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TMA462/MMA410: Fourier and Wavelet Analysis, 2012–12–20; kl 14:00-18:00.

Telephone: Richard Lärkäng: 0703-088304
Course Books: Bergh et al AND Bracewell, Lecture Notes and Calculator are allowed.
Each problem gives max 5p. Breakings: 3: 12-15p, 4: 16-19p och 5: 20p-
For GU G students :12p, VG: 18p- (if applicable)
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma462/1213/index.html

1. Show that {Λ(t − n)}∞n=−∞
are linearly independent.

2. Determine the periodic autocorrelation of the function f(x) = cos 2πx.

3. Let a > 0 and derive the Fourier transform of

∞
∑

n=−∞

δan.

4. Assume that ϕ is the scaling function in an orthogonal multi-resolution anlysis (OG-MRA).
Show that the support of ϕ̂ measures at least 2π.

5. Assume that ϕ and ψ are the scaling function and the wavelet of an MRA, respectively. Assume
further that ϕ has vanishing moments of order ≤ L, i.e.

∫

tkϕ(t) dt = 0, 1 ≤ k ≤ L.

Show that ψ has vanishing moments of order ≤ L/2:
∫

tkψ(t) dt = 0, 1 ≤ k ≤ L/2.

Note that zero moments are not included.
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Lösningar/Solutions.

1. Show that {Λ(t − n)}∞n=−∞
are linearly independent.

Solution: We have that

Λ(x) =

{

1 − |x|, |x| ≤ 1
0, |x| > 1

1

−1 1
x

0

Λ(x)

N
∑

n=M

CnΛ(t − n) = 0, =⇒ t = k, gives Ck = 0, −M ≤ k ≤ N.

In other words {Λ(t− n)}N
n=−M is linearly independent for all M and N . Hence, {Λ(t− n)}∞n=−∞

is linearly independent.

2. Determine the periodic autocorrelation of the function f(x) = cos 2πx.

Solution: The function f(x) = cos 2πx is periodic with period 1. Its periodic autocorrelation is
then defined as

f ⋆ f(x) =

∫ 1

0

f(u)f(u − x) du = [u − x = y]

=

∫ 1

−x

−xf(x + y)f(y) dy = [the integrand is 1-periodic]

=

∫ 1

0

f(u)f(u − x) du =

∫ 1

0

= cos 2πu · cos 2π(u − x) du

=

∫ 1

0

1

2
[cos(2πu − 2π(u − x)) + cos(2πu + 2π(u − x))] du

=
1

2

∫ 1

0

[cos 2πx + cos(2πu + 2π(2u − x))] du =
1

2
cos 2πx +

1

2

1

4π
[sin 2π(2u − x)]10

=
1

2
cos 2πx +

1

8π
(sin 2π(1 − x) + sin 2πx) =

1

2
cos 2πx.
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3. Let a > 0 and derive the Fourier transform of
∞
∑

n=−∞

δan.

Solution: We have that

〈δan, ϕ〉 = 〈δ, ϕ−an〉 = ϕ(an), ϕ ∈ S.

Hence

〈Fδan, ϕ〉 = 〈δan, ϕ̂〉 = ϕ̂(an) =
1

a
F [ϕ(

x

a
)](n) = 〈δn,

1

a
F [ϕ(

x

a
)]〉 =

1

a
〈Fδn, ϕ(

x

a
)〉.

Using this identity we can write

〈F [

∞
∑

n=−∞

δan], ϕ〉 =
1

a

∞
∑

n=−∞

〈Fδn, ϕ(
x

a
)〉 =

1

a
〈

∞
∑

n=−∞

Fδn, ϕ(
x

a
)〉

=
1

a
〈F

∞
∑

n=−∞

δn, ϕ(
x

a
)〉 =

1

a
〈

∞
∑

n=−∞

δn, ϕ(
x

a
)〉 =

1

a

∞
∑

n=−∞

〈δn, ϕ(
x

a
)〉

=
1

a

∞
∑

n=−∞

ϕ(
n

a
) =

1

a

∞
∑

n=−∞

〈δn/a, ϕ〉 = 〈
1

a

∞
∑

n=−∞

δn/a, ϕ〉.

Thus

F [

∞
∑

n=−∞

δan] =
1

a

∞
∑

n=−∞

δn/a.

4. Assume that ϕ is the scaling function in an orthogonal multi-resolution anlysis (OG-MRA).
Show that the support of ϕ̂ measures at least 2π.

Solution: We have using Plancherel relation that

δk =

∫

∞

−∞

ϕ(t)ϕ(t − k) dt =
1

2π

∫

∞

−∞

ϕ̂(ω)e−ikωϕ̂(ω) dω

=
1

2π

∫

∞

−∞

|ϕ̂(ω)|2eikω dω =
1

2π

∞
∑

−∞

∫ 2(n+1)π

2nπ

|ϕ̂(ω)|2eikω dω = [ω − 2πn → ω]

=
1

2π

∞
∑

−∞

∫ 2π

0

|ϕ̂(ω + 2nπ)|2eik(ω+2nπ) dω =
1

2π

∫ 2π

0

∞
∑

−∞

|ϕ̂(ω + 2nπ)|2eikω dω.

This yields
∞
∑

−∞

|ϕ̂(ω + 2nπ)|2 = 1, ∀ ω (or for a.e.).

Let now S = suppϕ̂ = {ϕ̂(ω) 6= 0}. Then |ϕ̂(ω)|2 ≤ 1 for all ω gives the measure of

|S| =

∫

S

dω ≥

∫

S

|ϕ̂(ω)|2 dω =

∫

∞

−∞

|ϕ̂(ω)|2 dω = 2π

∫

∞

−∞

|ϕ(x)|2 dx = 2π,

where we have assumed that ||ϕ||L2 = 1.
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5. Assume that ϕ and ψ are the scaling function and the wavelet of an MRA, respectively. Assume
further that ϕ has vanishing moments of order ≤ L, i.e.

∫

tkϕ(t) dt = 0, 1 ≤ k ≤ L.

Show that ψ has vanishing moments of order ≤ L/2:
∫

tkψ(t) dt = 0, 1 ≤ k ≤ L/2.

Note that zero moments are not included.

Solution: We have that
F [tkϕ(t)](ω) = ikDkϕ̂(ω).

The assumption
∫

tkϕ(t) dt = ikDkϕ̂(0) = 0, k = 1, . . . , L,

yields
Dkϕ̂(0) = 0,

which together with
ϕ̂(2ω) = H(ω)ϕ̂(ω), ϕ̂(0) = 1, H(0) = 1,

and the trivial expansion

2kDkϕ̂(2ω) =

k
∑

α=0

(

k
α

)

Dk−αH(ω)Dαϕ̂(ω), implies that 2kDkϕ̂(0) = DkH(0) · 1

Thus
DkH(0) = 0, 1 ≤ k ≤ L.

Further, for the orthogonal system we have that

|H(ω)|2 + |G(ω)|2 = 1,

which together with Binomial expansions and properties of H (H(0) = 1, DkH(0) = 0, 1 ≤ k ≤ L)
gives that

H(ω) − 1 = ωL+1H1(Ω).

Thus for sufficiently small |ω| with |H(ω)| ≤ 1 we have that

|G(ω)|2 = 1 − |H(ω)|2 = (1 − |H(ω)|)(1 + |H(ω)|)

≤ 2(1 − |H(ω)|) ≤ 2|1 − H(ω)| = 2|ω|L+1|H1(Ω)| ≤ C1|ω|
L+1.

Hence
|G(ω)| ≤ C|ω|

L+1

2 ,

which implies that

DkG(0) = 0, k = 0, 1, . . . , [
L

2
].

Consequently, using
∫

tkψ(t) dt = ikDkψ̂(0), and ψ̂(2ω) = G(ω)ψ̂(ω)

we may use Binomisal polynomial again and write

2kDkψ̂(2ω) =

k
∑

α=0

(

k
α

)

Dk−αG(ω)Dαϕ̂(ω),

where Dkϕ̂(0) = 0 for k = 1, . . . , L implies that

2kDkψ̂(0) = DkG(0) = 0, =⇒

∫

tkψ(t) dt = 0.
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