derivative H'(x). Thus

Ws ()P dx = — | HEF @) dx
= - ﬁo F'(x) dx
) = ﬁ_om‘oo dx
= F(0),
but [ a(a)F(s) dx = FO)
hence H'(x) = 8(x).

tion 8(x) is thus the derivative of the generalized function
as H'(x) = 8(x); we take the sym-
d for the corresponding general-

The generalized func
H(x), and this is how we interpret formulas such
bol for an ordinary function such as H(x) to stan

jzed function.
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99

BIBLIOGRAPHY

Friedman B.: “Principles and .Hmni i

N o ques of Applied Mathematics,” John Wiley & Sons,
Lighthill, M. J.: “An Introductio: i

ill, M. J.: n to Fourier Analysi i meti 4

Mik E‘.HMWM University Press, Cambridge, mzmwmbmm%mmwﬂ (Genereliged Funcions,” Cam-

:M:m H\uu‘. M Sur la méthode de généralisation de Laurent Schwartz et laC
s gence B: e, wzw.iaiwxg Mathematicae, vol. 35, p. 235, 1948 S onver

chwartz, L.: “Théorie des distributions,” vols. 1 and 2, W . i i

o , Herman & Cie, Paris, 1950 and
Temple, G.: Theories and Applicati i i

B o 181, 1905, pplications of Generalised Functions, J. Lond. Math. Soc., vol.
Van der Pol, B.: Discontinuous Ph i

, e . L
vol. 61, p. 381, 1007, nomena in Radio Communication, J. Inst. Elec. Engrs.,

B
PROBLEMS

1. What is the even part of
8(x +3) + 8(x +2) — 8(x + 1) + 38(x) + 8(x — 1) — 8(x — 2) — §(x — 3)?

2. Attemptin i .
zeﬁmwm. u W“me_.@ @6. meaning of 8(xy), a student gave the following explanatior
fore 8(xy) is infi 4 (u) is infinite. Now xy is zero where x = 0 and where y = 0; th n.
B *y) infinite along the x and y axes. Hence 8(xy) = 8(x) + 8(y).” E y = 0; there-

y in this argument, and show that y)" Explain the fal-

8(x) + &l
s - 200
(o + ¥’
3. Show that
| n(x) = 524 — )
and that 8(x* — a%) = 3la|H{8(x — a) + 8(x + a)}. D>
4. Show that ,
[ erioms ds = o)
and that
%8 8(x)e?™x dx = 1.
5. Show that

_1 b
2§+S|EWAR+MV\ a#0.

6. If f(x) = 0 has roots x,, show that
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8(x — %)

n

. 3 and
wherever f'(x,) exists and is not zero. Consider the ideas suggested by 5(x°) an

8(sgn x)-

7. Show that
78(sinmx) = TM(x)
_ x

and 8(sinx) = T ,EAMV >

8. Show that »
() + W(x — 3) = 2 TMI(2x) = I(x) * 4n(2x — 2)-

9. Show that

ML @ _ @ . %w\@

and also that () AMWV - (I AMV >

10. Can the following equation be correct?
x8(x —y) =y 8~ Y

i 1 the points (71,2,)-
11. Show that A(x) * =% a, 8(x — 1) is the polygon through the p (nay,

12. Prove that
8'(—x) = —8'(%)
x &' (x) = —8(x).

Show also that
Fx)8'(x) = £(0) 8'(x) = f'0) 8(x),

for example, by differentiating f| (x) 8(x). >
g to show that 8'(x) = —8(x)/x a stude

as T approaches zero,
) is the derivative

13. In attemptin,
ment. “A suitable sequence, ;
Therefore a suitable sequence for & (x

d T o T2mx

ax (o + ) B (o + )
_ —2x T .
D)

) ol it
is the d the first factor goes to —2/x in the limif
The second factor is the sequence for mow\mwmw o Beptai the e i this ar o

as T approaches zero. Therefore 8'(x) =

nt presented the mozoibm argu-
for defining 8(x) is 7/m(x" + 7).
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14. Show that
280(x) = (~1)"n!(x)

and hence that x* 8" (x) = 28(x)
and x8"(x) = 0.
15. The function [x] is here defined as the mean of the greatest integer less than x and the

greatest integer less than or equal to x. Show that
(x]" = ()

and also that M&m {[x]H(x)} = M(x)H(x) — 35(x).

(The common definition of [x] as the greatest integer less than x is not fully suitable for
the needs of this exercise; the two definitions differ by the null function which is equal
to } for integral values of x and is zero elsewhere.)

16. The sawtooth function Sa(x) is defined by Sa(x) = [x] — x + %. Show that
Sa'(x) = M(x) — 1

d

and that - [

Sa(x)H(x)] = [OI(x) — 1]H(x).

17. Show that sgn’x = 1 — 8%(x).

18. The Kronecker delta is defined by

INCEY
m_.\iT i# .

Show that it may be expressed as a null function of i — j as follows:
8= 8% - J).

19. We wish to consider the suitability of a sequence of asymmetrical profiles, such as
7Y A(x/7) + 3A[(x — 7)/7]}, for representing the impulse symbol. Discuss the sifting
property that leads to a result of the form

S5 f = n8,xf+ o nf,

where 8, is a symbol based on the asymmetrical sequence, 8, is based on the sequence
7 MI[(x — 37)/7], and 8_ is based on the sequence 7' II[(x + ir)/r] (r positive). >

20. Prove the relation 28(x,y) = 8(r)/wr|.
21. Hlustrate on an isometric projection the meaning you would assign to II[(x* + %E.

How would you express something which on this diagram would have the appearance
of equally spaced concentric rings of equal height?
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ing it; that s, f,(x) = f(—x). Show that
i is formed from f(x) by reversing it; f ( hat
> MMMMWMM%%%MMWW&M@ f, from f can be expressed with the aid of the impulse symbo

by Fxs

and hence that (fx8)*8=f.
= 8)?
23. Under what conditions could we say that (f x 8) x 8 = f % (8% 8)

that f(0,r) increases with-
: x,7) given on page 76 have the mﬁo%mﬁ% . s withe
2 W%ﬁwﬂmm@mﬂmwnw %A mm.ﬂwm“ that 27 TA[(x/r) — 1] + i H>?x\io+mw Mﬁmﬂ mwwwmm %Mﬁ
sequence which, however, possesses 2 limit of zero, as T M.v , Hmwnr ln.vo‘ e
f AM\_.V\ far from needing to approach oo as T — 0, may indeed app :

25. Show that F) 8°(x) = £(0) 8"(x) — 2'(0) 8'(x) + £7(0) 8(x)

and that in general
) + 89 = 0069 ~ (1) 0896 + -
-, A CLCRIACL R

n—1
. TS -
26. Impulses and sequences. The delta function possesses a sifting property’

T:B%sxn%?qv&u%y
=0 Joo
hich arises from physical situations where the function h(x,7) can be Mrmo—m»mmﬂﬁmow MMH w
MM@EW:QW of functions of x generated as a parameter T ranges throug
minishi tant values. o ;
Mﬁm%omwwﬂbﬁwm of a function h(x,7) for which the sifting property .Wn,umm EH.M TMWW
MMW What conditions are sufficient for h(x,7) to meet in order for the sifting prop
. to be true? .
(c) 1. Write down a particular case of h(x,r) that meets your conditions
2. Using your h(x,7), take
-1 x=0

\O&HA 1 x<0.

i le?
ifting property hold true for this examp r , o
WOm.M ﬁ”.ﬂu&mm MAR wv has the property that, if attention is fixed on a given <m.m~cm Nw oﬂ
@ EMS lim h(x,7) - 0, and the same applies for all values of x. Could such a func

70

h(x,7) satisfy the sifting property?
(¢) Give an h(x,T) such that L becomes \A\NV.
(f) Give an h(x,7) such that L becomes f(0).
(g) Give an h(x,7) such that L = J&° f(x) dx.

(h) Give an h(x,r) such that L = Muwh f(n)  (nintegral).
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27. Limits. Alinear time-invariant system having an impulse response I(#) is excited by an
input voltage V,(t,7), where

Viltr) = [1+ 772(1 — 20)|x|)TT AMV

2T
and produces a response V,(f,7). .
(@) Is it true that wmw Vot,) = I()?
(b) Is it true that lim V,(t,7) = 0?
(©) Is it true that lim ﬁo Vitr)dt = 07

(@) Ts it true that [ lim Vi(tr) dt = 02

~oo0 70

28. Sequence defining 8(x). Construct a sequence of particularly well-behaved functions
f(x,7) that defines &(x) but has the property that lim f(x,7) = 0 for all x.

70

( N@.Wwﬁ-mnw_mamﬂ functions. Consider the sequence of functions 77" cos (wx*/472) generated
“—"as T — 0. For all values of x, the function value diverges in an oscillatory manner with-

out limit. Could such a sequence exhibit the sifting property of an impulse at x = 0; that
is, could it be true that

o 2
lim %8. 77! cos AMWMV F(x) dx = F(0)?

30. Asymmetrical impulse. Show that &,(x) introduced in Problem 5.19 differs from &(x)
by the derivative of a null function (p. 87)

8.(x) = 8(x) — W&m 8%(x).

31. Energy of voltage impulse. A voltage V(t) = A§(t) is applied to a resistance R.
(1) How much charge is passed through the resistor?
(b) How much energy is dissipated in the resistor?
32. Delta notation. A voltage V(t) is applied to a resistance R for a finite length of time dur-
ing which 2 joules of energy are transferred to the resistor. If the experiment is repeat-

ed with a stronger voltage for a shorter time, too short a time, in fact, to be of interest,
how could V(t) be written in & notation? >

33. Product of delta symbols. No definition is given to a product of impulses in the one-
dimensional theory, but in two dimensions products arise naturally and are readily
interpretable. Consider 8(x) 8(y), each factor being regarded as a function of two vari-
ables and describing straight blades of unit height on the (x;y) plane (p. 335). (Unit
height means unit line density or unit double integral per unit arc length.) Evaluate
%0 J2% 8(x) 8(y) dx dy by (1) substituting 71 (x/7) for 8(x) and 771 (y/7) for &(y) in
accordance with the rule of p. 76, (2) performing the integration, and (3) proceeding to
the limit as T — 0. Also show that when two blades intersect at an angle 6, the double
integral is increased by a factor 1/sin6. > :
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34. Autocorrelation of ring impulse. A circular ring impulse of total strength 2ma, de-
scribed by 8(r — @), arises in optics in dealing with annular slits and also comes up in
other fields. Show that

r\*? r 217 4

8(r — a) *x 8(r — a) = Amav T Amnv H— SA@V.
Graph this function of 7 and explain the principal features. For example, why does the
autocorrelation become infinite at7 = 0 and r = a; why are these singularities unequal;
why is the value exactly 2 at r/2a= 2% Investigate the autocorrelation of
(r/21) — TL(r/19). What are the values at 7 = 0;7 = 20; what is the minimum value;
and at what value of r does it occur? (In this problem * % stands for two-dimensional
autocorrelation.)

35. Delta notation. As an exercise in delta function notation, evaluate the following inte-

grals.

" 5(cos )T QV dx, Wx 8(sin gd@v dx. >

is there any objection to

[ a(sin 91~ Dt h

36. Integral of impulse. If Jo 8(x) dx is agreed to be unity,
Jeo8(x) dx = >

37. Two variables. Use the method for interpreting expressions containing delta functions

to arrive at the meaning of delta (x, y)- >

38. Checking analysis by computer. It has been suggested that III(x) sgn x has Fourier
transform —i cot 7 5. The innermost pair of impulses —8(x + 1) + 8(x — 1) has FT —2i
sin 27 s; then transforming pair by pair suggests that

0
>, —2isin2m ks = —icotms.
=1
To check for a sign error, a missing factor of 2, or more serious errors, compute both

sides for a single value of s; for example, does gin 1° + sin2° + sin 3°. .. add up to
1 cot3°? Graph the sum of N terms versus N and discuss your finding. D> -

The Basic Theorems

e %Wﬂ%omwm_mm %ﬂ”ﬂoﬂﬁﬂm @.Hm% a basic role in thinking with Fourier trans
ns. . amiliar in one form or another, but her \
WWMMWWW “Mmﬂwgwﬂn& properties of the Fourier Qm:mmod:wmos.m H/Mwmmﬂn M_MMMH .EMB
Ty be <mu5mwcmm m:ﬁE.@ mb@. their applicability to impulsive functions om:m » M-
v ﬁ% no:.mamumﬂoﬁ of sequences of rectangular or other maﬂmﬂw-
puls m.m 02 Mb.m ﬂmw of interest, proofs based on the algebra of generalized mw: :

2o mmg 75. : w?m.a 5 are gathered for illustration at the end of this chapt .
heore < m%& PMWMM mmgm mﬁm@.ﬁmﬁ r.o<<m<m@ is on illustrating the meaning o% %ﬁ
ooatiodoe qgmmozﬁ W NWHM:MMHHN swﬁr .Mﬁ%r For this purpose a stock-in-trade om

ov. anin

e b % ided so that the meaning of each theorem

A FEW TRANSFORMS FOR ILLUSTRATION

MACM WNM&MB pairs for nmmmwmbnm are listed below. They are all well kn
mmmmambmﬂwm are 9&?3& in Chapter 7; we content ourselves at thi; ot mﬁ&
g that the following integrals may be verified. s point with

o)
R —i2
e e i2mrxs —  —7s? oo
% € dx =™ and % gt g . pmmd

—o00
—o0

<)

- mAmvminﬂmx ds

sinc x

%  sincx e gy = TI(s)  and %

(oo}
+i2 .
L As)e™ ™ ds = sinc® x

[esomis ) wa |

Thus th i
the s M: MMHMOH.B Wmhrm. Om.:mmpmb function is the same Gaussian function,
of the ororm of € sinc function is the unit rectangle function, and the transfi \
ction is the triangle function of unit height and area. o

i
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B TABLE 6.1 .
Theorems for the Fourier transform

Theorem &) F(s)
Similarity F(ax) mﬂl_m @
Addition f@) +g®) e+ CE)
Shift . flx—a) ¢~2mF(s)
Modulation f(x) cos wx iF A - ‘Nm.qﬂv +3F Am + wv
Convolution f(x) * g(x) F(s)G(s)
Autocorrelation fx) * fr=x) IF (s)f
" Derivative ‘ fl(x) 2rsF(s)

Derivative of convolution .MM_H (x) * g(0)] = frix) g = f () *8'()

Rayleigh [ (eopds = [ IFG)P s
Power ﬁos Flx)g*(x) dx = ﬁooom@m*ﬁmv ds
(fand greal [7 s = [RC=0L
B
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PROBLEMS !

@: sing the transform pairs given for reference, deduce the further pairs listed below by
application of the appropriate theorem. Assume that A and o are positive.
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&beﬂﬂ?ﬂmv sin x\?
x S D wA(ws)
sin Ax _ ar As.mv i 2
S Ta(ms sin Ax w  [s
Ax — A \4 A Ax v > M>AMV
-t 1~
e D e 8(ax) D L
iy |al
e D AMV e~msIA 8(ax + b) D _P_mnia\n
a
e S (2 ge ¥ D mAm - Pv
2

1/
KﬁN Show that the follow ansform pairs mO ow from 1] )

~= ng tr f

g p he addition EQOHWE\ and make

1+ cos wx D 8(s) + 1(s)
1 ;H. sin 7x D &(s) + ili(s)
sincx + 3sinc®5x O I1(s) + A(2s
\wlmmlﬁm\> + xﬁwla\eﬂ“ ) mls‘mw\} + Mlawmn

4 2 21
cos® mx + 4 cos’3mx — 3 D 8(s +3) + 8(s — 3) + 8(s) + 38(s — 1) + 18(s + 1)
@Um&ﬁnm the following transform pairs, using the shift theorem

_cosmx —ims
p— D —e7™II(s)
sin mx ;
3.|ARII.|HIV D lml_mﬁﬂﬁmv
A(x — 1) D e sinc’s
T(x — 1) D e sincs
TI(x) sgnx D —i sin 3ms sinc s

1
I Aﬂv D |ale™™™ sinc as.

4. Use the convolution theorem i :
. . to find and i
Gons: cine ainm o, (e o graph the transforms of the following func-

mc.H . . . .
QMMM mw MH%MMMWM \MEMSWJ SH__NT period g, thatis, f(x + a) = f(x) for all x. Since the
x + a) is, by the shift theorem, equal t i . i
must be equal to F(s), what can be deduced about the qmm.wmoﬂbw Mww MWMM%MAMWMN#EW
e on?

6. G i
raph the transform of f(x) sin wx for large and small values of w, and explain graph:

ically how, for small values of w, th
cally ' the tr ) - . .
oty how, for small values &0%. & e transform of f(x) sin wx is proportional to the de-

7. G
raph the transform of exp (—x)H(x) cos wx. Is it an even function of s?

8. Sh i
Show that a pulse signal described by I1(x/X) cos 2 fx has a spectrum
, 3X{sinc [X(s + f)] + sinc [X(s — f)]}
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@mﬁoé that a modulated pulse described b

mwmQHc,B
1X{sinc [X(s + f)] + sinc X =N+ IMX{sinc [X(s + f + )]
+ sinc [X(s + f — F)] + sinc [X(s — f + F)] +sinc [X(s — f — B}
um to a suitably exaggerated scale for a case where there are 100 mod-
Hoo\oooum&o-mﬂmn?mzn% cycles in one pulse and the modulation co-
mmnﬁoawooboo\ooo\ mbmo.mmamibﬁo

y T1(x/X)(1 + M cos 27Fx) cos 2arfx has a

Graph the spectr

ulation cycles and
officient M is 0.6. Show by dimensioning how the
the shape of the spectrum.
10. A function f(x) is defined by
0 x| > 2
fx) = 2 — |x| 1 <|x <2
1 lx < 15

show that ,
f)=2A AWV _ A() = A) * [80x + 1) + 8(x) + 8x = 1]

and hence that
F(s) = 4 sinc* 25 — sinc?s = sinc? s(1 + 2 cos 2s).

11. Prove that f * g * h O FGH and hence that f** D F".
with itself n — 1 times, wheren =2,3,4,...,
Show that such a generalization

12. The notation f*" meaning f(x convolved
g
sonable expression for

suggests the idea of fractional-order self-convolution.
of convolution is readily made and that, for example, one rea

f(x) convolved with itself half a time would be
\*tm = .q.ms.ﬁx_m._.wlmmﬁz\ﬂtv &_\Lum ds. D>

13. Prove that
(F * g)(n * /) D (FG) * (H])

and that
Q+wv*?+®u~u:+3+om+3.
tain an expression for

14. Use the convolution theorem to ob
P T

@5‘3 that

[ prtulgets = wdu > PGS

16. Prove that ,
%oo _‘Mo \.*Q&W*nﬁ — Rvmlﬁﬂa dudx = M*Almvﬁw*ﬁmv

—o0
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17. Show by Rayleigh’s theorem that

% 8m3n~x§n 1

‘—%8m5n»xmaﬂ .—8 [AG)P dx = 2

—oo

[* Udwrax = o0

—00

% 00 d«  _w
—o(1+ 2P 2
18. Complete the following sch i i
Complete g schemata for reference, including thumbnail sketches of the
ction M transform TI(x)
autocorrelation _ power spectrum
fxf ﬂ [EGs)I?
A(x) ¥(x)
sinc x I1(x) cos 2mfx

19. Show the fallacy in the followin, i
. g reasoning. “The Fourier tr: *
n.Emw. be F(s)/i2ars because the derivative of [ f(x)dx mwmwﬁxvm:“ﬁwﬂmmmmﬁooh D
rivative theorem the transform of f(x) would be F(s), which is .H\Em ” y the de

2

=3

Establish an integral theorem f i
foablish o g m for the Fourier transform of the indefinite integral of a
21. Use the derivative theorem to find the Fourier transform of xe ™

22. Show that 2mrxII(x) D isinc’s.

o 2 e AO“_._.OS;H_.W brief derivation appears to show that the area under a derivative is zero.

= 27sF(s)

[* fea=70 _o.

0
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Confirm that this is so, or find the error in reasoning.

24. Show that
s

1 —i2arbs/a Alv
flax —b) D @\_w F p

25. Show from the energy theorem that

mat

_,8 e~ cos 2max dx = €~

26. Show from the energy theorem that

(=] _ W
% ginc? x cos mx dx = 3. P>
(o]

27. Show that the function whose Fourier transform is |sinc s| has a triangular autocorre-

lation function.

: ion it
28. As a rule, the autocorrelation function tends to be more spread out than the functio:

comes from. But show that
2. -1l 8(x).
mx X

vesti-
Show that (7x)~! must have a flat energy spectrum, and from that deduce and inves

gate other functions whose autocorrelation is impulsive. >

29. The Maclaurin series for F(s) is

F(0) + sF'(0) +W|N_.Ee T

Consider the case of F(s) = exp (—ms?), where the series is known to converge and to

converge to F(s). Thus, in this particular case,

OD m.w— w—

m@uMJm:@.
n=0 n

then transforming this equation we obtain

o o o
fo = oa) [y = 8 [~ w0y o) [ T et e

If F(s) is the transform of F(x),

How do you explain this result? >

30. Fourier pairs. Derive the following Fourier transform pairs:
(a) m?_.x» ) N‘,S\»mlma%
(b) cos (mx*) D 27} cos (%) + sin (7s?)]

'
v\_w<,?i_‘

‘_.3\,_ i

&x ol

!

)

s

\
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(© sin (mx%) D 27 cos (ms?) — sin (ms?)]

a2 COS a1 s” '\ cos B Bs?
. @d e s mBx2 D (a? + A exp Alla..mlv ) Amnﬁmﬂﬁiv — Ev

in
—m(a+ip) : 2\ —3,— (e +iB)
(e) e D (a+if) %

31. Frequency analysis. A volcano on the floor of the Pacific Ocean erupted near an in-
habited island, causing the sea surface to rise and fall, reaching a maximum height of
about 10 meters. The height was recorded by the captain of a vessel standing offshore,
using a sextant to determine the distance from the water to the top of a cliff. Later ex-
amination showed that the height h(t) could be represented approximately by

h(t) = 11 sin (45° — 72°t) exp (—#¥/5),

where F is in meters and ¢ is in minutes. The volcano erupts from time to time, often

causing damage to the docks and shipping in the lagoon, but this is the first time a

waveform has become available and it is to be the basis of a redesign of the port.

(a) Paying particular attention to the correctness of numerical values, but not neces-
sarily carrying out all the arithmetic, obtain the Fourier transform A(f) of h(t).

(b) At what frequency, in cycles per minute, will the excitation be at a maximum?

N

wn./nrwnw signal. A chirp is a signal that sweeps in frequency and is used in radar by bats
— and humans to facilitate the sorting out of the emitted signal from the echo under con-
ditions where the first echoes will be returning while the emission is still continuing.
An example is
va = mlam\dmnaS?fmé.

This chirped pulse has an equivalent duration T, a frequency f, at midpulse, and a fre-
quency sweep rate 28. Show that the power spectrum is centered at f; and has an
equivalent width A given by A = 27T 71 + 4B2T*%.

33. Voigt profiles. Spectral lines often have a profile of the form [1 + 4(f — fo)*/B*]™?,
which arises, for example, from absorption by a resonator. This is a shifted Cauchy pro-
file. Other spectral lines may have a Gaussian profile, as in the case of a gas in a state
of turbulence where Doppler shifts greatly exceed the natural linewidth B. Intermedi-
ate profiles of the form Gaussian-convolved-with-Cauchy are known as Voigt profiles.
They have interesting properties. Show that the convolution of two Voigt profiles is
also a Voigt profile. >

34. Inverse theorems. Show that the inverse derivative and inverse shift theorems are

~i2mf(x) > F'(5)
ef(x) D F(s - s0).

Are there any other theorems where the direct and inverse forms are not the same?
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same curvature to each side of the origin. Therefore any discontinuity must be
confined to the imaginary part of F"(s). But the imaginary part of F(s) is zero at
s = 0; therefore any effect of a discontinuity in F”(s) ats =0 will die out in the
limit. Tt is therefore sufficient to require f(x) to have finite area, finite mean, and
finite variance.

In the event of nonidentical functions being convolved, a finite absolute third

moment is required plus a more elaborate condition due to Lyapunov to ensure

that the third moments are not too strong.

Exercise. Consider the behavior of (sincx)*", (sinc? x)*", [(1 + X)),

[xTI(x)]*n, [T1(x) sin x]*n, [e7% sin BxH(x)]*"

If one of the transforms falls to zero for some finite value s = s; the product
of all the transforms will have a zero too, and so their product cannot be Gauss-
;an. Therefore none of the convolving functions of x may be a rectangle function.
This may be a moot point because the transform values of the full convolution
may be so close to Gaussian fors > s, that a zero value is indistinguishable from
the exact Gaussian value for some intents and purposes. This i the case with

[TI)]*.

&

SUMMARY OF CORRESPONDENCES IN THE TWO DOMAINS

The results of the preceding discussion are tabulated in Table 8.5 for reference.
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PROBLEMS
@Umaﬁnm a simple expression for exp (—x%) * exp (—x%). D>

2. Show th - i “lisi
ohow I nﬂM\ .HMM Mm% convolution om.ﬁ + x?)7is identical with itself, except for scale fac-
.me.n. Show | mw ) mawm.:.noaxo_c:oz is twice as wide as the original function, that is
is additive under convolution in thi: i is wi .
known general fact that variance is additive. ? cases and reconcile this with the

Qﬁwmmmm& Emgnnoz&mSEOmH+NNL
R -| . . .
e widths of the convolved »,.:bano:m. e

4. Show by direct integration that

AWHE) o - Hlmlimgg.
i2ms 2ws
verify the result by applying fi iti
g first the addition and shift theorems to fin i
transform of (d/dx)[ A(x)H(x)], and then the derivative theorem in HmMmHmM the Fourer

5. By separation of the preceding transform into real and imaginary parts, show that

A(x)H(x) D §sinc?s + 1= cos mssines,
i2ars !
MW nMMnWMmMM the &m.mwnm\ verify that the central ordinate and slope are connected in th
a m_um .%MH. ate M.\Mwmw““” Mﬁ.m Mammm. mw.—d& first moment of A(x)H(x), respectively, and boﬁM
t s indeed hermitian. B into i f
. and obtain the transform of each separately. realc AR nto s even and odd parts,
m._immnw:mm of the irregul iation i
) gular variation in the number of suns;
« . ) pots, the s i
MMMMMM MMHNMMW wmﬁ mBoo_Hrmm by taking five-day running totals; 9%@% mMMmmMMrQMMW
number for the precedi i ' ; i

quence of five-day running totals vm%zsommdm%mmﬂwﬂﬂwwwwéw o days Fere fs s

45,35, 25,15,5,0,0,0,0, 15,50, 80
o oo o o e 0 01550 , 100, 125, 125, 100, 80, 70, 45, 30, 30, 30, 35, 60, 80,

E .
rom this smoothed sequence, what can be deduced about the actual daily values?

@roé that

where W is the equivalent width of f(x).

WW,
SQ»

Wiag =

8. Show that squares of equi i
uivale iti .
functions. q’ nt widths are additive under convolution of Gaussian
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. 2.1 and calculate the equivalent ,; as mmem.H mvﬂnﬂmEN‘wnop was nm.ma by Jacob Steiner to prove that the .n:&m is _,..rm fig-
Show that the equivalent width of 4 sinc?2s — sinc” s is 3, and ca ure of minimum perimeter for a given area. Show that the autocorrelation functions of
9. SWMMW of sinc s M sinc? 2s. f(x) and g(x) have the same equivalent width.
10. Investigate the properties of the Jones bandwidth of f(x), which is defined as . 15. State the relationship between the functions exp (—x)H(x) and exp (— |x|) in the light
: 8 ’ of symmetrization, and say how their respective power spectra are related. >
o
* ;
_. 0 FE* ds > - 16. Show that the convolution of two odd functions is even.
F max

4

) , - 17. Establish the following relations between functions and their autocorrelation functions.

mm—l/mros\ that the autocorrelation width of f ()HX) wm.\g.ﬁm that of f(x)- } e o Function _ Autocorrelation
= . ,. ne A(x)
12. Verify the following autocorrelation widths. P priyrie

3 _3 mlm\n% :
s B i T w
i E b e™*H(x) ze7lx

a0 ini ini ts (plus .
. i is divided into a finite number of finite .mmmme ! ] el

0 semi- :

ing, thus defining a new function which we may describe as derivable from f(x) by
ping,

shuffling. For example, the string of 11 pulses 18. Show by a simple argument in the Fourier transform domain that the autocorrelation

function of exp (—mx?) cos wx is 2732 exp (—3mx?) cos wx when o is large. >

n=+5
MmSGHx - 19. Some difficulty arises over the autocorrelation of cos x. Show that there is a sense in
- which the autocorrelation of a cosine function is also a cosine function.
i ively from T1(x) and A(x) by shuffling,
function |x|T1(x/2) are derivable respectively Ax) .

MM MMMm <me.m. mLoHs\ Mrm\; the equivalent Smﬂm\w_ is cbmmmﬂnﬂmﬁwmﬁwwﬂmm MMM wﬂ.m%”mwm

ining x = 0 is not dislodged in the shuffle, and tha °
MMHMMMMMM& in any case. Consider the effect of shuffling on the total energy of a wave

i i i iant un-
form, and mention several parameters of its power spectrum which are invar
der shuffling. >

20. Show that the product of the autocorrelation widths of a function and its transform is
given by

(Jf d=)(JF ds)* |

Mol =G bt ity

14. An even function g(x) is derived from a function f(x) by the process of symmetrization and that the product does not have a nonzero lower limit.
. Aneve

i s, known
illustrated in Fig. 8.21, where AB = CD, EF = GH + IJ, and so on. This proces 21. Show that

If gl < [* fpoas

22. Self-reciprocal transform. We know that there is at least one function f(.) that is its
own Fourier transform F(.), because

Nlﬁm ) mtﬁ».
It is reported that
F(x) = e T 4 5T

is another function that is its own Fourier transform, that is, that F(s) = f(s). Can you

prove or disprove this claim?
Fig. 8.21  Steiner symmetrization.
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ﬁ \mwr.w<<m<mm§nwa spectrum. Show that
N - 1 Qn + %ﬁhmn osh Homv
exp (—px?) cos ax D Amv exp| — 18 c 5 )

mmunities that every seventh wave is bigger.
spectrum domain?

24. Surfing. There is a tradition in surfing com:
What would be the corresponding feature in the wave-
25. Hermite polynomial pairs. Derive the following Fourier transform pairs
xe™™ D —ise™™ \
(4o — De™ D —(4ms® — SNUU
(4mx® — 3x)e™™ D i(dms® — 3s)e” .
(162t — 24m2® + 3)e™™ D (16m%s* — 24ms” + 3)e

and, in general,
\/ ; \/ —s?
H,(V2mr x)e™™ D (i)' H(V2r s)e”™,
. _ 3
where H,(x) are the Hermite polynomials 1, 2%, 4x2 — 2, 8x° —12x,
166t — 482 + 12, ..., n=0,1,2, ...

26. Computed music. Describe how it might be possible to mm.z‘mﬂmﬁm a sound of perpetu-
ally rising pitch that never rises beyond the range of audibility. >

an with his back to a violinist is able to tell @rm»rmﬁ the
player is slowly moving away or is playing diminuendo. On being questioned about

i ili ici i “ iolinist may play a single tone loudly or
his ability, the musician explained, “The violinis ! > 1 or
softl mdN maintain steady tone quality, but as he moves away while sustaining a sin

i/ the color of the note. It sounds purer—the overtones

B e secustes en aid, “When you hear a click it is followed by

less prominent.” An acoustics engineer said, )
84%%8.3 energy that arrives after reflection from the walls. The same click farther

away sounds fainter but the amount of Hm<mn¢m.§:.n energy entering the mmma Mm mwwm:
the same. Therefore, the subjective impression is not the mmH.sm.mm for a mnw nMEmW
click. Since the impulse response is different, zm.ﬁcam.c% the .ﬂorb ﬂ.oww ﬂu:b M&Qmﬂd
ent.” Explain how this explanation, if it is correct, is consistent with the m

explanation.

27. Acoustic perception. A musici

Let ¢(s) be the phase of the Fourier transform F(s)

f hase. t i
B aneton {0, 8 at, if ¢(s) passes through the origin, it does so with

of a given real function f(x). Show th
a slope

#'(0) = —2r % * xflx) dx \ % * fw

Verify the result for the case where f(x) = xe”*H(x).

, a function that results

2 i i that we are given g(x)
Ane. Restoration for running means. Suppose that we are given g o T, Thus

~—from smoothing f(x) by convolution with a rectangle
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g(x) = TI(x) * f(x). We wish to find f(x). See whether you can find an inverse operator
1™ Y(x) such that IT ™ *(x) * II(x) = 8(x) or whether you can find a Fourier transform for
(sincs)™. > :

30.

o

Restoration for weighted running mean. Attempt to find an inverse operator for run-
ning means taken with triangular weighting. Thus if

8 = AG) * £(x)

seek A7!(x) with the property that, if g(x) is given, f(x) may be found by performing the
inverse operation: f(x) = A~}(x) * g(x). If this approach works, it will be necessary that
A7Y(x) * A(x) = §(x). It has been proposed that

f)=g"(x—1)+2g"(x —2) +3g"(x — 3) + .. ..

Examine this formula for some special case by graphing the first two or three terms and
attempt to derive it.

31. Moments. Determine constants , b, and ¢ such that f(x) = a + b cos 2mcx is a good
fit to sinc x over the range —1 < x < 1. In what way could F(s) be said to resemble
I1(s)?

32. Sinc function properties. From p- 75 of Abramovitz and Stegun (1964) we discover that

sincx = HHAH — imv.

n=1 n

We may think of each parabolic factor progressively forcing the product through
x=1,2,...,n. Show that the coefficients in the expansion of (1 — x%
(1 — 2%/4)(1 = x*/9) do not agree with the coefficients of the Taylor series expansion of
sinc x. Why is that? Why does the central limit theorem not seem to apply? >

33. Dual lines of reasoning. Problems that are stated in the time domain and require
answers in the frequency domain can be reasoned out in either of two ways: Translate
the statement into the frequency domain and find the answer to the new question,
or solve in the time domain and translate the answer into the frequency domain. Con-
sider the following problem. “A short pulse has a more or less flat spectrum up to a
roll-off frequency that is some fraction of (pulse duration)™; but is it true that the spec-
trum of a waveform consisting of two identical pulses in succession, far from being
approximately uniform, is such that there are frequencies where there is no content
at all?” . )

Aline of reasoning leading to this result is as follows: “The pulse pair is express-
ible as a convolution between the waveform of a single pulse and an impulse pair
38(t) + 38(t — T), where T is the interval between pulses. Consequently, its spectrum
contains a factor cos T f, which produces zeros at certain frequencies.” The problem
did not require the full spectrum to be calculated and did not ask for the values of fre-
quency at the zeros, but as with many important questions, was merely concerned with
whether a certain phenomenon existed. Consequently, the reasoning presented can be

“brief. Now give the other line of reasoning leading to the same result.
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34. Variance of wavepacket abscissa. Derive the variance (x?) of the wavepacket

F(x) = exp[~m(x/W)*]cos2mvx. >

35. A function consisting of an asymmetrical triangular peak, with its reflection, is defined

36.

37.

38.

39

40.

by

k|x|, 0<|x| <a
fa)y=A1-lxl, ashl <1
0, |x] > 1

where k and 2 lie between 0 and 1. Find its Fourier transform F(s). D>

Radar pulse generator. In order to deliver a megawatt of radio frequency power out-
put to an antenna in a pulse of A = 0.1 ps duration, a generator has to be excited at its
input terminals by a voltage 15,00011( — 3A) volts. A way of doing this would be to
spend a millisecond or so charging one conductor of a transmission line to a steady
voltage of 30 kV. The characteristic impedance Z; of the transmission line would be
made equal to the input resistance of the generator. At t = 0, a switch would connect
the charged transmission line to the generator, applying 15 kV to the generator input.
Electric charge would pour from the transmission line at a constant rate for 0.1 us un-
til the total charge was expended, whereupon the generator excitation would drop to
zero and the r.f. pulse going to the transmitting antenna would terminate. (7) What
would the length of the transmission line have to be (in meters)? (b) As seen from the
generator, what would be the input impedance to the transmission line segment and
the voltage transfer function, as a function of frequency? (c) What would the impulse
response of the transmission line segment be? > .

Functions to be expressed as finite differences. Do the exercise relating to Fig. 8.17. >

Keeping up with periodicals. Scan recent issues of journals in the current field of
study, find a paper that interests you, and submit a synopsis in a form that would equip
your instructor to give a 10-minute talk to the class about the work without having to
refer to the original paper.

Composing a homework problem. Compose a homework problem suitable for your

class and hand it in together with a solution suitable in final form for distribution. Bear
in mind the distinction between a problem and an exercise.

Schrodinger’s equation. A basic principle of quantum mechanics, applied to the har-
monic oscillator composed of a mass 1 constrained by a spring of stiffness k, says that
the spatial wave function y(x) (whose squared modulus yu* gives the relative proba-
bility of finding the mass in position x * 1dx), obeys the second-order, linear differen-
tial equation
nody 1 _
o d Ey — gk’ = 0.
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Solutions, for the various allowed energies E, = fiw(n + 3),n = 0,1,2 are
Uu(x) = Va/ Va2 H,(ax)e ",

where «? = k/mand @ = (mk/#)Y*. The H,, are the Hermite polynomials listed above in
wno._u._mg 8.25, where the Hermite-Gauss functions H,(x) exp(—x%/2) can be seen to b
their own .mochmn transforms. That seems to imply that if one takes the Fourier tran w
form of this Schrodinger equation term by term, the resulting differential equation mm
the transform ¥ must still be a Schrodinger equation. Is that so? > e *




