
Lagrangian duality VI
This 
hapter 
olle
ts some basi
 results on Lagrangian duality, in par-ti
ular as it applies to 
onvex programs with a zero duality gap.6.1 The relaxation theoremGiven the problem to �ndf� := in�mumx f(x); (6.1a)subje
t to x 2 S; (6.1b)where f : Rn ! R is a given fun
tion and S � Rn , we de�ne a relaxationto (6.1) to be a problem of the following form: �ndf�R := in�mumx fR(x); (6.2a)subje
t to x 2 SR; (6.2b)where fR : Rn ! R is a fun
tion with the property that fR � f on S,and where SR � S. For this pair of problems, we have the followingbasi
 result.Theorem 6.1 (Relaxation Theorem) (a) [relaxation℄ f�R � f�.(b) [infeasibility℄ If (6.2) is infeasible, then so is (6.1).(
) [optimal relaxation℄ If the problem (6.2) has an optimal solution,x�R, for whi
h it holds thatx�R 2 S and fR(x�R) = f(x�R); (6.3)then x�R is an optimal solution to (6.1) as well.



Lagrangian dualityProof. The result in (a) is obvious, as every solution feasible in (6.1)is both feasible in (6.2) and has a lower obje
tive value in the latterproblem.The result in (b) follows for similar reasons.For the result in (
), we note thatf(x�R) = fR(x�R) � fR(x) � f(x); x 2 S;from whi
h the result follows.This basi
 result will be utilized both in this 
hapter and later on tomotivate why Lagrangian relaxation, obje
tive fun
tion linearization andpenalization 
onstitute relaxations, and to derive optimality 
onditionsand algorithms based on them.6.2 Lagrangian dualityIn this se
tion we formulate the Lagrangian dual problem and establishits 
onvexity. The Weak Duality Theorem is also established, and weintrodu
e the terms \Lagrangian relaxation," \Lagrangemultiplier," and\duality gap."6.2.1 Lagrangian relaxation and the dual problemConsider the optimization problem to �ndf� := in�mumx f(x);subje
t to x 2 X;gi(x) � 0; i = 1; : : : ;m; (6.4)where f : Rn ! R and gi : Rn ! R (i = 1; 2; : : : ;m) are given fun
tions,and X � Rn .For this problem, we assume that�1 < f� <1; (6.5)that is, that f is bounded from below on the feasible set and the problemhas at least one feasible solution.De�nition 6.2 (Lagrange fun
tion, relaxation, multiplier) (a) For an ar-bitrary ve
tor � 2 Rm , the Lagrange fun
tion isL(x;�) := f(x) + mXi=1 �igi(x) = f(x) + �Tg(x): (6.6)142



Lagrangian duality(b) Consider the problem tominimize L(x;�); (6.7)subje
t to x 2 X:Whenever � is non-negative, the problem (6.7) is referred to as a La-grangian relaxation.(
) We 
all the ve
tor �� 2 Rm a Lagrange multiplier ve
tor if it isnon-negative and if f� = infx2X L(x;��) holds.Note that the Lagrangian relaxation (6.7) is a relaxation, in terms ofSe
tion 6.1.Theorem 6.3 (Lagrange multipliers and global optima) Let �� be a La-grange multiplier ve
tor. Then, x� is an optimal solution to (6.4) if andonly if x� is feasible in (6.4) andx� 2 argminx2X L(x;��); and ��i gi(x�) = 0; i = 1; : : : ;m: (6.8)Proof. If x� is an optimal solution to (6.4), then it is in parti
ularfeasible, and f� = f(x�) � L(x�;��) � in�mumx2X L(x;��);where the �rst inequality stems from the feasibility of x� and the de�ni-tion of a Lagrange multiplier ve
tor. The se
ond part of that de�nitionimplies that f� = infx2X L(x;��), so that equality holds throughout inthe above line of inequalities. Hen
e, (6.8) follows.Conversely, if x� is feasible and (6.8) holds, then by the use of thede�nition of a Lagrange multiplier ve
tor,f(x�) = L(x�;��) = minimumx2X L(x;��) = f�;so x� is a global optimum.Let q(�) := in�mumx2X L(x;�) (6.9)be the Lagrangian dual fun
tion, de�ned by the in�mum value of theLagrange fun
tion over X ; the Lagrangian dual problem is tomaximize� q(�); (6.10)subje
t to � � 0m: 143



Lagrangian dualityFor some �, q(�) = �1 is possible; if it is true for all � � 0m, thenq� := supremum��0m q(�)equals �1. (We 
an then say that the dual problem is infeasible.)The e�e
tive domain of q isDq := f � 2 Rm j q(�) > �1g :Theorem 6.4 (
onvex dual problem) The e�e
tive domain Dq of q is
onvex, and q is 
on
ave on Dq.Proof. Let x 2 Rn , �; �� 2 Rm , and � 2 [0; 1℄. We have thatL(x; ��+ (1� �)��) = �L(x;�) + (1� �)L(x; ��):Take the in�mum over x 2 X on both sides; then,infx2X L(x; ��+ (1� �)��) = infx2X f�L(x;�) + (1� �)L(x; ��)g� infx2X �L(x;�) + infx2X (1� �)L(x; ��)= � infx2X L(x;�) + (1� �) infx2X L(x; ��);sin
e � 2 [0; 1℄, and the sum of in�mum values may be smaller than thein�mum of the sum, sin
e in the former 
ase we have the possibility to
hoose di�erent optimal solutions in the two problems. Hen
e,q(��+ (1� �)��) � �q(�) + (1� �)q(��)holds. This inequality has two impli
ations: if � and �� lie in Dq , thenso does ��+ (1� �)��, so Dq is 
onvex; also, q is 
on
ave on Dq.That the Lagrangian dual problem always is 
onvex (we indeed max-imize a 
on
ave fun
tion!) is good news, be
ause it means that it 
anbe solved eÆ
iently. What remains is to show how a Lagrangian dualoptimal solution 
an be used to generate a primal optimal solution.Next, we establish that every feasible point in the Lagrangian dualproblem always underestimates the obje
tive fun
tion value of every fea-sible point in the primal problem; hen
e, also their optimal values havethis relationship.Theorem 6.5 (Weak Duality Theorem) (a) Let x and � be feasible inthe problems (6.4) and (6.10), respe
tively. Then,q(�) � f(x):144



Lagrangian dualityIn parti
ular, q� � f�:(b) If q(�) = f(x), then the pair (x;�) is optimal in its respe
tiveproblem.Proof. For all � � 0m and x 2 X with g(x) � 0m,q(�) = in�mumz2X L(z;�) � f(x) + �Tg(x) � f(x);so q� = supremum��0m q(�) � in�mumx2X:g(x)�0m f(x) = f�:The result follows.Weak duality is also a 
onsequen
e of the Relaxation Theorem: Forany � � 0m, let S := X \ fx 2 Rn j g(x) � 0m g; (6.11a)SR := X; (6.11b)fR := L(�; �): (6.11
)Then, the weak duality statement is the result in Theorem 6.1(a).If our initial feasibility assumption (6.5) is false, then what does weakduality imply? Suppose that f� = �1. Then, weak duality impliesthat q(�) = �1 for all � � 0m, that is, the dual problem is infeasible.Suppose then that X 6= ; but that X \fx 2 Rn j g(x) � 0m g is empty.Then, f� =1, by 
onvention. The dual fun
tion satis�es q(�) <1 forall � � 0m, but it is possible that q� = �1, �1 < q� <1, or q� =1(see [Ber99, Figure 5.1.8℄). For linear programs, �1 < q� < 1 implies�1 < f� <1; see below.If q� = f�, then we say that the duality gap (as given by � :=f��q�) is zero, or that there is no duality gap. If there exists a Lagrangemultiplier ve
tor, then by the weak duality theorem, this implies thatthere is no duality gap. The 
onverse is not true in general: there may be
ases where no Lagrange multipliers exist even when there is no dualitygap; in that 
ase though, the Lagrangian dual problem 
annot have anoptimal solution, as implied by the following result.Proposition 6.6 (duality gap and the existen
e of Lagrange multipliers)(a) If there is no duality gap, then the set of Lagrange multiplier ve
torsequals the set of optimal dual solutions (whi
h however may be empty).(b) If there is a duality gap, then there are no Lagrange multipliers.145



Lagrangian dualityProof. By de�nition, a ve
tor �� � 0m is a Lagrange multiplier ve
torif and only if f� = q(��) � q�, the equality following from the de�nitionof q(��) and the inequality from the de�nition of q� as the supremum ofq(�) over Rm+ . By weak duality, this relation holds if and only if thereis no duality gap and �� is an optimal dual solution.Before moving on, we remark on the statement of the problem (6.4).There are several ways in whi
h the original set of 
onstraints of theproblem 
an be pla
ed either within the de�nition of the ground set X(whi
h is kept inta
t), or within the expli
it 
onstraints de�ned by thefun
tions gi (whi
h are Lagrangian relaxed). How to distinguish betweenthe two, that is, how to de
ide whether a 
onstraint should be kept or beLagrangian relaxed, depends on several fa
tors. For example, keepingmore 
onstraints within X may result in a smaller duality gap, andfewer multipliers also result in a simpler Lagrangian dual problem. Onthe other hand, the Lagrangian subproblem de�ning the dual fun
tionsimultaneously be
omes more 
omplex and diÆ
ult to solve. There areno immediate rules to follow, but experimentation and experien
e.6.2.2 Global optimality 
onditionsThe following result 
hara
terizes every optimal primal and dual solu-tion. It is however appli
able only in the presen
e of Lagrange multipli-ers; in other words, the below system (6.12) is 
onsistent if and only ifthere exists a Lagrange multiplier ve
tor and there is no duality gap.Theorem 6.7 (global optimality 
onditions in the absen
e of a duality gap)The ve
tor (x�;��) is a pair of primal optimal solution and Lagrangemultiplier ve
tor if and only if�� � 0m; (Dual feasibility) (6.12a)x� 2 argminx2X L(x;��); (Lagrangian optimality) (6.12b)x� 2 X; g(x�) � 0m; (Primal feasibility) (6.12
)��i gi(x�) = 0; i = 1; : : : ;m: (Complementary sla
kness) (6.12d)Proof. Suppose that the pair (x���) satis�es (6.12). Then, from (6.12a)we have that the Lagrangian problem to minimize L(x;��) over x 2 Xis a (Lagrangian) relaxation of (6.4). Moreover, a

ording to (6.12b)x� solves this problem, (6.12
) shows that x� is feasible in (6.4), and(6.12d) implies that L(x�;��) = f(x�). The Relaxation Theorem 6.1146



Lagrangian dualitythen yields that x� is optimal in (6.4), whi
h in turn implies that �� isa Lagrange multiplier ve
tor.Conversely, if (x�;��) is a pair of optimal primal solution and La-grange multiplier ve
tor, then they are primal and dual feasible, respe
-tively. The relations (6.12b) and (6.12d) follow from Theorem 6.3.Theorem 6.8 (global optimality and saddle points) The ve
tor (x�;��)is a pair of optimal primal solution and Lagrange multiplier ve
tor ifand only if x� 2 X , �� � 0m, and (x�;��) is a saddle point of theLagrangian fun
tion on X � Rm+ , that is,L(x�;�) � L(x�;��) � L(x;��); (x;�) 2 X � Rm+ ; (6.13)holds.Proof. We establish that (6.12) and (6.13) are equivalent; Theorem 6.7then gives the result. The �rst inequality in (6.13) is equivalent to�g(x�)T(�� ��) � 0; � 2 Rm+ ; (6.14)for the given pair (x�;��) 2 X � Rm+ . This variational inequality isequivalent to stating that10m � g(x�) ? �� � 0m; (6.15)where ? denotes orthogonality: that is, for any ve
tors a; b 2 Rn , a ? bmeans that aTb = 0. Be
ause of the sign restri
tions posed on � andg, that is, the ve
tors a and b, the relation a ? b a
tually means thatnot only does it hold that aTb = 0 but in fa
t aibi = 0 must hold for alli = 1; : : : ; n. This 
omplementarity system is, for the given �� 2 Rm+ ,the same as (6.12a), (6.12
) and (6.12d). The se
ond inequality in (6.13)is equivalent to (6.12b).The above two theorems also imply that the set of primal{dual opti-mal solutions (x�;��) is a Cartesian produ
t set, X��U�. For example,1We establish the equivalen
e between (6.14) and (6.15) as follows. (The proofextends that for line sear
h problems in un
onstrained optimization in a footnote inSe
tion 11.3.1.)First, suppose that (6.15) is ful�lled. Then, �g(x�)T(� � ��) = �g(x�)T� � 0,for all � � 0m, that is, (6.14) is ful�lled. Conversely, suppose that (6.14) is ful�lled.Setting � = 0m yields that g(x�)T�� � 0. On the other hand, the 
hoi
e � = 2��yields that �g(x�)T�� � 0. Hen
e, g(x�)T�� = 0 holds. Last, let � = �� + ei,where ei is the ith unit ve
tor in Rm. Then, �g(x�)T(����) = �gi(x�) � 0. Sin
ethis is true for all i 2 f1; 2; : : : ;mg we have obtained that �g(x�) � 0m, that is,g(x�) � 0m. We are done. 147



Lagrangian dualitygiven any optimal dual solution �� 2 U�, every optimal primal solutionx� 2 X� satis�es (6.12). Hen
e, we 
an write, for an arbitrary dualve
tor �� 2 U�,X� = fx� 2 Rn j x� satis�es (6.12) for � = �� g= � x� 2 argminx2X L(x;��) ���� g(x�) � 0m; (��)Tg(x�) = 0� :We note that stru
turally similar results to the above two theoremswhi
h are valid for the general problem (6.4) with any size of the dualitygap 
an be found in [LaP05℄.2We �nally note a pra
ti
al 
onne
tion between the KKT system (5.9)and the above system (6.12). The pra
ti
al use of the KKT system isnormally to investigate whether a primal ve
tor x|obtained perhapsfrom a solver for our problem|is a 
andidate for a lo
ally optimal so-lution; in other words, we have a

ess to x and generate a ve
tor � ofLagrange multipliers in the investigation of the KKT system (5.9). In
ontrast, the system (6.12) is normally investigated in the reverse order;we formulate and solve the Lagrangian dual problem, thereby obtainingan optimal dual ve
tor �. Starting from that ve
tor, we investigate theglobal optimality 
onditions stated in (6.12) to obtain, if possible, anoptimal primal ve
tor x. In the se
tion to follow, we show when this ispossible, and provide strong 
onne
tions between the systems (5.9) and(6.12) in the 
onvex and di�erentiable 
ase.6.2.3 Strong duality for 
onvex programsSo far the results have been rather non-te
hni
al to a
hieve: the 
on-vexity of the Lagrangian dual problem 
omes with very few assumptionson the original, primal problem, and the 
hara
terization of the primal{dual set of optimal solutions is simple and also quite easily established.In order to establish strong duality, that is, to establish suÆ
ient 
on-ditions under whi
h there is no duality gap, however, takes mu
h more.In parti
ular, as is the 
ase with the KKT 
onditions we need regularity
onditions (that is, 
onstraint quali�
ations), and we also need to utilizeseparation theorems su
h as Theorem 4.28. Most importantly, however,is that strong duality is deeply asso
iated with the 
onvexity of the orig-inal problem, and it is in parti
ular under 
onvexity that the primal and2The system (6.12) is there appended with two relaxation parameters whi
h mea-sure, respe
tively, the near-optimality of x� in the Lagrangian subproblem [that is,the "-optimality in (6.12b)℄, and the violation of the 
omplementarity 
onditions(6.12d). The saddle point 
ondition (6.13) is similarly perturbed, and at an optimalsolution, the sum of these two parameters equals the duality gap.148



Lagrangian dualitydual optimal solutions are linked through the global optimality 
ondi-tions provided in the previous se
tion. We begin by 
on
entrating on theinequality 
onstrained 
ase, proving this result in detail. We will alsospe
ialize the result to quadrati
 and linear optimization problems.Consider the inequality 
onstrained 
onvex program (6.4), where f :Rn ! R and gi (i = 1; : : : ;m) are 
onvex fun
tions and X � Rn isa 
onvex set. For this problem, we introdu
e the following regularity
ondition, due to Slater (
f. De�nition 5.38):9x 2 X with g(x) < 0m: (6.16)Theorem 6.9 (Strong Duality, inequality 
onstrained 
onvex programs) Supposethat the feasibility 
ondition (6.5) and Slater's 
onstraint quali�
ation (6.16)hold for the 
onvex problem (6.4).(a) There is no duality gap and there exists at least one Lagrange mul-tiplier ve
tor ��. Moreover, the set of Lagrange multipliers is boundedand 
onvex.(b) If the in�mum in (6.4) is attained at some x�, then the pair(x�;��) satis�es the global optimality 
onditions (6.12).(
) If further f and g are di�erentiable at x�, then the 
ondition(6.12b) 
an equivalently be written as the variational inequalityrxL(x�;��)T(x� x�) � 0; x 2 X: (6.17)If, in addition, X is open (su
h as is the 
ase when X = Rn ), then thisredu
es to the 
ondition thatrxL(x�;��) = rf(x�) + mXi=1 ��irgi(x�) = 0n; (6.18)and the global optimality 
onditions (6.12) redu
e to the Karush{Kuhn{Tu
ker 
onditions stated in Theorem 5.25.Proof. (a) We begin by establishing the existen
e of a Lagrange multi-plier ve
tor (and the presen
e of a zero duality gap).3First, we 
onsider the following subset of Rm+1 :A := f(z1; : : : ; zm; w)T j9x2 X with gi(x)�zi; i = 1; : : : ;m; f(x)�wg:It is elementary to show that A is 
onvex.Next, we observe that ((0m)T; f�)T is not an interior point of A;otherwise, for some " > 0 the point ((0m)T; f� � ")T 2 A holds, whi
h3This result is [Ber99, Proposition 5.3.1℄, whose proof we also utilize. 149



Lagrangian dualitywould 
ontradi
t the de�nition of f�. Therefore, by the (possibly non-proper) separation result in Theorem 4.28, we 
an �nd a hyperplanepassing through ((0m)T; f�)T su
h that A lies in one of the two 
orre-sponding half-spa
es. In parti
ular, there then exists a ve
tor (�T; �)T 6=((0m)T; 0)T su
h that�f� � �w + �Tz; (zT; w)T 2 A: (6.19)This implies that � � 0; � � 0m; (6.20)sin
e for ea
h (zT; w)T 2 A (zT; w + 
)T 2 A and (z1; : : : ; zi�1; zi +
; zi+1; : : : ; zm; w)T 2 A for all 
 > 0 and i = 1; : : : ;m.We 
laim that � > 0 in fa
t holds. Indeed, if it was not the 
ase, then� = 0 and (6.19) then implies that �Tz � 0 for every pair (zT; w)T 2A. But sin
e (g(�x)T; f(�x))T 2 A [where �x is su
h that it satis�es theSlater 
ondition (6.16)℄, we would obtain that 0 � Pmi=1 �igi(�x) whi
hin view of � � 0m [
f. (6.20)℄ and the assumption that �x satis�es theSlater 
ondition (6.16) implies that � = 0m. This means, however, that(�T; �)T = ((0m)T; 0)T|a 
ontradi
tion. We may therefore 
laim that� > 0. We further, with no loss of generality, assume that � = 1.Thus, sin
e (g(x)T; f(x))T 2 A for every x 2 X , (6.19) yields thatf� � f(x) + �Tg(x); x 2 X:Taking the in�mum over x 2 X and using the fa
t that � � 0m weobtainf� � in�mumx2X ff(x) + �Tg(x)g = q(�) � supremum��0m q(�) = q�:Using the Weak Duality Theorem 6.5 it follows that � is a Lagrangemultiplier ve
tor, and there is no duality gap. This part of the proof isnow done.Take any ve
tor �x 2 X satisfying (6.16) and a Lagrange multiplierve
tor ��. By the de�nition of a Lagrange multiplier ve
tor, f� �L(�x;��) holds, whi
h implies thatmXi=1 ��i � [f(�x)� f�℄mini=1;:::;mf�gi(�x)g :Sin
e �� � 0m, boundedness follows. As by Proposition 6.6(a) the set ofLagrange multipliers is the set of optimal solutions to the dual problem(6.10), 
onvexity follows from the identi�
ation of the dual solution setwith the set of ve
tors � 2 Rm+ for whi
hq(�) � q�150



Lagrangian dualityholds. This is the upper level set for q at the level q�; this set is 
onvex,by the 
on
avity of q (
f. Theorem 6.4 and Proposition 3.44).(b) The result follows from Theorem 6.7.(
) The �rst part follows from Theorem 4.23, as the Lagrangian fun
-tion L(�;��) is 
onvex. The se
ond part follows by identi�
ation.Consider next the extension of the inequality 
onstrained 
onvex pro-gram (6.4) in whi
h we seek to �ndf� := in�mumx f(x); (6.21)subje
t to x 2 X;gi(x) � 0; i = 1; : : : ;m;"Tj x� dj = 0; j = 1; : : : ; `;under the same 
onditions as stated following (6.4), and where "j 2 Rn ,j = 1; : : : ; `. For this problem, we repla
e the Slater 
ondition (6.16)with the following (
f. [BSS93, Theorem 6.2.4℄):9x 2 X with g(x) < 0m and 0m 2 int fEx� d j x 2 X g; (6.22)where E 2 R`�n has rows "Tj , and d = (dj)j2f1;:::;`g 2 R` .Note that in the statement (6.22), the \int" 
an be stri
ken wheneverX is polyhedral, so that the latter part simply states that Ex = d.For this problem, the Lagrangian dual problem is to �ndq� := supremum(�;�) q(�;�); (6.23)subje
t to � � 0m;whereq(�;�) := in�mumx L(x;�;�) := f(x) + �Tg(x) + �T(Ex� d);subje
t to x 2 X:Theorem 6.10 (Strong Duality, general 
onvex programs) Suppose thatin addition to the feasibility 
ondition (6.5), Slater's 
onstraint quali�-
ation (6.22) holds for the problem (6.21).(a) The duality gap is zero and there exists at least one Lagrangemultiplier ve
tor pair (��;��).(b) If the in�mum in (6.21) is attained at some x�, then the triple151



Lagrangian duality(x�;��;��) satis�es the global optimality 
onditions�� � 0m; (Dual feasibility) (6.24a)x� 2 argminx2X L(x;��;��); (Lagrangian optimality) (6.24b)x� 2 X; g(x�) � 0m; Ex� = d; (Primal feasibility) (6.24
)��i gi(x�) = 0; i = 1; : : : ;m: (Complementary sla
kness) (6.24d)(
) If further f and g are di�erentiable at x�, then the 
ondition(6.24b) 
an equivalently be written asrxL(x�;��;��)T(x� x�) � 0; x 2 X: (6.25)If, in addition, X is open (su
h as is the 
ase when X = Rn ), then thisredu
es to the 
ondition thatrxL(x�;��;��) = rf(x�) + mXi=1 ��irgi(x�) + X̀j=1 ��j"j = 0n; (6.26)and the global optimality 
onditions (6.24) redu
e to the Karush{Kuhn{Tu
ker 
onditions stated in Theorem 5.33.Proof. The proof is similar to that of Theorem 6.9.We �nally 
onsider a spe
ial 
ase where automati
ally a regularity
ondition holds.Consider the aÆnely 
onstrained 
onvex program to �ndf� := in�mumx f(x); (6.27)subje
t to x 2 X;aTi x� bi � 0; i = 1; : : : ;m;"Tj x� dj = 0; j = 1; : : : ; `;where f : Rn ! R is 
onvex and X � Rn is polyhedral.Theorem 6.11 (Strong Duality, aÆne 
onstraints) If the feasibility 
on-dition (6.5) holds for the problem (6.27), then there is no duality gapand there exists at least one Lagrange multiplier ve
tor.Proof. Again, the proof is similar to that of Theorem 6.9, ex
ept thatno additional regularity 
onditions are needed.44For a detailed proof, see [Ber99, Proposition 5.2.1℄. (The spe
ial 
ase where f ismoreover di�erentiable is 
overed in [Ber99, Proposition 3.4.2℄.)152



Lagrangian dualityThe existen
e of a multiplier ve
tor [whi
h by Proposition 6.6 and theabsen
e of a duality gap implies the existen
e of an optimal solution tothe dual problem (6.10)℄ does not imply the existen
e of an optimal so-lution to the primal problem (6.27) without any additional assumptions(take the minimization of f(x) := 1=x over x � 1 for example). How-ever, when f is either weakly 
oer
ive, quadrati
 or linear, the existen
eresults are stronger; see the primal existen
e results in Theorems 4.6,4.7, and 6.12 below, for example.For 
onvex programs where a Slater CQ holds, the Lagrange mul-tipliers de�ned in this se
tion, and those that appear in the Karush{Kuhn{Tu
ker 
onditions, 
learly are identi
al. Next, we spe
ialize theabove to linear and quadrati
 programs.6.2.4 Strong duality for linear and quadrati
 pro-gramsThe following result will be established and analyzed in detail in Chap-ter 10 on linear programming duality (
f. Theorem 10.6), but 
an infa
t also be established similarly to above. (See [BSS93, Theorem 2.7.3℄or [Ber99, Proposition 5.2.2℄, for example.) Its proof will however berelegated to that of Theorem 10.6.Theorem 6.12 (Strong Duality, linear programs) Assume, in addition tothe 
onditions of Theorem 6.11, that f is linear, so that (6.27) is a linearprogram. Then, the primal and dual problems have optimal solutionsand there is no duality gap.The above result states a strong duality result for a general linearprogram. We next develop an expli
it Lagrangian dual problem for alinear program.Let A 2 Rm�n , 
 2 Rn , and b 2 Rm ; 
onsider the linear programminimizex 
Tx; (6.28)subje
t to Ax = b;x � 0n:If we let X := Rn+ , then the Lagrangian dual problem is tomaximize�2Rm bT�; (6.29)subje
t to AT� � 
:The reason why we 
an write it in this form is thatq(�) := in�mumx�0n n
Tx+ �T(b�Ax)o = bT�+ in�mumx�0n (
�AT�)Tx;153



Lagrangian dualityso that q(�) = (bT�; if AT� � 
;�1; otherwise:(The in�mum is attained at zero if and only if these inequalities aresatis�ed; otherwise, the inner problem is unbounded below.)Further, why is it that � here is not restri
ted in sign? Suppose wewere to split the system Ax = b into an inequality system of the formAx � b;�Ax � �b:Let ((�+)T; (��)T)T be the 
orresponding ve
tor of multipliers, andtake the Lagrangian dual for this formulation. Then, we would have aLagrange fun
tion of the form(x;�+;��) 7! L(x;�+;��) := 
Tx+ (�+ � ��)T(b�Ax);and sin
e �+��� 
an take on any value in Rm we 
an simply repla
e itwith the unrestri
ted ve
tor � 2 Rm . This motivates why the multiplierfor an equality 
onstraint never is sign restri
ted; the same was the 
ase,as we saw in Se
tion 5.6, for the multipliers in the KKT 
onditions.As applied to this problem, Theorem 6.12 states that if both theprimal or dual problems have feasible solutions, then they both haveoptimal solutions, satisfying strong duality (
Tx� = bT��). On theother hand, if any of the two problems has an unbounded solution, thenthe other problem is infeasible.Consider next the quadrati
 programming problem tominimizex �12xTQx+ 
Tx� ; (6.30)subje
t to Ax � b;where Q 2 Rn�n , 
 2 Rn , A 2 Rm�n , and b 2 Rm . We develop anexpli
it dual problem under the assumption that Q is positive de�nite.By Lagrangian relaxing the inequality 
onstraints, we obtain that theinner problem in x is solved by lettingx = �Q�1(
+AT�): (6.31)Substituting this expression into the Lagrangian fun
tion yields the La-grangian dual problem tomaximize� ��12�TAQ�1AT��(b+AQ�1
)T�� 12
TQ�1
� ; (6.32)subje
t to � � 0m;154



Two illustrative examplesStrong duality follows for this 
onvex primal{dual pair of quadrati
programs, in mu
h the same way as for linear programs.Theorem 6.13 (Strong Duality, quadrati
 programs) For the primal{dualpair of 
onvex quadrati
 programs (6.30), (6.32), the following holds:(a) If both problems have feasible solutions, then both problems alsohave optimal solutions, and the primal problem (6.30) also has a uniqueoptimal solution, given by (6.31) for any optimal Lagrange multiplierve
tor, and in the two problems the optimal values are equal.(b) If either of the two problems has an unbounded solution, thenthe other one is infeasible.(
) Suppose that Q is positive semi-de�nite, and that the feasibility
ondition (6.5) holds. Then, both the problem (6.30) and its Lagrangiandual have nonempty, 
losed and 
onvex sets of optimal solutions, andtheir optimal values are equal.In the result (a) it is important to note that the Lagrangian dualproblem (6.32) is not ne
essarily stri
tly 
onvex; the matrix AQ�1ATneed not be positive de�nite, espe
ially so when A does not have fullrank. The result (
) extends the strong duality result from linear pro-gramming, sin
e Q in (
) 
an be the zero matrix. In the 
ase of (
) we of
ourse 
annot write the Lagrangian dual problem in the form of (6.32)be
ause Q is not ne
essarily invertible.6.3 Two illustrative examplesExample 6.14 (an expli
it, di�erentiable dual problem) Consider the prob-lem to minimizex f(x) := x21 + x22;subje
t to x1 + x2 � 4;xj � 0; j = 1; 2:We 
onsider the �rst 
onstraint to be the 
ompli
ated one, and hen
ede�ne g(x) := �x1�x2+4 and let X := f (x1; x2)T j xj � 0; j = 1; 2 g.Then, the Lagrangian dual fun
tion isq(�) = minimumx2X L(x; �) := f(x)� �(x1 + x2 � 4)= 4�+minimumx2X fx21 + x22 � �x1 � �x2g= 4�+minimumx1�0 fx21 � �x1g+minimumx2�0 fx22 � �x2g; � � 0:For a �xed � � 0, the minimum is attained at x1(�) = �2 ; x2(�) = �2 .155



Lagrangian dualitySubstituting this expression into q(�), we obtain that q(�) = f(x(�))��(x1(�) + x2(�)� 4) = 4�� �22 .Note that q is stri
tly 
on
ave, and it is di�erentiable everywhere (dueto the fa
t that f; g are di�erentiable and x(�) is unique), by Danskin'sTheorem 6.17(d).We have that q0(�) = 4� � = 0 () � = 4. As � = 4 � 0, it is theoptimum in the dual problem: �� = 4;x� = (x1(��); x2(��))T = (2; 2)T.Also, f(x�) = q(��) = 8.This is an example where the dual fun
tion is di�erentiable, andtherefore we 
an utilize Proposition 6.29(
). In this 
ase, the optimumx� is also unique, so it is automati
ally given as x� = x(�).Example 6.15 (an impli
it, non-di�erentiable dual problem) Consider thelinear programming problem tominimizex f(x) := �x1 � x2;subje
t to 2x1 + 4x2 � 3;0 � x1 � 2;0 � x2 � 1:The optimal solution is x� = (3=2; 0)T; f(x�) = �3=2.Consider Lagrangian relaxing the �rst 
onstraint, obtainingL(x; �) = �x1 � x2 + �(2x1 + 4x2 � 3);q(�) = �3�+minimum0�x1�2 f(�1 + 2�)x1g+minimum0�x2�1 f(�1 + 4�)x2g= 8<: �3 + 5�; 0 � � � 1=4;�2 + �; 1=4 � � � 1=2;� 3�; 1=2 � �:Che
k that �� = 1=2, and hen
e that q(��) = �3=2. For linearprograms, we have strong duality, but how do we obtain the optimalprimal solution from ��? It is 
lear that q is non-di�erentiable at ��.Let us utilize the 
hara
terization given in the system (6.12).First, at ��, it is 
lear that X(��) is the set f (2�; 0)T j 0 � � � 1 g.Among the subproblem solutions, we next have to �nd one that is primalfeasible as well as 
omplementary.Primal feasibility means that 2 � 2�+ 4 � 0 � 3() � � 3=4.Further, 
omplementarity means that �� �(2x�1+4x�2�3) = 0() � =3=4, sin
e �� 6= 0. We 
on
lude that the only primal ve
tor that satis�esthe system (6.12) together with the dual optimal solution �� = 1=2 isx� = (3=2; 0)T.156



�Di�erentiability properties of the dual fun
tionIn the �rst example, the Lagrangian dual fun
tion is di�erentiablesin
e x(�) is unique. The se
ond one shows that otherwise, there maybe kinks in the fun
tion q where there are alternative solutions x(�); as aresult, to obtain a primal optimal solution be
omes more 
omplex. TheDantzig{Wolfe algorithm, for example, represents a means by whi
h toautomatize the pro
ess that we have just shown; the algorithm generatesextreme points of X(�) algorithmi
ally, and 
onstru
ts the best feasible
onvex 
ombination thereof, obtaining a primal{dual optimal solution ina �nite number of iterations for linear programs.The above examples motivate a deeper study of the di�erentiabil-ity properties of 
onvex (or, 
on
ave) fun
tions in general, and the La-grangian dual obje
tive fun
tion in parti
ular.6.4 �Di�erentiability properties of the dualfun
tionWe have established that the Lagrangian dual problem (6.10) is a 
onvexone, and further that under some 
ir
umstan
es the primal and dualoptimal values are the same. We now turn to study the Lagrangian dualproblem in detail, and in parti
ular how it 
an be solved eÆ
iently. First,we will establish when the dual fun
tion q is di�erentiable. We will seethat di�erentiability holds only in some spe
ial 
ases, in whi
h we 
anre
ognize the workings of the Lagrange multiplier method; this 
lassi
method was illustrated in Example 6.14. Most often, the fun
tion q willhowever be non-di�erentiable, and then this method will fail. This meansthat we must devise a more general numeri
al method whi
h is not basedon gradients but rather subgradients. This type of algorithm is the topi
of the next se
tion; we begin by studying the topi
 of subgradients of
onvex fun
tions in general.6.4.1 Subdi�erentiability of 
onvex fun
tionsThroughout this se
tion we suppose that f : Rn ! R is a 
onvex fun
-tion, and study its subdi�erentiability properties. We will later on applyour �ndings to the Lagrangian dual fun
tion q, or, rather, its negative�q. We �rst remark that a �nite 
onvex fun
tion is automati
ally 
on-tinuous (
f. Theorem 4.26).De�nition 6.16 (subgradient) Let f : Rn ! R be a 
onvex fun
tion.We say that a ve
tor g 2 Rn is a subgradient of f at x 2 Rn iff(y) � f(x) + gT(y � x); y 2 Rn : (6.33)157



Lagrangian dualityThe set of su
h ve
tors g de�nes the subdi�erential of f at x, and isdenoted �f(x).For 
on
ave fun
tions, the reverse inequality of 
ourse holds; for sim-pli
ity we will refer also to su
h ve
tors g as subgradients.Noti
e the 
onne
tion to the 
hara
terization of a 
onvex fun
tion inC1 in Theorem 3.40(a). The di�eren
e between them is that g is notunique at a non-di�erentiable point. (Just as the gradient has a role insupporting hyperplanes to the graph of a 
onvex fun
tion in C1, the roleof a subgradient is the same; at a non-di�erentiable point there are morethen one supporting hyperplane to the graph of f .)We illustrate this in Figure 6.1.
PSfrag repla
ements f

xFigure 6.1: Three possible slopes of the 
onvex fun
tion f at x.Noti
e that a minimum x� of f over Rn is 
hara
terized by the in-
lusion 0n 2 �f(x�); re
ognize, again, the similarity to the C1 
ase.We list some additional basi
 results for 
onvex fun
tions next. Proofswill not be given here; we refer instead to the 
onvex analysis text byRo
kafellar [Ro
70℄.Proposition 6.17 (properties of a 
onvex fun
tion) Let f : Rn ! R bea 
onvex fun
tion.(a) [boundedness of �f(x)℄ For every x 2 Rn , �f(x) is a nonempty,
onvex, and 
ompa
t set. If X is bounded then [x2X �f(x) is bounded.(b) [
losedness of �f ℄ The subdi�erential mapping x 7!7! �f(x) is
losed; in other words, if fxkg is a sequen
e of ve
tors in Rn 
onvergingto x, and gk 2 �f(xk) holds for every k, then the sequen
e fgkg ofsubgradients is bounded and every limit point thereof belongs to �f(x).(
) [dire
tional derivative and di�erentiability℄ For every x 2 Rn , thedire
tional derivative of f at x in the dire
tion of p 2 Rn satis�esf 0(x;p) = maximumg2�f(x) gTp: (6.34)158



�Di�erentiability properties of the dual fun
tionIn parti
ular, f is di�erentiable at x with gradient rf(x) if and onlyif it has rf(x) as its unique subgradient at x; in that 
ase, f 0(x;p) =rf(x)Tp.(d) [Danskin's Theorem|dire
tional derivatives of a 
onvex max fun
-tion℄ Let Z be a 
ompa
t subset of Rm , and let � : Rn � Z ! R be
ontinuous and su
h that �(�; z) : Rn ! R is 
onvex for ea
h z 2 Z. Letthe fun
tion f : Rn ! R be given byf(x) := maximumz2Z �(x; z); x 2 Rn : (6.35)The fun
tion f then is 
onvex on Rn and has a dire
tional derivative atx in the dire
tion of p equal tof 0(x;p) = maximumz2Z(x) �0(x; z;p); (6.36)where �0(x; z;p) is the dire
tional derivative of �(�; z) at x in the dire
-tion of p, and Z(x) := f z 2 Rm j �(x; z) = f(x) g.In parti
ular, if Z(x) 
ontains a single point �z and �(�; �z) is di�eren-tiable at x, then f is di�erentiable at x, and rf(x) = rx�(x; �z), whererx�(x; �z) is the ve
tor with 
omponents ��(x ;�z)�xi , i = 1; : : : ; n.If further �(�; z) is di�erentiable for all z 2 Z and rx�(x; �) is 
on-tinuous on Z for ea
h x, then�f(x) = 
onv frx�(x; z) j z 2 Z(x) g; x 2 Rn :Proof. (a) This is a spe
ial 
ase of [Ro
70, Theorem 24.7℄.(b) This is [Ro
70, Theorem 24.5℄.(
) This is [Ro
70, Theorem 23.4 and 25.1℄.(d) This is [Ber99, Proposition B.25℄.Figure 6.2 illustrates the subdi�erential of a 
onvex fun
tion.We apply parts of the above results in order to 
hara
terize a mini-mum of a 
onvex fun
tion on Rn .Proposition 6.18 (optimality of a 
onvex fun
tion over Rn ) Let f :Rn ! R be a 
onvex fun
tion. The following three statements are equiv-alent:1. f is globally minimized at x� 2 Rn ;2. 0n 2 �f(x�);3. f 0(x�;p) � 0 for all p 2 Rn . 159



Lagrangian duality
PSfrag repla
ements
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x �f(x)

Figure 6.2: The subdi�erential of a 
onvex fun
tion f at x.Proof. We establish the result thus: 1 =) 2 =) 3 =) 1.[1 =) 2℄: By the statement 1., we have that f(y) � f(x�) forevery y 2 Rn . This implies that for g = 0n, we satisfy the subgradientinequality (6.33). This establishes the statement 2.[2 =) 3℄: We 
an equivalently write�f(x) = f g 2 Rn j gTp � f 0(x;p); p 2 Rn g:With g = 0n this de�nition immediately yields the statement 3.[3 =) 1℄: By the 
ompa
tness of the subdi�erential [
f. Propo-sition 6.17(a)℄ and Weierstrass' Theorem 4.6 the maximum in the ex-pression (6.34) is attained at some g 2 �f(x�). It follows that, in thesubgradient inequality (6.33), we get thatf(x� + p) � f(x�) + gTp � f(x�); p 2 Rn ;whi
h is equivalent to the statement 1.This result implies that a dire
tion p 2 Rn is a des
ent dire
tion withrespe
t to f at x if and only if f 0(x;p) < 0 holds. This result 
annotbe extended to non-
onvex fun
tions, even when the fun
tion f is in C1or even C2. [Take f(x) := x3; x = 0; p = �1; see also the dis
ussion onsaddle points in Example 11.2(b).℄160



�Di�erentiability properties of the dual fun
tion6.4.2 Di�erentiability of the Lagrangian dual fun
-tionWe 
onsider the inequality 
onstrained problem (6.4), where we makethe following standing assumption:f; gi (i = 1; : : : ;m) 2 C0; X is nonempty and 
ompa
t. (6.37)Under this assumption, the set of solutions to the Lagrangian subprob-lem, X(�) := argminimumx2X L(x;�); � 2 Rm ; (6.38)is nonempty and 
ompa
t for any 
hoi
e of dual ve
tor � by Weierstrass'Theorem 4.6. We �rst develop the subdi�erentiability properties of theasso
iated dual fun
tion q, stated in (6.9). The �rst result strengthensTheorem 6.4 under these additional assumptions.Proposition 6.19 (subdi�erentiability of the dual fun
tion) Suppose that,in the problem (6.4), the 
ompa
tness 
ondition (6.37) holds.(a) The dual fun
tion (6.9) is �nite, 
ontinuous and 
on
ave on Rm . Ifits supremum over Rm+ is attained, then the optimal solution set thereforeis 
losed and 
onvex.(b) The mapping � 7!7! X(�) is 
losed on Rm . If X(��) is the singletonset f�xg for some �� 2 Rm , and for some sequen
e Rm � f�kg ! ��,xk 2 X(�k) for all k, then fxkg ! �x.(
) Let � 2 Rm . If x 2 X(�), then g(x) is a subgradient to q at �,that is, g(x) 2 �q(�).(d) Let � 2 Rm . Then,�q(�) = 
onv f g(x) j x 2 X(�) g:The set �q(�) is 
onvex and 
ompa
t. Moreover, if U is a boundedset, then [�2U �q(�) is also bounded.(e) The dire
tional derivative of q at � 2 Rm in the dire
tion ofp 2 Rm is q0(�;p) = minimumg2�q(�) gTp:Proof. (a) Theorem 6.4 stated the 
on
avity of q on its e�e
tive domain.Weierstrass' Theorem 4.6 states that q is �nite on Rm , whi
h is thenalso its e�e
tive domain. The 
ontinuity of q follows from that of any�nite 
on
ave fun
tion, as we have already seen in Theorem 4.26. The
losedness property of the solution set is a dire
t 
onsequen
e of the
ontinuity of q (the upper level set then automati
ally is 
losed), and
omplements the result of Theorem 6.9(a). 161



Lagrangian duality(b) Let f�kg be a sequen
e of ve
tors in Rm 
onverging to ��, andlet xk 2 X(�k) be arbitrary. Let x be arbitrary in X , and let further�x 2 X be an arbitrary limit point of fxkg (at least one exists by the
ompa
tness of X). From the property that for all k,L(xk;�k) � L(x;�k);follows, by the 
ontinuity of L, that, in the limit of k in the subsequen
ein whi
h fxkg 
onverges to �x,L(�x; ��) � L(x; ��);so that �x 2 X(��), as desired. The spe
ial 
ase of a singleton set X(��)follows.(
) Let �� 2 Rm be arbitrary and let �x 2 X(��). We have thatq(��) = in�mumy2X L(y; ��) = f(x) + ��Tg(x)= f(x) + �Tg(x) + (��� �)Tg(x) � q(�) + (��� �)Tg(x);whi
h implies that g(x) 2 �q(�).(d) The in
lusion �q(�) � 
onv f g(x) j x 2 X(�) g follows from (
)and the 
onvexity of �q(�). The opposite in
lusion follows by applyingthe Separation Theorem 3.24.5(e) See Proposition 6.17(
).The result in (
) is an independent proof of the 
on
avity of q on Rm .The result (d) is parti
ularly interesting, be
ause by Carath�eodory'sTheorem 3.8 every subgradient of q at any point � is the 
onvex 
ombi-nation of a �nite number (in fa
t, at most m+1) of ve
tors of the formg(xs) with xs 2 X(�). Computationally, this has been utilized to deviseeÆ
ient (proximal) bundle methods for the Lagrangian dual problem aswell as to devise methods to re
over primal optimal solutions.Next, we establish the di�erentiability of the dual fun
tion underadditional assumptions.Proposition 6.20 (di�erentiability of the dual fun
tion) Suppose that, inthe problem (6.4), the 
ompa
tness 
ondition (6.37) holds.(a) Let � 2 Rm . The dual fun
tion q is di�erentiable at � if andonly if f g(x) j x 2 X(�) g is a singleton set, that is, if the value of theve
tor of 
onstraint fun
tions is invariant over the set of solutions X(�)to the Lagrangian subproblem. Then, we have thatrq(�) = g(x);5See [BSS93, Theorem 6.3.7℄ for a detailed proof.162



�Subgradient optimization methodsfor every x 2 X(�).(b) The result in (a) holds in parti
ular if the Lagrangian subproblemhas a unique solution, that is, X(�) is a singleton set. In parti
ular, thisproperty is satis�ed for � � 0m if further X is a 
onvex set, f is stri
tly
onvex on X , and gi (i = 1; : : : ;m) are 
onvex, in whi
h 
ase q 2 C1.Proof. (a) The 
on
ave fun
tion q is di�erentiable at the point � (whereit is �nite) if and only if its subdi�erential �q(�) there is a singleton, 
f.Proposition 6.17(
).(b) Under either one of the assumptions stated, X(�) is a singleton,when
e the result follows from (a). Uniqueness follows from the 
on-vexity of the feasible set and stri
t 
onvexity of the obje
tive fun
tion,a

ording to Proposition 4.10. That q 2 C1 follows from the 
ontinuityof g and Proposition 6.19(b).Proposition 6.21 (twi
e di�erentiability of the dual fun
tion) Suppose that,in the problem (6.4), X = Rn , and f and gi (i = 1; : : : ;m) are 
onvexfun
tions in C2. Suppose that, at � 2 Rm , the solution x to the La-grangian subproblem not only is unique, but also that the partial Hessianof the Lagrangian is positive de�nite at the pair (x;�), that is,r2xxL(x;�) is positive de�nite:Then, the dual fun
tion q is twi
e di�erentiable at �, withr2q(�) = �rg(x)T[r2xxL(x;�)℄�1rg(x):Proof. The result follows from the Impli
it Fun
tion Theorem, whi
his stated in Chapter 2, applied to the Lagrangian subproblem.66.5 �Subgradient optimization methodsWe begin by establishing the 
onvergen
e of 
lassi
 subgradient opti-mization methods as applied to a general 
onvex optimization problem.6.5.1 Convex problemsConsider the 
onvex optimization problem tominimizex f(x); (6.39a)subje
t to x 2 X; (6.39b)6See [Ber99, Pages 596{598℄ for a detailed analysis. 163



Lagrangian dualitywhere f : Rn ! R is 
onvex and the set X � Rn is nonempty, 
losedand 
onvex.The subgradient proje
tion algorithm is as follows: sele
t x0 2 X ,and for k = 0; 1; : : : generategk 2 �f(xk); (6.40a)xk+1 = ProjX (xk � �kgk); (6.40b)where the sequen
e f�kg is generated from one of the following threerules:The �rst rule is termed the divergent series step length rule, andrequires that�k > 0; k = 0; 1; : : : ; limk!1�k = 0; 1Xk=0�k = +1: (6.41)The se
ond rule adds to the requirements in (6.41) the square-summablerestri
tion 1Xk=0�2k < +1: (6.42)The 
onditions in (6.41) allow for 
onvergen
e to any point from anystarting point, sin
e the total step is in�nite, but 
onvergen
e is thereforealso quite slow; the additional 
ondition in (6.42) means fast sequen
esare sele
ted. An instan
e of the step length formulas whi
h satis�es both(6.41) and (6.42) is the following:�k = 
 + �=(k + 1); k = 0; 1; : : : ;where � > 0, 
 � 0.The third step length rule is�k = �k f(xk)� f�kgkk2 ; 0 < �1 � �k � 2� �2 < 2; (6.43)where f� is the optimal value of (6.39). We refer to this step length for-mula as the Polyak step, after the Russian mathemati
ian Boris Polyakwho invented the subgradient method in the 1960s together with Er-mol'ev and Shor.How is 
onvergen
e established for subgradient optimization meth-ods? As shall be demonstrated in Chapters 11 and 12 
onvergen
e ofalgorithms for problems with a di�erentiable obje
tive fun
tion is typi-
ally based on generating des
ent dire
tions, and step length rules thatresult in the sequen
e fxkg of iterates being stri
tly des
ending in the164



�Subgradient optimization methodsvalue of f . For the non-di�erentiable problem at hand, generating de-s
ent dire
tions is a diÆ
ult task, sin
e it is not true that the negative ofan arbitrarily 
hosen subgradient of f at a non-optimal ve
tor x de�nesa des
ent dire
tion.In bundle methods one gathers information from more than one sub-gradient (hen
e the term bundle) around a 
urrent iteration point sothat a des
ent dire
tion 
an be generated, followed by an inexa
t linesear
h. We 
on
entrate here on the simpler methodology of subgradientoptimization methods, in whi
h we apply the formula (6.40) where thestep length �k is 
hosen based on very simple rules.We establish below that if the step length is small enough, an itera-tion of the subgradient proje
tion method leads to a ve
tor that is 
loserto the set of optimal solutions. This te
hni
al result also motivates the
onstru
tion of the Polyak step length rule, and hen
e shows that the
onvergen
e of subgradient methods is based on the redu
tion of the Eu-
lidean distan
e to the optimal solutions rather than on the redu
tion ofthe value of the obje
tive fun
tion f .Proposition 6.22 (de
reasing distan
e to the optimal set) Suppose thatxk 2 X is not optimal in (6.39), and that xk+1 is given by (6.40) forsome step length �k > 0.Then, for every optimal solution x� in (6.39),kxk+1 � x�k < kxk � x�kholds for every step length �k in the interval�k 2 (0; 2[f(xk)� f�℄=kgkk2): (6.44)Proof. We have thatkxk+1 � x�k2 = kProjX (xk � �kgk)� x�k2= kProjX (xk � �kgk)� ProjX (x�)k2� kxk � �kgk � x�k2= kxk � x�k2 � 2�k(xk � x�)Tgk + �2kkgkk2� kxk � x�k2 � 2�k[f(xk)� f�℄ + �2kkgkk2< kxk � x�k2;where we have utilized the property that the Eu
lidean proje
tion is non-expansive (Theorem 4.31), the subgradient inequality (6.33) for 
onvex165



Lagrangian dualityfun
tions, and the bounds on �k given by (6.44).Our �rst 
onvergen
e result is based on the divergent series steplength formula (6.41), and establishes 
onvergen
e to the optimal solu-tion set X� under an assumption on its boundedness. With the othertwo step length formulas, this 
ondition will be possible to remove.Re
all the de�nition (3.11) of the minimum distan
e from a ve
tor toa 
losed and 
onvex set; our interest is in the distan
e from an arbitraryve
tor x 2 Rn to the solution set X�:distX� (x) := minimumy2X� ky � xk:Theorem 6.23 (
onvergen
e of subgradient optimization methods, I) Letfxkg be generated by the method (6.40), (6.41). If X� is bounded andthe sequen
e fgkg is bounded, then ff(xk)g ! f� and fdistX�(xk)g ! 0holds.Proof. We show that the iterates will eventually belong to an arbitrarilysmall neighbourhood of the set of optimal solutions to (6.39).Let Æ > 0 and BÆ := fx 2 Rn j kxk � Æ g. Sin
e f is 
onvex, X isnonempty, 
losed and 
onvex, andX� is bounded, it follows from [Ro
70,Theorem 27.2℄, applied to the lower semi-
ontinuous, proper7 and 
onvexfun
tion f + �X8 that there exists an " = "(Æ) > 0 su
h that the levelset fx 2 X j f(x) � f� + " g � X� + BÆ=2; this level set is denoted byX". Moreover, sin
e for all k, kgkk � supsfkgskg < 1, and f�kg ! 0,there exists an N(Æ) su
h that �kkgkk2 � " and �kkgkk � Æ=2 for allk � N(Æ).The sequel of the proof is based on indu
tion and is organized asfollows. In the �rst part, we show that there exists a �nite k(Æ) � N(Æ)su
h that xk(Æ) 2 X� + BÆ . In the se
ond part, we establish that if xkbelongs to X� + BÆ for some k � N(Æ) then so does xk+1, by showingthat either distX�(xk+1) < distX�(xk) holds, or xk 2 X" so that xk+1 2X� +BÆ sin
e the step taken is not longer than Æ=2.Let x� 2 X� be arbitrary. In every iteration k we then havekx� � xk+1k2 = kx� � ProjX (xk � �kgk)k2 (6.45a)� kx� � xk + �kgkk2 (6.45b)= kx� � xkk2 + �k �2gTk (x� � xk) + �k kgkk2� ; (6.45
)7A proper fun
tion is a fun
tion whi
h is �nite at least at some ve
tor and nowhereattains the value �1. See also Se
tion 1.4.8For any set S � Rn the fun
tion �S is the indi
ator fun
tion of the set S, thatis, �S(x) = 0 if x 2 S; and �S(x) = +1 if x 62 S. See also Se
tion 13.1.166



�Subgradient optimization methodswhere the inequality follows from the proje
tion property. Now, suppose2 gTs (x� � xs) + �s kgsk2 < �" (6.46)for all s � N(Æ). Then, using (6.45) repeatedly, we obtain that for anyk � N(Æ), kx� � xk+1k2 < 

x� � xN(Æ)

2 � " kXs=N(Æ)�s;and from (6.40) it follows that the right-hand side of this inequality tendsto minus in�nity as k !1, whi
h 
learly is impossible. Therefore,2 gTk (x� � xk) + �k kgkk2 � �" (6.47)for at least one k � N(Æ), say k = k(Æ). From the de�nition of N(Æ), itfollows that gTk(Æ)(x��xk(Æ)) � �". From the de�nition of a subgradient(
f. De�nition 6.16) we have that f(x�) � f(xk(Æ)) � gTk(Æ)(x� � xk(Æ)),sin
e x�;xk(Æ) 2 X . Hen
e, f(xk(Æ)) � f� + ", that is, xk(Æ) 2 X" �X� +BÆ=2 � X� +BÆ .Now, suppose that xk 2 X�+BÆ for some k � N(Æ). If (6.46) holdsfor s = k, then, by using (6.45), we have that kx� �xk+1k < kx� �xkkfor any x� 2 X�. Hen
e,distX�(xk+1) � kProjX� (xk)� xk+1k < kProjX� (xk)� xkk= distX�(xk) � Æ:Thus, xk+1 2 X�+BÆ. Otherwise, (6.47) must hold and, using the samearguments as above, we obtain that f(xk) � f� + ", i.e., xk 2 X" �x� +BÆ=2. Askxk+1 � xkk = kProjX (xk � �kgk)� xkk � kxk � �kgk � xkk= �k kgkk � Æ=2whenever k � N(Æ), it follows that xk+1 2 X�+BÆ=2+BÆ=2 = X�+BÆ.By indu
tion with respe
t to k � k(Æ), it follows that xk 2 X� +BÆfor all k � k(Æ). Sin
e this holds for arbitrarily small values of Æ > 0and f is 
ontinuous, the theorem follows.We next introdu
e the additional requirement (6.42); the resultingalgorithm's 
onvergen
e behaviour is now mu
h more favourable, andthe proof is at the same time less te
hni
al. 167



Lagrangian dualityTheorem 6.24 (
onvergen
e of subgradient optimization methods, II) Letfxkg be generated by the method (6.40), (6.41), (6.42). IfX� is nonemptyand the sequen
e fgkg is bounded, then ff(xk)g ! f� and fxkg ! x� 2X� holds.Proof. Let x� 2 X� and k � 1. Repeated appli
ation of (6.45) yieldskx� � xkk2 � kx� � x0k2 + 2 k�1Xs=0 �sgTs (x� � xs) + k�1Xs=0 �2s kgsk2 :(6.48)Sin
e x� 2 X� and gs 2 �f(xs) for all s � 0 we obtain thatf(xs) � f� � f(xs) + gTs (x� � xs) ; s � 0; (6.49)and hen
e that gTs (x� � xs) � 0 for all s � 0. De�ne 
 := supkfkgkkgand p = P1k=0 �2k, so that kgsk � 
 for any s � 0 and Pk�1s=0 �2s < p.From (6.48) we then 
on
lude that kx� � xkk2 < kx� � x0k2 + p
2 forany k � 1, and thus that the sequen
e fxkg is bounded.Assume now that there is no subsequen
e fxkig of fxkgwith fgTki(x��xki)g ! 0. Then there must exist an " > 0 with gTs (x� � xs) � �" forall suÆ
iently large values of s. From (6.48) and the 
onditions on thestep lengths it follows that fkx��xskg ! �1, whi
h 
learly is impossi-ble. The sequen
e fxkgmust therefore 
ontain a subsequen
e fxkig su
hthat fgTki(x� � xki)g ! 0. From (6.49) it follows that ff(xki)g ! f�.The boundedness of fxkg implies the existen
e of an a

umulation pointof the subsequen
e fxkig, say x1. From the 
ontinuity of f it followsthat x1 2 X�.To show that x1 is the only a

umulation point of fxkg, let Æ > 0and 
hoose an M(Æ) su
h that kx1�xM(Æ)k2 � Æ=2 andP1s=M(Æ) �2s �Æ=(2
2). Consider any k > M(Æ). Analogously to the derivation of(6.48), and using (6.49), we then obtain thatkx1 � xkk2 � 

x1 � xM(Æ)

2 + k�1Xs=M(Æ)�2skgsk2 < Æ2 + Æ2
2 
2 = Æ:Sin
e this holds for arbitrarily small values of Æ > 0, we are done.Note that the boundedness 
ondition on fgkg is ful�lled wheneverwe know before-hand that the sequen
e fxkg is bounded, su
h as in the
ase when X itself is bounded; 
f. Proposition 6.17(a).We �nally present the even stronger 
onvergen
e properties of thesubgradient proje
tion method using the Polyak step.168



�Subgradient optimization methodsTheorem 6.25 (
onvergen
e of subgradient optimization methods, III) Letfxkg be generated by the method (6.40), (6.43). If X� is nonempty thenff(xk)g ! f� and fxkg ! x� 2 X� holds.Proof. From Proposition 6.22 follows that the sequen
e fkxk � x�kgis stri
tly de
reasing for every x� 2 X�, and therefore has a limit. By
onstru
tion of the step length, in whi
h the step lengths are boundedaway from zero and 2[f(xk) � f�℄=kgkk2, it follows from the proof ofProposition 6.22 that f[f(xk)� f�℄2=kgkk2g ! 0 must hold. Sin
e fgkgmust be bounded due to the boundedness of fxkg [Proposition 6.17(a)℄,we have that ff(xk)g ! f�. Further, fxkg is bounded, and due to the
ontinuity property of f every limit point must then belong to X�.It remains to show that there 
an be only one limit point. Thisproperty follows from the monotone de
rease of the distan
e kxk �x�k.In detail, the proof is as follows. Suppose two subsequen
es of fxkgexist, su
h that they 
onverge to two di�erent ve
tors in X�:fxmig ! x�1; fxlig ! x�2; x�1 6= x�2:We must then have fkxli � x�1kg ! � > 0. Sin
e x�1 2 X� and thedistan
e to X� is de
reasing, fkxk � x�1kg ! � holds, and in parti
ularfkxmi � x�1kg ! �, whi
h is a 
ontradi
tion.Contrary to the slow 
onvergen
e of the subgradient proje
tion al-gorithms that rely on the divergent series step length rule, under addi-tional 
onditions on the fun
tion f a subgradient algorithm based on thePolyak step length (6.43) is geometri
ally 
onvergent, in the sense thatthere exist 
 > 0 and � 2 (0; 1) withkxk � x�k � 
�k; k = 0; 1; : : : :See Se
tion 6.9 for referen
es to other subgradient algorithms than thosepresented here.6.5.2 Appli
ation to the Lagrangian dual problemWe remind ourselves that the Lagrangian dual problem is a 
on
avemaximization problem, and that the appearan
e of the dual fun
tion issimilar to that of the following example:Let h(x) := minimum fh1(x); h2(x)g, where h1(x) := 4 � jxj andh2(x) := 4� (x� 2)2. Then,h(x) = (4� x; if 1 � x � 4;4� (x� 2)2 if x � 1; x � 4; 169



Lagrangian duality
Figure 6.3: A 
onvex min-fun
tion with three pie
es.
f. Figure 6.3.The fun
tion h is non-di�erentiable at x = 1 and x = 4, sin
e itsgraph has non-unique supporting hyperplanes there:�h(x) = 8>>>>>><>>>>>>:f4� 2xg; if x < 1;[�1; 2℄ ; if x = 1;f�1g; if 1 < x < 4;[�4;�1℄ ; if x = 4;f4� 2xg; if x > 4:the subdi�erential is here either a singleton (at di�erentiable points) ora 
losed interval (at non-di�erentiable points).Note the monotoni
ally de
reasing nature of the relation x 7! �h(x).Note also that 0 2 �h(1), when
e x� = 1 de�nes a maximum over R.Now, let g 2 �q(��), and let U� be the set of optimal solutions to(6.10). Then, U� � f� 2 Rm j gT(�� ��) � 0 g:In other words, any subgradient de�nes a half-spa
e that 
ontains theset of optimal solutions; 
f. Figure 6.4. We therefore know that a smallenough step in the dire
tion of a subgradient gets us 
loser to the set ofoptimal solutions; 
f. Proposition 6.22. But again 
onsider Figure 6.4:an arbitrary subgradient, like the on depi
ted, may not de�ne an as
entdire
tion! As we saw in the previous se
tion, 
onvergen
e must be basedon other arguments, like the de
reasing distan
e to U� alluded to aboveand in the previous se
tion. In the next subse
tion we dis
uss in briefthe generation of as
ent dire
tions.We 
onsider the Lagrangian dual problem (6.10). We suppose, asin the previous se
tion, that X is 
ompa
t so that the in�mum in (6.9)is attained for every � � 0m (whi
h is the set over whi
h we wish tomaximize q) and q is real-valued over Rm+ .170



�Subgradient optimization methodsPSfrag repla
ements
12345 q

g ��q(�)Figure 6.4: The half-spa
e de�ned by the subgradient g of q at �. Notethat the subgradient is not an as
ent dire
tion.In the 
ase of our spe
ial 
on
ave maximization problem, the iterationhas the form �k+1 = ProjRm+ [�k + �kgk℄ = [�k + �kgk℄+= (maximum f0; (�k)i + �k(gk)ig)mi=1; (6.50)where gk 2 �q(�k) is arbitrarily 
hosen; we would typi
ally use gk =g(xk), where xk 2 argminimumx2X L(x;�k). The proje
tion operationonto the �rst orthant is, as we 
an see, very simple.Repla
ing the Polyak step (6.43) with the 
orresponding dual form�k = �k q� � q(�k)kgkk2 ; 0 < �1 � �k � 2� �2 < 2; (6.51)
onvergen
e will now be a simple 
onsequen
e of the above theorems.The 
ompa
tness 
ondition (6.37) and the fa
t that the feasible set of(6.4) is nonempty ensure that the problem (6.4) has an optimal solution;in parti
ular, the feasibility 
ondition (6.5) then holds. Further, if weintrodu
e the Slater 
ondition (6.16), we are ensured that there is noduality gap, and that the dual problem (6.10) has a 
ompa
t set U�of optimal solutions. Under these assumptions, we have the followingresults for subgradient optimization methods.Theorem 6.26 (
onvergen
e of subgradient optimization methods) Supposethat the problem (6.4) is feasible, and that the 
ompa
tness 
ondition(6.37) and the Slater 
ondition (6.16) hold. 171



Lagrangian duality(a) Let f�kg be generated by the method (6.50), (6.41). Then,fq(�k)g ! q�, and fdistU�(�k)g ! 0.(b) Let f�kg be generated by the method (6.50), (6.41), (6.42). Then,f�kg 
onverges to an optimal solution to (6.10).(
) Let f�kg be generated by the method (6.50), (6.51). Then, f�kg
onverges to an optimal solution to (6.10).Proof. The results follow from Theorems 6.23, 6.24, and 6.25, respe
-tively. Note that in the �rst two 
ases, boundedness 
onditions wereassumed for X� and the sequen
e of subgradients. The 
orresponding
onditions for the Lagrangian dual problem are ful�lled under the CQsimposed, sin
e they imply that the sear
h for an optimal solution is doneover a 
ompa
t set; 
f. Theorem 6.9(a) and its proof.6.5.3 The generation of as
ent dire
tionsProposition 6.18 shows that the existen
e of a des
ent dire
tion withrespe
t to the 
onvex fun
tion f : Rn ! R at some �x 2 Rn hinges onthe existen
e of some ve
tor �p 2 Rn su
h that f 0(�x; �p) < 0. A

ordingto the de�nition of the dire
tional derivative and the 
ompa
tness of�f(�x), this is equivalent to the statement that gT�p � " < 0 for everyg 2 �f(�x). In the 
ontext of Lagrangian duality we show below how we
an generate an as
ent dire
tions for q at some � 2 Rm .De�nition 6.27 (steepest as
ent dire
tion) Suppose that the problem(6.4) is feasible, and that the 
ompa
tness 
ondition (6.37) holds. Con-sider the Lagrangian dual problem (6.10), and let � 2 Rm . A ve
tor�p 2 Rm is a steepest as
ent dire
tion ifq0(�; �p) = maximumkpk�1 q0(�;p)holds.Proposition 6.28 (the shortest subgradient yields the steepest as
ent di-re
tion) Suppose that the problem (6.4) is feasible, and that the 
om-pa
tness 
ondition (6.37) holds. Consider the Lagrangian dual problem(6.10). The dire
tion �p of steepest as
ent with respe
t to q at � is givenbelow, where �g 2 �q(�) is the shortest subgradient in �q(�) with respe
tto the Eu
lidean norm: �p = (0m; if �g = 0m;�gk�gk ; if �g 6= 0m:172



�Obtaining a primal solutionProof. By De�nition 6.27 and Proposition 6.19(e), the following stringof equalities and inequalities 
an easily be veri�ed:maximumkpk�1 q0(�;p) = maximumkpk�1 in�mumg2�q(�) gTp� in�mumg2�q(�) maximumkpk�1 gTp= in�mumg2�q(�) kgk= k�gk: (6.52)If we 
an 
onstru
t a dire
tion �p su
h that q0(�; �p) = k�gk then by (6.52)�p is the steepest as
ent dire
tion. If �g = 0m then for �p = 0m weobviously have that q0(�; �p) = k�gk. Suppose then that �p 6= 0m, and let�p := �g=k�gk. Note thatq0(�;p) = in�mumg2�q(�) gT�p = in�mumg2�q(�) �gTgkgk= 1kgk in�mumg2�q(�) �k�gk2 + �gT(g � �g)	= k�gk+ 1kgk in�mumg2�q(�) �gT(g � �g): (6.53)Sin
e �g is the shortest ve
tor in �q(�), then, by the variational inequality
hara
terization of the proje
tion of 0m onto �q(�) established in The-orem 4.23, we obtain that �gT(g � �g) � 0 for every g 2 �q(�). Hen
e,in�mumg2�q(�) �gT(g � �g) = 0 is a
hieved at �g. From (6.53) it then fol-lows that q0(�; �p) = k�gk. We are done.6.6 �Obtaining a primal solutionIt remains for us to show how an optimal dual solution �� 
an be trans-lated into an optimal primal solution x�. Obviously, 
onvexity andstrong duality will be needed in general, if we are to be able to utilizethe primal{dual optimality 
hara
terization in Theorem 6.7. It turnsout that the generation of a primal optimum is automati
 if q is dif-ferentiable at ��, whi
h is also the 
ondition under whi
h the famousLagrange multiplier method works. Unfortunately, in many 
ases, su
has for most non-stri
tly 
onvex optimization problems (like linear pro-gramming), this will not be the 
ase, and then the translation workbe
omes more 
omplex.We start with the ideal 
ase. 173



Lagrangian duality6.6.1 Di�erentiability at the optimal solutionThe following results summarize the optimality 
onditions for the La-grangian dual problem (6.10), and their 
onsequen
es for the availabilityof a primal optimal solution in the absen
e of a duality gap.Proposition 6.29 (optimality 
onditions for the dual problem) Suppose that,in the problem (6.4), the 
ompa
tness 
ondition (6.37) holds. Supposefurther that the Lagrangian dual problem has an optimal solution, ��.(a) The dual optimal solution is 
hara
terized by the in
lusion0m 2 ��q(��) +NRm+ (��): (6.54)In other words, there then exists 
� 2 �q(��)|an optimality-
hara
terizingsubgradient of q at ��|su
h that0m � �� ? 
� � 0m: (6.55)There exists a �nite set of solutions xi 2 X(��) (i = 1; : : : ; k) wherek � m+ 1 su
h that
� = kXi=1 �ig(xi); kXi=1 �i = 1; �i � 0; i = 1; : : : ; k: (6.56)Hen
e, we have thatkXi=1 �i��i gi(xi) = 0; j = 1; : : : ;m: (6.57)(b) If there is a duality gap, then q is non-di�erentiable at ��.(
) If q is di�erentiable at ��, then there is no duality gap. Further,any ve
tor in X(��) then solves the primal problem (6.4).Proof. (a) The �rst result is a dire
t statement of the optimality 
ondi-tions of the 
onvex and subdi�erentiable program (6.10); the 
omplemen-tarity 
onditions in (6.55) are an equivalent statement of the in
lusionin (6.54).The se
ond result is an appli
ation of Carath�eodory's Theorem 3.8to the 
ompa
t and 
onvex set �q(��).(b) The result is established on
e (
) is.(
) Let �x be any ve
tor in X(��) for whi
h rq(��) = g(�x) holds, 
f.Proposition 6.20(a). We obtain from (6.55) that0m � �� ? g(�x) � 0m:Hen
e, the pair (�; �x) ful�lls all the 
onditions stated in (6.12), so that,by Theorem 6.7, �x is an optimal solution to (6.4).174



�Obtaining a primal solutionRemark 6.30 (the non-
oordinability phenomenon and de
omposition al-gorithms) Many interesting problems do not 
omply with the 
onditionsin (
); for example, linear programming is one where the Lagrangiandual problem often is non-di�erentiable at every dual optimal solu-tion.9 This is sometimes 
alled the non-
oordinability phenomenon (
f.[Las70, DiJ79℄). It was in order to 
ope with this phenomenon thatDantzig{Wolfe de
omposition ([DaW60, Las70℄) and other 
olumn gen-eration algorithms, Benders de
omposition ([Ben62, Las70℄) and general-ized linear programming were developed; noti
ing that the 
onvex 
om-bination of a �nite number of 
andidate primal solutions are suÆ
ient toverify an optimal primal{dual solution [
f. (6.57)℄, methodologies weredeveloped to generate those ve
tors algorithmi
ally. See also [LPS99℄for overviews on the subje
t of generating primal optimal solutions fromdual optimal ones, and [BSS93, Theorem 6.5.2℄ for an LP pro
edure thatprovides primal feasible solutions for 
onvex programs.Note that the equation (6.57) in (a) redu
es to the 
omplementar-ity 
ondition that ��i gi(�x) = 0 holds, for the averaged solution, �x :=Pki=1 �ixi, whenever all the fun
tions gi are aÆne.6.6.2 Everett's TheoremThe next result shows that the solution to the Lagrangian subproblemsolves a perturbed version of the original problem. We state the resultfor the general problem to �ndf� := in�mumx f(x); (6.58)subje
t to x 2 X;gi(x) � 0; i = 1; : : : ;m;hj(x) = 0; j = 1; : : : ; `;where f : Rn ! R, gi : Rn ! R (i = 1; 2; : : : ;m), and hj : Rn ! R(j = 1; 2; : : : ; `) are given fun
tions, and X � Rn .Theorem 6.31 (Everett's Theorem) Let (�;�) 2 Rm+ � R` . Considerthe Lagrangian subproblem tominimizex2X nf(x) + �Tg(x) + �Th(x)o : (6.59)Suppose that �x is an optimal solution to this problem, and let I(�) �f1; : : : ;mg denote the set of indi
es i for whi
h �i > 0.9In other words, even if a Lagrange multiplier ve
tor is known, the Lagrangiansubproblem may not identify a primal optimal solution. 175



Lagrangian duality(a) �x is an optimal solution to the perturbed primal problem tominimizex f(x); (6.60)subje
t to x 2 X;gi(x) � gi(�x); i 2 I(�x);hj(x) = hj(�x); j = 1; : : : ; `:(b) If �x is feasible in (6.58) and �Tg(�x) = 0 holds, then �x solves(6.58), and the pair (�;�) then solves the Lagrangian dual problem.Proof. (a) The proof pro
eeds by showing that the triple (�x;�;�) isa saddle point of the fun
tion (x;�;�) 7! f(x) + �T[g(x) � g(�x)℄ +�T[h(x)� h(�x)℄ over X � Rm+ � R` .Let x satisfy the 
onstraints of (6.60). Sin
e we have that h(x) =h(�x) and �Tg(x) � �Tg(�x), the optimality of �x in (6.59) yieldsf(x) + �Tg(�x) + �Th(�x) � f(x) + �Tg(x) + �Th(x)� f(�x) + �Tg(�x) + �Th(�x);whi
h shows that f(x) � f(�x). We are done.(b) �Tg(�x) = 0 implies that gi(�x) = 0 for i 2 I(�); from (a) �x solvesthe problem to minimizex f(x); (6.61)subje
t to x 2 X;gi(x) � 0; i 2 I(�x);hj(x) = 0; j = 1; : : : ; `:In parti
ular, then, sin
e the feasible set of (6.58) is 
ontained in thatof (6.61) and �x is feasible in the former, �x must also solve (6.58). Thatthe pair (�;�) solves the dual problem follows by the equality betweenthe primal and dual obje
tive fun
tions at (�x;�;�), and weak duality.One important 
onsequen
e of the result is that if the right-hand sideperturbations gi(�x) and hi(�x) all are 
lose to zero, the ve
tor �x beingnear-feasible might mean that it is in fa
t a

eptable as an approximatesolution to the original problem. (This interpretation hinges on thedualized 
onstraints being soft 
onstraints, in the sense that a smallviolation is a

eptable. See Se
tion 1.8 for an introdu
tion to the topi
of soft 
onstraints.)176



�Sensitivity analysis6.7 �Sensitivity analysis6.7.1 Analysis for 
onvex problemsConsider the inequality 
onstrained 
onvex program (6.4), where f :Rn ! R and gi (i = 1; : : : ;m) are 
onvex fun
tions and X � Rn isa 
onvex set. Suppose that the problem (6.4) is feasible, and that the
ompa
tness 
ondition (6.37) and Slater 
ondition (6.16) hold. This isthe 
lassi
 
ase where there exist multiplier ve
tors ��, a

ording toTheorem 6.9, and strong duality holds.For 
ertain types of problems where the duality gap is zero and wherethere exist primal{dual optimal solutions, we have a

ess to a beautifultheory of sensitivity analysis. The 
lassi
 meaning of the term is theanswer to the following question: what is the rate of 
hange in f� whena 
onstraint right-hand side 
hanges? This question answers importantpra
ti
al questions, like the following in manufa
turing: If we buy oneunit of additional resour
e at a given pri
e, or if the demand of a produ
tthat we sell in
reases by a 
ertain amount, then how mu
h additionalpro�t do we make?We will here provide a basi
 result whi
h states when this sensitivityanalysis of the optimal obje
tive value 
an be performed for the problem(6.4), and establish that the answer is determined pre
isely by the valueof the Lagrange multiplier ve
tor ��, provided that it is unique.De�nition 6.32 (perturbation fun
tion) Consider the fun
tion p : Rm !R [ f�1g de�ned byp(u) := in�mumx f(x); (6.62)subje
t to x 2 X;gi(x) � ui; i = 1; : : : ;m; u 2 Rm ; (6.63)it is 
alled the perturbation fun
tion, or primal fun
tion, asso
iated withthe problem (6.4). Its e�e
tive domain is the set P := fu 2 Rm j p(u) <+1g.Under the above 
onvexity 
onditions, we 
an establish that p is a
onvex fun
tion. Indeed, it holds that for any value of the Lagrange177



Lagrangian dualitymultiplier ve
tor �� for the problem (6.4) thatq(��) = in�mumx2X ff(x) + (��)Tg(x)g= in�mumf (u;x)2P�Xjg(x)�u g ff(x) + (��)Tg(x)g= in�mumf (u;x)2P�Xjg(x)�u g ff(x) + (��)Tug= in�mumu2P in�mumfx2Xjg(x)�u g ff(x) + (��)Tug:Sin
e �� is assumed to be a Lagrange multiplier ve
tor, we have thatq(��) = f� = p(0m). By the de�nition of in�mum, then, we have thatp(0m) � p(u) + (��)Tu; u 2 Rm ;that is, ��� (noti
e the sign!) is a subgradient of p at u = 0m (seeDe�nition 6.16). Moreover, by the result in Proposition 6.17(
), p isdi�erentiable at 0m if and only if p is �nite in a neighbourhood of 0mand �� is a unique Lagrange multiplier ve
tor, that is, the Lagrangiandual problem (6.10) has a unique optimal solution. We have thereforeproved the following result:Proposition 6.33 (a sensitivity analysis result) Suppose that in the in-equality 
onstrained problem (6.4), f : Rn ! R and gi : Rn ! R(i = 1; : : : ;m) are 
onvex fun
tions and X � Rn is a 
onvex set. Sup-pose that the problem (6.4) is feasible, and that the 
ompa
tness as-sumption (6.37) and Slater 
ondition (6.16) hold. Suppose further thatthe perturbed problem de�ned in (6.62) has an optimal solution in aneighbourhood of u = 0m, and that on the set of primal{dual optimalsolutions to (6.4){(6.10), the dual optimal solution �� is unique. Then,the perturbation fun
tion p is di�erentiable at u = 0m, andrp(0m) = ���holds.It is intuitive that the sign of rp(0m) should be non-positive; if aright-hand side of the (less-than) inequality 
onstraints in (6.4) in
reases,then the feasible set be
omes larger. [This means that we might be ableto �nd feasible ve
tors x in the new problem with f(x) < f�, wheref� = p(0) is the optimal value of the minimization problem (6.4).℄The result spe
ializes immediately to linear programming problems,whi
h is the problem type where this type of analysis is most oftenutilized. The proof of di�erentiability of the perturbation fun
tion atzero for that spe
ial 
ase 
an however be done mu
h more simply. (SeeSe
tion 10.3.1.)178



�Sensitivity analysis6.7.2 Analysis for di�erentiable problemsThere exist lo
al versions of the analysis valid also for non-
onvex prob-lems, where we are interested in the e�e
t of a problem perturbationon a KKT point. A spe
ial su
h analysis was re
ently performed byBertsekas [Ber04℄, in whi
h he shows that even when the problem isnon-
onvex and the set of Lagrange multipliers are not unique, a sensi-tivity analysis is available as long as data is di�erentiable. Suppose thenthat in the problem (6.4) the fun
tions f and gi, i = 1; : : : ;m are inC1 and that X is nonempty. We generalize the 
on
ept of a Lagrangemultiplier ve
tor to here mean that it is a ve
tor �� asso
iated with alo
al minimum x� su
h that rf(x�) + mXi=1 ��irgi(x�)!T p � 0; p 2 TX(x�); (6.64a)��i � 0; i = 1; : : : ;m; (6.64b)��i = 0; i 62 I(x�); (6.64
)where TX(x�) is the tangent 
one to X at x� (
f. De�nition 5.2). Notethat under an appropriate CQ this is equivalent to the KKT 
onditions,in whi
h 
ase we are simply requiring here that x� is a lo
al minimum.In the below result we utilize the notationg+i (x) := maximum f0; gi(x)g; i = 1; : : : ;m;and let g+(x) be the m-ve
tor of elements g+i (x), i = 1; : : : ;m.Theorem 6.34 (sensitivity from the minimum norm multiplier ve
tor) Supposethat x� is a lo
al minimum in the problem (6.4), and that the set of La-grange multipliers is nonempty. Let �� denote the Lagrange multiplierve
tor of minimum Eu
lidean norm. Then, for every sequen
e fxkg � Xof infeasible ve
tors su
h that fxkg ! x� we have thatf(x�)� f(xk) � k��k � kg+(xk)k+ o(kxk � x�k): (6.65)Furthermore, if �� 6= 0m and TX(x�) is 
onvex, the above inequalityis sharp in the sense that there exists a sequen
e of infeasible ve
torsfxkg � X su
h that limk!1 f(x�)� f(xk)kg+(xk)k = k��k;and for this sequen
elimk!1 g+i (xk)kg+(xk)k = ��ik��k ; i = 1; : : : ;m; 179



Lagrangian dualityholds.Theorem 6.34 establishes the optimal rate of 
ost improvement withrespe
t to infeasible 
onstraint perturbations (in e�e
t, those that implyan enlargement of the feasible set).We �nally remark that under stronger 
onditions still, even the op-timal solution x� is di�erentiable. Su
h a result is reminis
ent to theImpli
it Fun
tion Theorem, whi
h however only 
overs equality systems.If we are to study the sensitivity of x� to 
hanges in the right-hand sidesof inequality 
onstraints as well, then the analysis be
omes 
ompli
ateddue to the fa
t that we must be able to predi
t if some a
tive 
onstraintsmay be
ome ina
tive in the pro
ess. In some 
ir
umstan
es, di�erent di-re
tions of 
hange in the right-hand sides may 
ause di�erent subsets ofthe a
tive 
onstraints I(x�) at x� to be
ome ina
tive, and this wouldmost probably then be a non-di�erentiable point. A suÆ
ient 
ondition(but not ne
essary, at least in the 
ase of linear 
onstraints) for this tonot happen is when x� is stri
tly 
omplementary, that is, when thereexists a multiplier ve
tor �� with ��i > 0 for every i 2 I(x�).6.8 Appli
ationsWe provide two example appli
ations of Lagrangian duality. The �rstdes
ribes the primal{dual relationship between 
urrents and voltages inan ele
tri
al network of devi
es (voltage sour
es, diodes, and resistors);this appli
ation illustrates that Lagrange multipliers often have dire
tinterpretations. The se
ond appli
ation 
on
erns a 
lassi
 
ombinatorialoptimization problem: the traveling salesman problem. We show howto approximately solve this problem through Lagrangian relaxation andsubgradient optimization.6.8.1 Ele
tri
al networksAn ele
tri
al network (or, 
ir
uit) is an inter
onne
tion of analog ele
-tri
al elements su
h as resistors, indu
tors, 
apa
itors, diodes, and tran-sistors. Its size varies from the smallest integrated 
ir
uit to an entireele
tri
ity distribution network. A 
ir
uit is a network that has at leastone 
losed loop. A network is a 
onne
tion of 2 or more simple 
ir
uitelements, and may not be a 
ir
uit. The goal when designing ele
tri
alnetworks for signal pro
essing is to apply a prede�ned operation on po-tential di�eren
es (measured in volts) or 
urrents (measured in amperes).Typi
al fun
tions for these ele
tri
al networks are ampli�
ation, os
il-lation and analog linear algorithmi
 operations su
h as addition, sub-tra
tion, multipli
ation, and division. In the 
ase of power distribution180



Appli
ationsnetworks, engineers design the 
ir
uit to transport energy as eÆ
ientlyas possible while at the same time taking into a

ount e
onomi
 fa
tors,network safety and redundan
y. These networks use 
omponents su
has power lines, 
ables, 
ir
uit breakers, swit
hes and transformers.To design any ele
tri
al 
ir
uits, ele
tri
al engineers need to be ableto predi
t the voltages and 
urrents in the 
ir
uit. Linear 
ir
uits (thatis, an ele
tri
al network where all elements have a linear 
urrent{voltagerelation) 
an be quite easily analyzed through the use of 
omplex num-bers and systems of linear equations,10 while nonlinear elements requirea more sophisti
ated analysis. The 
lassi
 ele
tri
al laws des
ribingthe equilibrium state of an ele
tri
al network are due to G. Kir
hho�[Kir1847℄; referred to as Kir
hho�'s 
ir
uit laws they express in a math-emati
al form the 
onservation of 
harge and energy.11Formally, we let an ele
tri
al 
ir
uit be des
ribed by bran
hes (or,links) 
onne
ting nodes. We present a simple example where the onlydevi
es are voltage sour
es, resistors, and diodes. The resulting equi-librium 
onditions will be shown to be represented as the solution to astri
tly 
onvex quadrati
 program. In general, devi
es su
h as resistors
an be non-linear, but linearity is assumed throughout this se
tion.� A voltage sour
e maintains a 
onstant bran
h voltage vs irrespe
-tive of the bran
h 
urrent 
s. The power absorbed by the devi
eis �vs
s.� A diode permits the bran
h 
urrent 
d to 
ow in one dire
tion only,but 
onsumes no power regardless of the 
urrent or voltage on thebran
h. Denoting the bran
h voltage by vd, the dire
tion 
ondition
an be stated as a 
omplementarity 
ondition:
d � 0; vd � 0; vd
d = 0: (6.66)� A resistor 
onsumes power in relation with its resistan
e, denotedby Rr. We re
ognize the following law des
ribing the relationshipbetween the bran
h 
urrent and voltage in a linear resistor:vr = �Rr
r: (6.67)The power 
onsumed is given by�vr
r = v2rRr = Rr
2r; (6.68)where we have utilized (6.67) to derive two alternative relations.10For su
h networks already Maxwell [Max1865℄ had stated equilibrium 
onditions.11These laws 
an be derived from Maxwell's equations, but Kir
hho� pre
ededMaxwell and derived his equations from work done by G. Ohm. 181



Lagrangian dualityWe must be 
areful about the dire
tion of 
ow of 
urrents and volt-ages, and thus de�ne, for ea
h type of devi
e, a node{bran
h in
iden
ematrix of the formnij := 8><>:�1; if bran
h j has node i as its origin;1; if bran
h j ends in node i;0; otherwise:The interpretation of a 
urrent 
ow variable is that the dire
tion isfrom the negative to the positive terminal of the devi
e, that is, fromthe origin to the ending node of the bran
h; a negative variable valuewill therefore 
orrespond to a 
ow in the opposite dire
tion. Note thatfor the diodes, the latter is not allowed, as seen in (6.66).For the three types of devi
es we hen
e yield in
iden
e matri
esdenoted by NS , NR, and ND, 
reating a partitioned matrix N =[NSNDNR℄. Similarly, we let 
 = (
TS ; 
TD ; 
TR)T and v = (vTS ;vTD;vTR)Trepresent the ve
tors of bran
h 
urrents and voltages. We also let p =(pTS ;pTD;pTR)T denote the ve
tor of node potentials. Before stating theoptimization problem whose minimum des
ribes the equilibrium of thesystem, we re
all the two fundamental equilibrium laws:Kir
hho�'s 
urrent law: The sum of all 
urrents entering a node is equalto the sum of all 
urrents leaving the node. In other words, N
 = 0,or,12 NS
S +ND
D +NR
R = 0: (6.69)Kir
hho�'s voltage law: The di�eren
e between the node potentials atthe ends of ea
h bran
h is equal to the bran
h voltage. In other words,NTp = v, or,13 NTS p = vS ; (6.70a)NTDp = vD; (6.70b)NTRp = vR: (6.70
)We summarize the equations representing the 
hara
teristi
s of theele
tri
al devi
es as follows: For the diodes, (6.66) yieldsvD � 0; 
D � 0; vTD
D = 0: (6.71)For the resistors, (6.67) yieldsvR = �R
R; (6.72)12This law is also referred to as the �rst law, the point rule, the jun
tion rule, andthe node law.13This law is a 
orollary to Ohm's law, and is also referred to as the loop law.182



Appli
ationsR being the diagonal matrix with elements equal to the values Rr.Hen
e, (6.69){(6.72) represent the equilibrium 
onditions of the 
ir-
uit. We will now des
ribe the optimization problem whose optimality
onditions are, pre
isely, (6.69){(6.72) [note that vS is �xed℄:minimize 12
TRR
R � vTS
S ; (6.73)subje
t to NS
S +ND
D +NR
R = 0;�
D � 0:In the problem (6.73) we wish to determine bran
h 
urrents 
S , 
D,and 
R so as to minimize the sum of half the energy absorbed in the re-sistors and the energy loss of the voltage sour
e. Note the sign 
onditionon the diode 
urrents.Note that this is a 
onvex program with linear 
onstraints, and thusthe KKT 
onditions are both ne
essary and suÆ
ient for the global op-timality of the 
urrents. It is instrumental to 
he
k that the KKT 
ondi-tions for (6.73) are given by (6.69){(6.72), where the Lagrangemultipliersare given by (pT;vTD)T.In the dis
ussion terminating in the Strong Duality Theorem 6.13,we showed that the Lagrangian dual of a stri
tly 
onvex quadrati
 opti-mization problem is yet another 
onvex quadrati
 optimization problem.In our 
ase, following that development, we 
an derive the following dualoptimization problem in terms of the node potentials p (noti
e, again,that vS is �xed): maximize � 12vTRR�1vR; (6.74)subje
t to NTS p = vS ;NTDp� vD = 0;NTRp� vR = 0;vD � 0:In the dual problem (6.74) the matrix R�1 is the diagonal matrix of
ondu
tan
es. The obje
tive fun
tion is equivalent to the minimizationof the power absorbed by the resistors, and we wish to determine thebran
h voltages vD and vR, and the potential ve
tor p.Verify that the KKT 
onditions for this problem, again, redu
e tothe equilibrium 
onditions (6.69){(6.72). In other words, the Lagrangemultipliers for the dual problem (6.74) are the (primal) bran
h 
urrents.183



Lagrangian dualityFinally, let us note that by Theorem 6.13(a) the two problems (6.73)and (6.74) have the same obje
tive value at optimality. That is,12
TRR
R + 12vTRR�1
R � vTS
S = 0:By (6.71){(6.72), the above equation redu
es tovTS
S + vTD
D + vTR
R = 0;whi
h is pre
isely the prin
iple of energy 
onservation.6.8.2 A Lagrangian relaxation of the traveling sales-man problemLagrangian relaxation has shown to be remarkably eÆ
ient for some
ombinatorial optimization problems. This is surprising when takinginto a

ount that su
h problems are integer or mixed-integer problems,whi
h su�er from non-zero duality gaps in general. What then lies behindtheir popularity?� One 
an show that Lagrangian relaxation of an integer program isalways at least as good as that of a 
ontinuous relaxation14 (in thesense that the value of fR is higher for Lagrangian relaxation thanfor a 
ontinuous relaxation);� Together with heuristi
s for �nding primal feasible solution, goodfeasible solutions are often found;� The Lagrangian relaxed problems 
an be made 
omputationallymu
h simpler than the original problem, while still keeping a lotof the stru
ture of the original problem.6.8.2.1 The traveling salesman problemLet the graph G = (N ;L) be de�ned by a number of 
ities (or, nodes)i 2 N and undire
ted links in between subsets of pairs of them: (i; j) 2L � N �N . Noti
e that the links (i; j) and (j; i) are identi
al, and arein L represented by one non-dire
ted link only.Let 
ij denote the distan
e between the 
ities i and j, fi; jg � N .We introdu
e the following binary variables:xij := (1; if link (i; j) is part of the TSP tour;0; otherwise; (i; j) 2 L:14The 
ontinuous relaxation amounts to removing the integrality 
onditions, re-pla
ing, for example, xj 2 f0; 1g by xj 2 [0; 1℄.184



Appli
ationsWith these de�nitions, the undire
ted traveling salesman problem(TSP) is tominimizex X(i;j)2L 
ijxij ; (6.75a)subje
t to X(i;j)2L:fi;jg�S xij � jSj � 1; S � N ; (6.75b)X(i;j)2Lxij = n; (6.75
)Xi2N :(i;j)2L xij = 2; j 2 N ; (6.75d)xij 2 f0; 1g; (i; j) 2 L: (6.75e)The 
onstraints have the following interpretation: (6.75b) impliesthat there 
an be no sub-tours, that is, a tour where fewer than n 
itiesare visited (if S � N then there 
an be at most jSj � 1 links betweennodes in the set S, where jSj is the 
ardinality{number of members{ofthe set S); (6.75
) implies that in total n 
ities must be visited; and(6.75d) implies that ea
h 
ity is 
onne
ted to two others, su
h that wemake sure to arrive from one 
ity and leave for the next.This problem is NP-hard, whi
h implies that there is no knownpolynomial algorithm for solving it. We resort therefore to the useof relaxation te
hniques, in parti
ular Lagrangian relaxation. We havemore than one alternative relaxation to perform: If we Lagrangian re-lax the tree 
onstraints (6.75b) and (6.75
) the remaining problem is a2-mat
hing problem; it 
an be solved in polynomial time. If we insteadLagrangian relax the degree 
onstraints (6.75d) for every node ex
ept forone node the remaining problem is a 1-MST problem, that is, a spe
ialtype of minimum spanning tree problem.The following de�nition is 
lassi
: a Hamiltonian path (respe
tively,
y
le) is a path (respe
tively, 
y
le) whi
h passes every node in the graphexa
tly on
e. Every Hamiltonian 
y
le is a Hamiltonian path from a nodes to another node, t, followed by a link (t; s); a subgraph whi
h 
onsistsof a spanning tree plus an extra link su
h that all nodes have degree two.This is then a feasible solution to the TSP.A 1-MST problem is the problem to �nd an MST in the graph thatex
ludes node s, followed by the addition of the two least expensive linksfrom node s to that tree. If all nodes happen to get degree two, thenthe 1-MST solution is a traveling salesman tour (that is, a Hamiltonian
y
le). The idea behind solving the Lagrangian dual problem is thento �nd proper multiplier values su
h that the Lagrangian relaxation willprodu
e feasible solutions. 185



Lagrangian duality6.8.2.2 Lagrangian relaxation of the traveling salesman prob-lemSuppose that we Lagrangian relax the degree 
onstraints (3), ex
ept fornode 1. We assume that the starting node for the trip, node s 2 N , andall the links in L 
onne
ted to it, have been removed temporarily (inthe 1-MST, this data is re-introdu
ed later), but without 
hanging thenotation to re
e
t this.The subproblem is the following: a 1-MST de�ned byq(�) = minimumx X(i;j)2L 
ijxij +Xj2N �j 0�2� Xi2N :(i;j)2Lxij1A= 2Xj2N �j +minimumx X(i;j)2L(
ij � �i � �j)xij :We see immediately the role of the Lagrange multipliers: a high (low)value of the multiplier �j makes node j attra
tive (unattra
tive) in theabove 1-MST problem, and will therefore lead to more (less) links beingatta
hed to it.When solving the Lagrangian dual problem, we will use the 
lassof subgradient optimization methods, an overview of whi
h is found inSe
tion 6.5.What is the updating step in the subgradient method, and what is itsinterpretation? It is as usual an update in the dire
tion of a subgradient,that is, the dire
tion ofhi(x(�)) := 2� Xi2N :(i;j)2Lxij(�); i 2 N ;where the value of xij 2 f0; 1g is the solution to the 1-MST solutionwith link 
osts 
ij � �i � �j . We see from the dire
tion formula that�newj := �j + �0�2� Xi2N :(i;j)2Lxij(�)1A ; j 2 N ;where � > 0 is a step length. It is interesting to investigate what theupdate means:
urrent degree at node j : 8<: > 2 =) �j # (link 
ost ")= 2 =) �j � (link 
ost 
onstant)< 2 =) �j " (link 
ost #)In other words, the updating formula in a subgradient method issu
h that the link 
ost in the 1-MST subproblem is shifted upwards186



Appli
ations(downwards) if there are too many (too few) links 
onne
ted to node jin the 1-MST. We are hen
e adjusting the node pri
es of the nodes insu
h a way as to try to in
uen
e the 1-MST problem to always 
hoose 2links per node to 
onne
t to.6.8.2.3 A feasibility heuristi
A feasibility heuristi
 takes the optimal solution from the Lagrangianminimization problem over x and adjusts it su
h that a feasible solutionto the original problem is 
onstru
ted. As one 
annot predi
t if, or when,a primal feasible solution will be found dire
tly from the subproblem, theheuristi
 will provide a solution that 
an be used in pla
e of an optimalone, should one not be found. Moreover, as we know from Lagrangianduality theory, we then have a

ess to both lower and upper bounds onthe optimal value f� of the original problem, and so we have a qualitymeasure of the feasible solutions found.A feasibility heuristi
 whi
h 
an be used together with our Lagrangianheuristi
 is as follows.Identify a path in the 1-MST with many links. Then form a subgraphwith the remaining nodes and �nd a path that passes all of them. Put thetwo paths together in the best way. The resulting path is a Hamiltonian
y
le, that is, a feasible solution.6.8.2.4 The Philips exampleIn 1987{1988 an M.S
. proje
t was performed at the department ofmathemati
s at Link�oping University, in 
ooperation with the 
ompanyPhilips, Norrk�oping. The proje
t was initiated with the goal to improvethe 
urrent pra
ti
e of solving a produ
tion planning problem.The problem was as follows: Philips produ
e 
ir
uit boards, perhapsseveral hundreds or thousands of the same type. There is a new bat
h ofpatterns (holes) to be drilled every day, and perhaps even several su
hbat
hes per day.In order to speed up the produ
tion pro
ess the drilling ma
hine is
onne
ted to a mi
ro
omputer that sele
ts the ordering of the holes tobe drilled automati
ally, given their 
oordinates. The algorithm for per-forming the sorting used to be a simple sorting operation that found,for every �xed x-
oordinate, the 
orresponding y-
oordinates and sortedthem in in
reasing order. The movement of the drill was therefore fromleft to right, and for ea
h �xed x-
oordinate the movement was verti
al.The time it took to drill the holes on one 
ir
uit board was, however,far too long, simply be
ause the drill traveled around a lot without per-forming any tasks, following a path that was too long. (On the other187



Lagrangian dualityhand, the a
tual ordering was very fast to produ
e!) All in all, the 
om-plete bat
h produ
tion took too long be
ause of the poorly planned drillmovement.It was observed that the produ
tion planning problem is a travel-ing salesman problem, where the 
ities are the holes to be drilled, andthe distan
es between them 
orrespond to the Eu
lidean distan
es be-tween them. Therefore, an eÆ
ient TSP heuristi
 was devised and im-plemented, for use in 
onjun
tion with the mi
ro
omputer. In fa
t, itwas based on pre
isely the above Lagrangian relaxation, a subgradientoptimization method, and a graph-sear
h type heuristi
 of the form dis-
ussed above.A typi
al run with the algorithm took a few minutes, and was alwaysstopped after a �xed number of subgradient iterations; the generation offeasible solutions with the above-mentioned graph sear
h te
hnique wasperformed at every Kth iteration, where K was set to a value stri
tlylarger than one. (Moreover, feasible solutions were not generated duringthe �rst iterations of the dual pro
edure, be
ause of the poor quality of�k for low values of k; it is often the 
ase that the traveling salesmantour resulting from the heuristi
 is better when the multipliers are near-optimal in the Lagrangian dual problem.)In one of the examples implemented it was found that the optimalpath length was in the order to 2 meters, and that the upper and lowerbounds on f� produ
ed lead to the 
on
lusion that the relative error ofthe path length of the best feasible solution found was less than 7 %, aquite good result, also showing that the duality gap for the problem athand (together with the Lagrangian relaxation 
hosen) is quite small.After implementing the new pro
edure, Philips 
ould report an in-
rease in produ
tion by some 70 %. Hen
e, the slightly longer time ittook to provide a better produ
tion plan, that is, the traveling salesmantour for the drill to follow, was more than well 
ompensated by the fa
tthat the drilling 
ould be done mu
h faster.Here is hen
e an interesting 
ase where Lagrangian relaxation helpedto solve a large-s
ale, 
omplex and diÆ
ult problem by utilizing problemstru
ture.6.9 Notes and further readingLagrangian duality has been developed in many sour
es, in
luding earlydevelopments by Arrow, Hurwi
z, and Uzawa [AHU58℄, Everett [Eve63℄,and Falk [Fal67℄, and later on by Ro
kafellar [Ro
70℄. Our developmentfollows to a large extent that of portions of the text books by Bert-sekas [Ber99℄, Bazaraa et al. [BSS93℄, and Ro
kafellar [Ro
70℄.188



Exer
isesThe Relaxation Theorem 6.1 
an almost be 
onsidered to be folklore,and 
an be found in a slightly di�erent form in [Wol98, Proposition 2.3℄.The di�erentiability properties of 
onvex fun
tions were developedlargely by Ro
kafellar [Ro
70℄, whose text we mostly follow.Subgradient methods were developed in the Soviet Union in the1960s, predominantly by Ermol'ev, Polyak, and Shor. Text book treat-ments of subgradient methods are found, for example, in [Sho85, HiL93,Ber99℄. Theorem 6.23 is essentially due to Ermol'ev [Erm66℄; the proofstems from [LPS96℄. Theorem 6.24 is due to Shepilov [She76℄; �nally,Theorem 6.25 is due to Polyak [Pol69℄.Everett's Theorem is due to Everett [Eve63℄.Theorem 6.34 stems from [Ber04, Proposition 1.1℄.That the equilibrium 
onditions of an ele
tri
al or hydrauli
 networkare attained as the minimum of the total energy loss were known morethan a 
entury ago. Mathemati
al programming models for the ele
tri-
al network equilibrium problems des
ribed in Se
tion 6.8.1 date at leastas far ba
k as to DuÆn [Duf46, Duf47℄ and d'Auria
 [dAu47℄. DuÆn
onstru
ts his obje
tive fun
tion as a sum of integrals of resistan
e fun
-tions. The possibility of viewing the equilibrium problem in at least tworelated, dual, ways as that of either �nding the optimal 
ows of 
urrentsor the optimal potentials was also known early in the analysis of ele
tri-
al networks; these two prin
iples are written out in [Cro36℄ in work onpipe networks, and expli
itly stated as a pair of primal{dual quadrati
programming problems in [Den59℄; we followed his development, as rep-resented in [BSS93, Se
tion 1.2.D℄.The traveling salesman problem is an essential model problem in
ombinatorial optimization. Ex
ellent introdu
tions to the �eld 
an befound in [Law76, PaS82, NeW88, Wol98, S
h03℄. It was the work in[HWC74, Geo74, Fis81, Fis85℄, among others, in the 1970s and 1980s onthe traveling salesman problem and its relatives that made Lagrangianrelaxation and subgradient optimization popular, and it remains mostpopular within the 
ombinatorial optimization �eld.6.10 Exer
isesExer
ise 6.1 (numeri
al example of Lagrangian relaxation) Consider the
onvex problem to minimize 1x1 + 4x2 ;subje
t to x1 + x2 � 4;x1; x2 � 0: 189



Lagrangian duality(a) Lagrangian relax the �rst 
onstraint, and write down the resultingimpli
it dual obje
tive fun
tion and the dual problem. Motivate why therelaxed problem always has a unique optimum, when
e the dual obje
tivefun
tion is everywhere di�erentiable.(b) Solve the impli
it Lagrangian dual problem by utilizing that thegradient to a di�erentiable dual obje
tive fun
tion 
an be expressed byusing the fun
tions that are involved in the relaxed 
onstraints and theunique solution to the relaxed problem.(
) Write down an expli
it Lagrangian dual problem, that is, a dualproblem only in terms of the Lagrange multipliers. Solve it, and 
on�rmthe results in (b).(d) Find the original problem's optimal solution.(e) Show that strong duality holds.Exer
ise 6.2 (global optimality 
onditions) Consider the problem tominimize f(x) := x1 + 2x22 + 3x33;subje
t to x1 + 2x2 + x3 � 3;2x21 + x2 � 2;2x1 + x3 = 2;xj � 0; j = 1; 2; 3:(a) Formulate the Lagrangian dual problem that results from La-grangian relaxing all but the sign 
onstraints.(b) State the global primal{dual optimality 
onditions.Exer
ise 6.3 (Lagrangian relaxation) Consider the problem tominimize f(x) := x21 + 2x22;subje
t to x1 + x2 � 2;x21 + x22 � 5:Find an optimal solution through Lagrangian duality.Exer
ise 6.4 (Lagrangian relaxation) In many 
ir
umstan
es it is of in-terest to 
al
ulate the Eu
lidean proje
tion of a ve
tor onto a subspa
e.Espe
ially, 
onsider the problem to �nd the Eu
lidean proje
tion of theve
tor y 2 Rn onto the null spa
e of the matrix A 2 Rm�n , that is, to�nd an x 2 Rn that solves the problem tominimize f(x) := 12ky � xk2;subje
t to Ax = 0m;190



Exer
iseswhere A is su
h that rankA = m.The solution to this problem is 
lassi
: the proje
tion is given byx� = y �AT(AAT)�1Ay:If we let P := In�AT(AAT)�1A, where In 2 Rn�n is the unit matrix,be the proje
tion matrix, the formula is simply x� = Py.Your task is to derive this formula by utilizing Lagrangian duality.Motivate every step made by showing that the ne
essary properties areful�lled.[Note: This exer
ise is similar to that in Example 5.51, but utilizesLagrangian duality rather than the KKT 
onditions to derive the pro-je
tion formula.℄Exer
ise 6.5 (Lagrangian relaxation, exam 040823) Consider the follow-ing linear optimization problem:minimize f(x; y) := x� 0:5y;subje
t to �x+ y � �1;�2x+ y � �2;(x; y) 2 R2+ :(a) Show that the problem satis�es Slater's 
onstraint quali�
ation.Derive the Lagrangian dual problem 
orresponding to the Lagrangianrelaxation of the two linear inequality 
onstraints, and show that its setof optimal solutions is 
onvex and bounded.(b) Cal
ulate the set of subgradients of the Lagrangian dual fun
tionat the dual points (1=4; 1=3)T and (1; 0)T.Exer
ise 6.6 (Lagrangian relaxation) Provide an expli
it form of the La-grangian dual problem for the problem tominimize mXi=1 nXj=1 xij lnxijsubje
t to mXi=1 xij = bj ; j = 1; : : : ; n;nXj=1 xij = ai; i = 1; : : : ;m;xij � 0; i = 1; : : : ;m; j = 1; : : : ; n;where ai > 0, bj > 0 for all i; j, and where the linear equalities areLagrangian relaxed. 191



Lagrangian dualityExer
ise 6.7 (Lagrangian relaxation) Given is the problem tominimizex f(x) = 2x21 + x22 + x1 � 3x2; (6.76a)subje
t to x21 + x2 � 8; (6.76b)x1 2 [1; 3℄; (6.76
)x2 2 [2; 5℄: (6.76d)Lagrangian relax the 
onstraint (6.76b) with a multiplier �. Formu-late the Lagrangian dual problem and 
al
ulate the dual fun
tion's valueat � = 1, � = 2, and � = 3. Within whi
h interval lies the optimal valuef�? Also, draw the dual fun
tion.Exer
ise 6.8 (Lagrangian duality for integer problems) Consider the pri-mal problem to minimize f(x);subje
t to g(x) � 0m;x 2 X;whereX � Rn , f : Rn ! R, and g : Rn ! Rm . If the restri
tions g(x) �0m are 
ompli
ating side 
onstraints whi
h are Lagrangian relaxed, weobtain the Lagrangian dual problem tomaximize��0m q(�);where q(�) := minimumx2X ff(x) + �Tg(x)g; � 2 Rm :(a) Suppose that the set X is �nite (for example, 
onsisting of a�nite number of integer ve
tors). Denote the elements of X by xp,p = 1; : : : ; P . Show that the dual obje
tive fun
tion is pie
e-wise linear.How many linear segments 
an it have, at most? Why is it not alwaysbuilt up by that many segments?[Note: This property holds regardless of any properties of f and g.℄(b) Illustrate the result in (a) on the linear 0/1 problem to �ndz� = maximum z = 5x1 + 8x2 + 7x3 + 9x4;subje
t to 3x1 + 2x2 + 2x3 + 4x4 � 5;2x1 + x2 + 2x3 + x4 = 3;x1 ; x2 ; x3 ; x4 = 0=1;where the �rst 
onstraint is 
onsidered 
ompli
ating.(
) Suppose that the fun
tion f and all 
omponents of g are linear,and that the set X is a polytope (that is, a bounded polyhedron). Showthat the dual obje
tive fun
tion is also in this 
ase pie
e-wise linear.How many linear pie
es 
an it be built from, at most?192



Exer
isesExer
ise 6.9 (Lagrangian relaxation) Consider the problem tominimize z = 2x1 + x2;subje
t to x1 + x2 � 5;x1 � 4;x2 � 4;x1 ; x2 � 0; integer:Lagrangian relax the �rst 
onstraint. Des
ribe the Lagrangian fun
tionand the dual problem. Cal
ulate the Lagrangian dual fun
tion at thesefour points: � = 0; 1; 2; 3. Give the best lower and upper bounds on theoptimal value of the original problem that you have found.Exer
ise 6.10 (surrogate relaxation) Consider an optimization problemof the form minimize f(x);subje
t to gi(x) � 0; i = 1; : : : ;m; (P )x 2 X;where the fun
tions f; gi : Rn ! R are 
ontinuous and the set X � Rnis 
losed and bounded. The problem is assumed to have an optimalsolution, x�. Introdu
e parameters �i � 0, i = 1; : : : ;m, and de�nes(�) := minimum f(x);subje
t to �Tg(x) � 0; (S)x 2 X:This problem therefore has exa
tly one expli
it 
onstraint.(a) [weak duality℄ Show that x� is a feasible solution to the problem(S) and that s(�) � f� therefore always holds, that is, the problem (S) isa relaxation of the original one. Motivate also why maximum��0m s(�) �f� must hold. Explain the potential usefulness of this result!(b) [example℄ Consider the linear 0/1 problemz� = maximum z =5x1+8x2+7x3+9x4;subje
t to 3x1+2x2+3x3+ 3x4 � 6; (1)2x1+3x2+3x3+ 4x4 � 5; (2)2x1+ x2+2x3+ x4 = 3;x1 ; x2 ; x3 ; x4 2 0=1:Surrogate relax the 
onstraints (1) and (2) with multipliers �1; �2 � 0and formulate the problem (S). Let �� = (1; 2)T. Cal
ulate s(��). 193



Lagrangian dualityConsider again the original problem and Lagrangian relax the 
on-straints (1) and (2) with multipliers �1; �2 � 0. Cal
ulate the Lagrangiandual obje
tive value at � = ��.Compare the two results!(
) [
omparison with Lagrangian duality℄ Let � � 0m andq(�) := minimumx2X ff(x) + �Tg(x)g:Show that q(�) � s(�), and thatmaximum��0m q(�) � maximum��0m s(�) � f�holds.
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