
Lagrangian duality VI
This hapter ollets some basi results on Lagrangian duality, in par-tiular as it applies to onvex programs with a zero duality gap.6.1 The relaxation theoremGiven the problem to �ndf� := in�mumx f(x); (6.1a)subjet to x 2 S; (6.1b)where f : Rn ! R is a given funtion and S � Rn , we de�ne a relaxationto (6.1) to be a problem of the following form: �ndf�R := in�mumx fR(x); (6.2a)subjet to x 2 SR; (6.2b)where fR : Rn ! R is a funtion with the property that fR � f on S,and where SR � S. For this pair of problems, we have the followingbasi result.Theorem 6.1 (Relaxation Theorem) (a) [relaxation℄ f�R � f�.(b) [infeasibility℄ If (6.2) is infeasible, then so is (6.1).() [optimal relaxation℄ If the problem (6.2) has an optimal solution,x�R, for whih it holds thatx�R 2 S and fR(x�R) = f(x�R); (6.3)then x�R is an optimal solution to (6.1) as well.



Lagrangian dualityProof. The result in (a) is obvious, as every solution feasible in (6.1)is both feasible in (6.2) and has a lower objetive value in the latterproblem.The result in (b) follows for similar reasons.For the result in (), we note thatf(x�R) = fR(x�R) � fR(x) � f(x); x 2 S;from whih the result follows.This basi result will be utilized both in this hapter and later on tomotivate why Lagrangian relaxation, objetive funtion linearization andpenalization onstitute relaxations, and to derive optimality onditionsand algorithms based on them.6.2 Lagrangian dualityIn this setion we formulate the Lagrangian dual problem and establishits onvexity. The Weak Duality Theorem is also established, and weintrodue the terms \Lagrangian relaxation," \Lagrangemultiplier," and\duality gap."6.2.1 Lagrangian relaxation and the dual problemConsider the optimization problem to �ndf� := in�mumx f(x);subjet to x 2 X;gi(x) � 0; i = 1; : : : ;m; (6.4)where f : Rn ! R and gi : Rn ! R (i = 1; 2; : : : ;m) are given funtions,and X � Rn .For this problem, we assume that�1 < f� <1; (6.5)that is, that f is bounded from below on the feasible set and the problemhas at least one feasible solution.De�nition 6.2 (Lagrange funtion, relaxation, multiplier) (a) For an ar-bitrary vetor � 2 Rm , the Lagrange funtion isL(x;�) := f(x) + mXi=1 �igi(x) = f(x) + �Tg(x): (6.6)142



Lagrangian duality(b) Consider the problem tominimize L(x;�); (6.7)subjet to x 2 X:Whenever � is non-negative, the problem (6.7) is referred to as a La-grangian relaxation.() We all the vetor �� 2 Rm a Lagrange multiplier vetor if it isnon-negative and if f� = infx2X L(x;��) holds.Note that the Lagrangian relaxation (6.7) is a relaxation, in terms ofSetion 6.1.Theorem 6.3 (Lagrange multipliers and global optima) Let �� be a La-grange multiplier vetor. Then, x� is an optimal solution to (6.4) if andonly if x� is feasible in (6.4) andx� 2 argminx2X L(x;��); and ��i gi(x�) = 0; i = 1; : : : ;m: (6.8)Proof. If x� is an optimal solution to (6.4), then it is in partiularfeasible, and f� = f(x�) � L(x�;��) � in�mumx2X L(x;��);where the �rst inequality stems from the feasibility of x� and the de�ni-tion of a Lagrange multiplier vetor. The seond part of that de�nitionimplies that f� = infx2X L(x;��), so that equality holds throughout inthe above line of inequalities. Hene, (6.8) follows.Conversely, if x� is feasible and (6.8) holds, then by the use of thede�nition of a Lagrange multiplier vetor,f(x�) = L(x�;��) = minimumx2X L(x;��) = f�;so x� is a global optimum.Let q(�) := in�mumx2X L(x;�) (6.9)be the Lagrangian dual funtion, de�ned by the in�mum value of theLagrange funtion over X ; the Lagrangian dual problem is tomaximize� q(�); (6.10)subjet to � � 0m: 143



Lagrangian dualityFor some �, q(�) = �1 is possible; if it is true for all � � 0m, thenq� := supremum��0m q(�)equals �1. (We an then say that the dual problem is infeasible.)The e�etive domain of q isDq := f � 2 Rm j q(�) > �1g :Theorem 6.4 (onvex dual problem) The e�etive domain Dq of q isonvex, and q is onave on Dq.Proof. Let x 2 Rn , �; �� 2 Rm , and � 2 [0; 1℄. We have thatL(x; ��+ (1� �)��) = �L(x;�) + (1� �)L(x; ��):Take the in�mum over x 2 X on both sides; then,infx2X L(x; ��+ (1� �)��) = infx2X f�L(x;�) + (1� �)L(x; ��)g� infx2X �L(x;�) + infx2X (1� �)L(x; ��)= � infx2X L(x;�) + (1� �) infx2X L(x; ��);sine � 2 [0; 1℄, and the sum of in�mum values may be smaller than thein�mum of the sum, sine in the former ase we have the possibility tohoose di�erent optimal solutions in the two problems. Hene,q(��+ (1� �)��) � �q(�) + (1� �)q(��)holds. This inequality has two impliations: if � and �� lie in Dq , thenso does ��+ (1� �)��, so Dq is onvex; also, q is onave on Dq.That the Lagrangian dual problem always is onvex (we indeed max-imize a onave funtion!) is good news, beause it means that it anbe solved eÆiently. What remains is to show how a Lagrangian dualoptimal solution an be used to generate a primal optimal solution.Next, we establish that every feasible point in the Lagrangian dualproblem always underestimates the objetive funtion value of every fea-sible point in the primal problem; hene, also their optimal values havethis relationship.Theorem 6.5 (Weak Duality Theorem) (a) Let x and � be feasible inthe problems (6.4) and (6.10), respetively. Then,q(�) � f(x):144



Lagrangian dualityIn partiular, q� � f�:(b) If q(�) = f(x), then the pair (x;�) is optimal in its respetiveproblem.Proof. For all � � 0m and x 2 X with g(x) � 0m,q(�) = in�mumz2X L(z;�) � f(x) + �Tg(x) � f(x);so q� = supremum��0m q(�) � in�mumx2X:g(x)�0m f(x) = f�:The result follows.Weak duality is also a onsequene of the Relaxation Theorem: Forany � � 0m, let S := X \ fx 2 Rn j g(x) � 0m g; (6.11a)SR := X; (6.11b)fR := L(�; �): (6.11)Then, the weak duality statement is the result in Theorem 6.1(a).If our initial feasibility assumption (6.5) is false, then what does weakduality imply? Suppose that f� = �1. Then, weak duality impliesthat q(�) = �1 for all � � 0m, that is, the dual problem is infeasible.Suppose then that X 6= ; but that X \fx 2 Rn j g(x) � 0m g is empty.Then, f� =1, by onvention. The dual funtion satis�es q(�) <1 forall � � 0m, but it is possible that q� = �1, �1 < q� <1, or q� =1(see [Ber99, Figure 5.1.8℄). For linear programs, �1 < q� < 1 implies�1 < f� <1; see below.If q� = f�, then we say that the duality gap (as given by � :=f��q�) is zero, or that there is no duality gap. If there exists a Lagrangemultiplier vetor, then by the weak duality theorem, this implies thatthere is no duality gap. The onverse is not true in general: there may beases where no Lagrange multipliers exist even when there is no dualitygap; in that ase though, the Lagrangian dual problem annot have anoptimal solution, as implied by the following result.Proposition 6.6 (duality gap and the existene of Lagrange multipliers)(a) If there is no duality gap, then the set of Lagrange multiplier vetorsequals the set of optimal dual solutions (whih however may be empty).(b) If there is a duality gap, then there are no Lagrange multipliers.145



Lagrangian dualityProof. By de�nition, a vetor �� � 0m is a Lagrange multiplier vetorif and only if f� = q(��) � q�, the equality following from the de�nitionof q(��) and the inequality from the de�nition of q� as the supremum ofq(�) over Rm+ . By weak duality, this relation holds if and only if thereis no duality gap and �� is an optimal dual solution.Before moving on, we remark on the statement of the problem (6.4).There are several ways in whih the original set of onstraints of theproblem an be plaed either within the de�nition of the ground set X(whih is kept intat), or within the expliit onstraints de�ned by thefuntions gi (whih are Lagrangian relaxed). How to distinguish betweenthe two, that is, how to deide whether a onstraint should be kept or beLagrangian relaxed, depends on several fators. For example, keepingmore onstraints within X may result in a smaller duality gap, andfewer multipliers also result in a simpler Lagrangian dual problem. Onthe other hand, the Lagrangian subproblem de�ning the dual funtionsimultaneously beomes more omplex and diÆult to solve. There areno immediate rules to follow, but experimentation and experiene.6.2.2 Global optimality onditionsThe following result haraterizes every optimal primal and dual solu-tion. It is however appliable only in the presene of Lagrange multipli-ers; in other words, the below system (6.12) is onsistent if and only ifthere exists a Lagrange multiplier vetor and there is no duality gap.Theorem 6.7 (global optimality onditions in the absene of a duality gap)The vetor (x�;��) is a pair of primal optimal solution and Lagrangemultiplier vetor if and only if�� � 0m; (Dual feasibility) (6.12a)x� 2 argminx2X L(x;��); (Lagrangian optimality) (6.12b)x� 2 X; g(x�) � 0m; (Primal feasibility) (6.12)��i gi(x�) = 0; i = 1; : : : ;m: (Complementary slakness) (6.12d)Proof. Suppose that the pair (x���) satis�es (6.12). Then, from (6.12a)we have that the Lagrangian problem to minimize L(x;��) over x 2 Xis a (Lagrangian) relaxation of (6.4). Moreover, aording to (6.12b)x� solves this problem, (6.12) shows that x� is feasible in (6.4), and(6.12d) implies that L(x�;��) = f(x�). The Relaxation Theorem 6.1146



Lagrangian dualitythen yields that x� is optimal in (6.4), whih in turn implies that �� isa Lagrange multiplier vetor.Conversely, if (x�;��) is a pair of optimal primal solution and La-grange multiplier vetor, then they are primal and dual feasible, respe-tively. The relations (6.12b) and (6.12d) follow from Theorem 6.3.Theorem 6.8 (global optimality and saddle points) The vetor (x�;��)is a pair of optimal primal solution and Lagrange multiplier vetor ifand only if x� 2 X , �� � 0m, and (x�;��) is a saddle point of theLagrangian funtion on X � Rm+ , that is,L(x�;�) � L(x�;��) � L(x;��); (x;�) 2 X � Rm+ ; (6.13)holds.Proof. We establish that (6.12) and (6.13) are equivalent; Theorem 6.7then gives the result. The �rst inequality in (6.13) is equivalent to�g(x�)T(�� ��) � 0; � 2 Rm+ ; (6.14)for the given pair (x�;��) 2 X � Rm+ . This variational inequality isequivalent to stating that10m � g(x�) ? �� � 0m; (6.15)where ? denotes orthogonality: that is, for any vetors a; b 2 Rn , a ? bmeans that aTb = 0. Beause of the sign restritions posed on � andg, that is, the vetors a and b, the relation a ? b atually means thatnot only does it hold that aTb = 0 but in fat aibi = 0 must hold for alli = 1; : : : ; n. This omplementarity system is, for the given �� 2 Rm+ ,the same as (6.12a), (6.12) and (6.12d). The seond inequality in (6.13)is equivalent to (6.12b).The above two theorems also imply that the set of primal{dual opti-mal solutions (x�;��) is a Cartesian produt set, X��U�. For example,1We establish the equivalene between (6.14) and (6.15) as follows. (The proofextends that for line searh problems in unonstrained optimization in a footnote inSetion 11.3.1.)First, suppose that (6.15) is ful�lled. Then, �g(x�)T(� � ��) = �g(x�)T� � 0,for all � � 0m, that is, (6.14) is ful�lled. Conversely, suppose that (6.14) is ful�lled.Setting � = 0m yields that g(x�)T�� � 0. On the other hand, the hoie � = 2��yields that �g(x�)T�� � 0. Hene, g(x�)T�� = 0 holds. Last, let � = �� + ei,where ei is the ith unit vetor in Rm. Then, �g(x�)T(����) = �gi(x�) � 0. Sinethis is true for all i 2 f1; 2; : : : ;mg we have obtained that �g(x�) � 0m, that is,g(x�) � 0m. We are done. 147



Lagrangian dualitygiven any optimal dual solution �� 2 U�, every optimal primal solutionx� 2 X� satis�es (6.12). Hene, we an write, for an arbitrary dualvetor �� 2 U�,X� = fx� 2 Rn j x� satis�es (6.12) for � = �� g= � x� 2 argminx2X L(x;��) ���� g(x�) � 0m; (��)Tg(x�) = 0� :We note that struturally similar results to the above two theoremswhih are valid for the general problem (6.4) with any size of the dualitygap an be found in [LaP05℄.2We �nally note a pratial onnetion between the KKT system (5.9)and the above system (6.12). The pratial use of the KKT system isnormally to investigate whether a primal vetor x|obtained perhapsfrom a solver for our problem|is a andidate for a loally optimal so-lution; in other words, we have aess to x and generate a vetor � ofLagrange multipliers in the investigation of the KKT system (5.9). Inontrast, the system (6.12) is normally investigated in the reverse order;we formulate and solve the Lagrangian dual problem, thereby obtainingan optimal dual vetor �. Starting from that vetor, we investigate theglobal optimality onditions stated in (6.12) to obtain, if possible, anoptimal primal vetor x. In the setion to follow, we show when this ispossible, and provide strong onnetions between the systems (5.9) and(6.12) in the onvex and di�erentiable ase.6.2.3 Strong duality for onvex programsSo far the results have been rather non-tehnial to ahieve: the on-vexity of the Lagrangian dual problem omes with very few assumptionson the original, primal problem, and the haraterization of the primal{dual set of optimal solutions is simple and also quite easily established.In order to establish strong duality, that is, to establish suÆient on-ditions under whih there is no duality gap, however, takes muh more.In partiular, as is the ase with the KKT onditions we need regularityonditions (that is, onstraint quali�ations), and we also need to utilizeseparation theorems suh as Theorem 4.28. Most importantly, however,is that strong duality is deeply assoiated with the onvexity of the orig-inal problem, and it is in partiular under onvexity that the primal and2The system (6.12) is there appended with two relaxation parameters whih mea-sure, respetively, the near-optimality of x� in the Lagrangian subproblem [that is,the "-optimality in (6.12b)℄, and the violation of the omplementarity onditions(6.12d). The saddle point ondition (6.13) is similarly perturbed, and at an optimalsolution, the sum of these two parameters equals the duality gap.148



Lagrangian dualitydual optimal solutions are linked through the global optimality ondi-tions provided in the previous setion. We begin by onentrating on theinequality onstrained ase, proving this result in detail. We will alsospeialize the result to quadrati and linear optimization problems.Consider the inequality onstrained onvex program (6.4), where f :Rn ! R and gi (i = 1; : : : ;m) are onvex funtions and X � Rn isa onvex set. For this problem, we introdue the following regularityondition, due to Slater (f. De�nition 5.38):9x 2 X with g(x) < 0m: (6.16)Theorem 6.9 (Strong Duality, inequality onstrained onvex programs) Supposethat the feasibility ondition (6.5) and Slater's onstraint quali�ation (6.16)hold for the onvex problem (6.4).(a) There is no duality gap and there exists at least one Lagrange mul-tiplier vetor ��. Moreover, the set of Lagrange multipliers is boundedand onvex.(b) If the in�mum in (6.4) is attained at some x�, then the pair(x�;��) satis�es the global optimality onditions (6.12).() If further f and g are di�erentiable at x�, then the ondition(6.12b) an equivalently be written as the variational inequalityrxL(x�;��)T(x� x�) � 0; x 2 X: (6.17)If, in addition, X is open (suh as is the ase when X = Rn ), then thisredues to the ondition thatrxL(x�;��) = rf(x�) + mXi=1 ��irgi(x�) = 0n; (6.18)and the global optimality onditions (6.12) redue to the Karush{Kuhn{Tuker onditions stated in Theorem 5.25.Proof. (a) We begin by establishing the existene of a Lagrange multi-plier vetor (and the presene of a zero duality gap).3First, we onsider the following subset of Rm+1 :A := f(z1; : : : ; zm; w)T j9x2 X with gi(x)�zi; i = 1; : : : ;m; f(x)�wg:It is elementary to show that A is onvex.Next, we observe that ((0m)T; f�)T is not an interior point of A;otherwise, for some " > 0 the point ((0m)T; f� � ")T 2 A holds, whih3This result is [Ber99, Proposition 5.3.1℄, whose proof we also utilize. 149



Lagrangian dualitywould ontradit the de�nition of f�. Therefore, by the (possibly non-proper) separation result in Theorem 4.28, we an �nd a hyperplanepassing through ((0m)T; f�)T suh that A lies in one of the two orre-sponding half-spaes. In partiular, there then exists a vetor (�T; �)T 6=((0m)T; 0)T suh that�f� � �w + �Tz; (zT; w)T 2 A: (6.19)This implies that � � 0; � � 0m; (6.20)sine for eah (zT; w)T 2 A (zT; w + )T 2 A and (z1; : : : ; zi�1; zi +; zi+1; : : : ; zm; w)T 2 A for all  > 0 and i = 1; : : : ;m.We laim that � > 0 in fat holds. Indeed, if it was not the ase, then� = 0 and (6.19) then implies that �Tz � 0 for every pair (zT; w)T 2A. But sine (g(�x)T; f(�x))T 2 A [where �x is suh that it satis�es theSlater ondition (6.16)℄, we would obtain that 0 � Pmi=1 �igi(�x) whihin view of � � 0m [f. (6.20)℄ and the assumption that �x satis�es theSlater ondition (6.16) implies that � = 0m. This means, however, that(�T; �)T = ((0m)T; 0)T|a ontradition. We may therefore laim that� > 0. We further, with no loss of generality, assume that � = 1.Thus, sine (g(x)T; f(x))T 2 A for every x 2 X , (6.19) yields thatf� � f(x) + �Tg(x); x 2 X:Taking the in�mum over x 2 X and using the fat that � � 0m weobtainf� � in�mumx2X ff(x) + �Tg(x)g = q(�) � supremum��0m q(�) = q�:Using the Weak Duality Theorem 6.5 it follows that � is a Lagrangemultiplier vetor, and there is no duality gap. This part of the proof isnow done.Take any vetor �x 2 X satisfying (6.16) and a Lagrange multipliervetor ��. By the de�nition of a Lagrange multiplier vetor, f� �L(�x;��) holds, whih implies thatmXi=1 ��i � [f(�x)� f�℄mini=1;:::;mf�gi(�x)g :Sine �� � 0m, boundedness follows. As by Proposition 6.6(a) the set ofLagrange multipliers is the set of optimal solutions to the dual problem(6.10), onvexity follows from the identi�ation of the dual solution setwith the set of vetors � 2 Rm+ for whihq(�) � q�150



Lagrangian dualityholds. This is the upper level set for q at the level q�; this set is onvex,by the onavity of q (f. Theorem 6.4 and Proposition 3.44).(b) The result follows from Theorem 6.7.() The �rst part follows from Theorem 4.23, as the Lagrangian fun-tion L(�;��) is onvex. The seond part follows by identi�ation.Consider next the extension of the inequality onstrained onvex pro-gram (6.4) in whih we seek to �ndf� := in�mumx f(x); (6.21)subjet to x 2 X;gi(x) � 0; i = 1; : : : ;m;"Tj x� dj = 0; j = 1; : : : ; `;under the same onditions as stated following (6.4), and where "j 2 Rn ,j = 1; : : : ; `. For this problem, we replae the Slater ondition (6.16)with the following (f. [BSS93, Theorem 6.2.4℄):9x 2 X with g(x) < 0m and 0m 2 int fEx� d j x 2 X g; (6.22)where E 2 R`�n has rows "Tj , and d = (dj)j2f1;:::;`g 2 R` .Note that in the statement (6.22), the \int" an be striken wheneverX is polyhedral, so that the latter part simply states that Ex = d.For this problem, the Lagrangian dual problem is to �ndq� := supremum(�;�) q(�;�); (6.23)subjet to � � 0m;whereq(�;�) := in�mumx L(x;�;�) := f(x) + �Tg(x) + �T(Ex� d);subjet to x 2 X:Theorem 6.10 (Strong Duality, general onvex programs) Suppose thatin addition to the feasibility ondition (6.5), Slater's onstraint quali�-ation (6.22) holds for the problem (6.21).(a) The duality gap is zero and there exists at least one Lagrangemultiplier vetor pair (��;��).(b) If the in�mum in (6.21) is attained at some x�, then the triple151



Lagrangian duality(x�;��;��) satis�es the global optimality onditions�� � 0m; (Dual feasibility) (6.24a)x� 2 argminx2X L(x;��;��); (Lagrangian optimality) (6.24b)x� 2 X; g(x�) � 0m; Ex� = d; (Primal feasibility) (6.24)��i gi(x�) = 0; i = 1; : : : ;m: (Complementary slakness) (6.24d)() If further f and g are di�erentiable at x�, then the ondition(6.24b) an equivalently be written asrxL(x�;��;��)T(x� x�) � 0; x 2 X: (6.25)If, in addition, X is open (suh as is the ase when X = Rn ), then thisredues to the ondition thatrxL(x�;��;��) = rf(x�) + mXi=1 ��irgi(x�) + X̀j=1 ��j"j = 0n; (6.26)and the global optimality onditions (6.24) redue to the Karush{Kuhn{Tuker onditions stated in Theorem 5.33.Proof. The proof is similar to that of Theorem 6.9.We �nally onsider a speial ase where automatially a regularityondition holds.Consider the aÆnely onstrained onvex program to �ndf� := in�mumx f(x); (6.27)subjet to x 2 X;aTi x� bi � 0; i = 1; : : : ;m;"Tj x� dj = 0; j = 1; : : : ; `;where f : Rn ! R is onvex and X � Rn is polyhedral.Theorem 6.11 (Strong Duality, aÆne onstraints) If the feasibility on-dition (6.5) holds for the problem (6.27), then there is no duality gapand there exists at least one Lagrange multiplier vetor.Proof. Again, the proof is similar to that of Theorem 6.9, exept thatno additional regularity onditions are needed.44For a detailed proof, see [Ber99, Proposition 5.2.1℄. (The speial ase where f ismoreover di�erentiable is overed in [Ber99, Proposition 3.4.2℄.)152



Lagrangian dualityThe existene of a multiplier vetor [whih by Proposition 6.6 and theabsene of a duality gap implies the existene of an optimal solution tothe dual problem (6.10)℄ does not imply the existene of an optimal so-lution to the primal problem (6.27) without any additional assumptions(take the minimization of f(x) := 1=x over x � 1 for example). How-ever, when f is either weakly oerive, quadrati or linear, the existeneresults are stronger; see the primal existene results in Theorems 4.6,4.7, and 6.12 below, for example.For onvex programs where a Slater CQ holds, the Lagrange mul-tipliers de�ned in this setion, and those that appear in the Karush{Kuhn{Tuker onditions, learly are idential. Next, we speialize theabove to linear and quadrati programs.6.2.4 Strong duality for linear and quadrati pro-gramsThe following result will be established and analyzed in detail in Chap-ter 10 on linear programming duality (f. Theorem 10.6), but an infat also be established similarly to above. (See [BSS93, Theorem 2.7.3℄or [Ber99, Proposition 5.2.2℄, for example.) Its proof will however berelegated to that of Theorem 10.6.Theorem 6.12 (Strong Duality, linear programs) Assume, in addition tothe onditions of Theorem 6.11, that f is linear, so that (6.27) is a linearprogram. Then, the primal and dual problems have optimal solutionsand there is no duality gap.The above result states a strong duality result for a general linearprogram. We next develop an expliit Lagrangian dual problem for alinear program.Let A 2 Rm�n ,  2 Rn , and b 2 Rm ; onsider the linear programminimizex Tx; (6.28)subjet to Ax = b;x � 0n:If we let X := Rn+ , then the Lagrangian dual problem is tomaximize�2Rm bT�; (6.29)subjet to AT� � :The reason why we an write it in this form is thatq(�) := in�mumx�0n nTx+ �T(b�Ax)o = bT�+ in�mumx�0n (�AT�)Tx;153



Lagrangian dualityso that q(�) = (bT�; if AT� � ;�1; otherwise:(The in�mum is attained at zero if and only if these inequalities aresatis�ed; otherwise, the inner problem is unbounded below.)Further, why is it that � here is not restrited in sign? Suppose wewere to split the system Ax = b into an inequality system of the formAx � b;�Ax � �b:Let ((�+)T; (��)T)T be the orresponding vetor of multipliers, andtake the Lagrangian dual for this formulation. Then, we would have aLagrange funtion of the form(x;�+;��) 7! L(x;�+;��) := Tx+ (�+ � ��)T(b�Ax);and sine �+��� an take on any value in Rm we an simply replae itwith the unrestrited vetor � 2 Rm . This motivates why the multiplierfor an equality onstraint never is sign restrited; the same was the ase,as we saw in Setion 5.6, for the multipliers in the KKT onditions.As applied to this problem, Theorem 6.12 states that if both theprimal or dual problems have feasible solutions, then they both haveoptimal solutions, satisfying strong duality (Tx� = bT��). On theother hand, if any of the two problems has an unbounded solution, thenthe other problem is infeasible.Consider next the quadrati programming problem tominimizex �12xTQx+ Tx� ; (6.30)subjet to Ax � b;where Q 2 Rn�n ,  2 Rn , A 2 Rm�n , and b 2 Rm . We develop anexpliit dual problem under the assumption that Q is positive de�nite.By Lagrangian relaxing the inequality onstraints, we obtain that theinner problem in x is solved by lettingx = �Q�1(+AT�): (6.31)Substituting this expression into the Lagrangian funtion yields the La-grangian dual problem tomaximize� ��12�TAQ�1AT��(b+AQ�1)T�� 12TQ�1� ; (6.32)subjet to � � 0m;154



Two illustrative examplesStrong duality follows for this onvex primal{dual pair of quadratiprograms, in muh the same way as for linear programs.Theorem 6.13 (Strong Duality, quadrati programs) For the primal{dualpair of onvex quadrati programs (6.30), (6.32), the following holds:(a) If both problems have feasible solutions, then both problems alsohave optimal solutions, and the primal problem (6.30) also has a uniqueoptimal solution, given by (6.31) for any optimal Lagrange multipliervetor, and in the two problems the optimal values are equal.(b) If either of the two problems has an unbounded solution, thenthe other one is infeasible.() Suppose that Q is positive semi-de�nite, and that the feasibilityondition (6.5) holds. Then, both the problem (6.30) and its Lagrangiandual have nonempty, losed and onvex sets of optimal solutions, andtheir optimal values are equal.In the result (a) it is important to note that the Lagrangian dualproblem (6.32) is not neessarily stritly onvex; the matrix AQ�1ATneed not be positive de�nite, espeially so when A does not have fullrank. The result () extends the strong duality result from linear pro-gramming, sine Q in () an be the zero matrix. In the ase of () we ofourse annot write the Lagrangian dual problem in the form of (6.32)beause Q is not neessarily invertible.6.3 Two illustrative examplesExample 6.14 (an expliit, di�erentiable dual problem) Consider the prob-lem to minimizex f(x) := x21 + x22;subjet to x1 + x2 � 4;xj � 0; j = 1; 2:We onsider the �rst onstraint to be the ompliated one, and henede�ne g(x) := �x1�x2+4 and let X := f (x1; x2)T j xj � 0; j = 1; 2 g.Then, the Lagrangian dual funtion isq(�) = minimumx2X L(x; �) := f(x)� �(x1 + x2 � 4)= 4�+minimumx2X fx21 + x22 � �x1 � �x2g= 4�+minimumx1�0 fx21 � �x1g+minimumx2�0 fx22 � �x2g; � � 0:For a �xed � � 0, the minimum is attained at x1(�) = �2 ; x2(�) = �2 .155



Lagrangian dualitySubstituting this expression into q(�), we obtain that q(�) = f(x(�))��(x1(�) + x2(�)� 4) = 4�� �22 .Note that q is stritly onave, and it is di�erentiable everywhere (dueto the fat that f; g are di�erentiable and x(�) is unique), by Danskin'sTheorem 6.17(d).We have that q0(�) = 4� � = 0 () � = 4. As � = 4 � 0, it is theoptimum in the dual problem: �� = 4;x� = (x1(��); x2(��))T = (2; 2)T.Also, f(x�) = q(��) = 8.This is an example where the dual funtion is di�erentiable, andtherefore we an utilize Proposition 6.29(). In this ase, the optimumx� is also unique, so it is automatially given as x� = x(�).Example 6.15 (an impliit, non-di�erentiable dual problem) Consider thelinear programming problem tominimizex f(x) := �x1 � x2;subjet to 2x1 + 4x2 � 3;0 � x1 � 2;0 � x2 � 1:The optimal solution is x� = (3=2; 0)T; f(x�) = �3=2.Consider Lagrangian relaxing the �rst onstraint, obtainingL(x; �) = �x1 � x2 + �(2x1 + 4x2 � 3);q(�) = �3�+minimum0�x1�2 f(�1 + 2�)x1g+minimum0�x2�1 f(�1 + 4�)x2g= 8<: �3 + 5�; 0 � � � 1=4;�2 + �; 1=4 � � � 1=2;� 3�; 1=2 � �:Chek that �� = 1=2, and hene that q(��) = �3=2. For linearprograms, we have strong duality, but how do we obtain the optimalprimal solution from ��? It is lear that q is non-di�erentiable at ��.Let us utilize the haraterization given in the system (6.12).First, at ��, it is lear that X(��) is the set f (2�; 0)T j 0 � � � 1 g.Among the subproblem solutions, we next have to �nd one that is primalfeasible as well as omplementary.Primal feasibility means that 2 � 2�+ 4 � 0 � 3() � � 3=4.Further, omplementarity means that �� �(2x�1+4x�2�3) = 0() � =3=4, sine �� 6= 0. We onlude that the only primal vetor that satis�esthe system (6.12) together with the dual optimal solution �� = 1=2 isx� = (3=2; 0)T.156



�Di�erentiability properties of the dual funtionIn the �rst example, the Lagrangian dual funtion is di�erentiablesine x(�) is unique. The seond one shows that otherwise, there maybe kinks in the funtion q where there are alternative solutions x(�); as aresult, to obtain a primal optimal solution beomes more omplex. TheDantzig{Wolfe algorithm, for example, represents a means by whih toautomatize the proess that we have just shown; the algorithm generatesextreme points of X(�) algorithmially, and onstruts the best feasibleonvex ombination thereof, obtaining a primal{dual optimal solution ina �nite number of iterations for linear programs.The above examples motivate a deeper study of the di�erentiabil-ity properties of onvex (or, onave) funtions in general, and the La-grangian dual objetive funtion in partiular.6.4 �Di�erentiability properties of the dualfuntionWe have established that the Lagrangian dual problem (6.10) is a onvexone, and further that under some irumstanes the primal and dualoptimal values are the same. We now turn to study the Lagrangian dualproblem in detail, and in partiular how it an be solved eÆiently. First,we will establish when the dual funtion q is di�erentiable. We will seethat di�erentiability holds only in some speial ases, in whih we anreognize the workings of the Lagrange multiplier method; this lassimethod was illustrated in Example 6.14. Most often, the funtion q willhowever be non-di�erentiable, and then this method will fail. This meansthat we must devise a more general numerial method whih is not basedon gradients but rather subgradients. This type of algorithm is the topiof the next setion; we begin by studying the topi of subgradients ofonvex funtions in general.6.4.1 Subdi�erentiability of onvex funtionsThroughout this setion we suppose that f : Rn ! R is a onvex fun-tion, and study its subdi�erentiability properties. We will later on applyour �ndings to the Lagrangian dual funtion q, or, rather, its negative�q. We �rst remark that a �nite onvex funtion is automatially on-tinuous (f. Theorem 4.26).De�nition 6.16 (subgradient) Let f : Rn ! R be a onvex funtion.We say that a vetor g 2 Rn is a subgradient of f at x 2 Rn iff(y) � f(x) + gT(y � x); y 2 Rn : (6.33)157



Lagrangian dualityThe set of suh vetors g de�nes the subdi�erential of f at x, and isdenoted �f(x).For onave funtions, the reverse inequality of ourse holds; for sim-pliity we will refer also to suh vetors g as subgradients.Notie the onnetion to the haraterization of a onvex funtion inC1 in Theorem 3.40(a). The di�erene between them is that g is notunique at a non-di�erentiable point. (Just as the gradient has a role insupporting hyperplanes to the graph of a onvex funtion in C1, the roleof a subgradient is the same; at a non-di�erentiable point there are morethen one supporting hyperplane to the graph of f .)We illustrate this in Figure 6.1.
PSfrag replaements f

xFigure 6.1: Three possible slopes of the onvex funtion f at x.Notie that a minimum x� of f over Rn is haraterized by the in-lusion 0n 2 �f(x�); reognize, again, the similarity to the C1 ase.We list some additional basi results for onvex funtions next. Proofswill not be given here; we refer instead to the onvex analysis text byRokafellar [Ro70℄.Proposition 6.17 (properties of a onvex funtion) Let f : Rn ! R bea onvex funtion.(a) [boundedness of �f(x)℄ For every x 2 Rn , �f(x) is a nonempty,onvex, and ompat set. If X is bounded then [x2X �f(x) is bounded.(b) [losedness of �f ℄ The subdi�erential mapping x 7!7! �f(x) islosed; in other words, if fxkg is a sequene of vetors in Rn onvergingto x, and gk 2 �f(xk) holds for every k, then the sequene fgkg ofsubgradients is bounded and every limit point thereof belongs to �f(x).() [diretional derivative and di�erentiability℄ For every x 2 Rn , thediretional derivative of f at x in the diretion of p 2 Rn satis�esf 0(x;p) = maximumg2�f(x) gTp: (6.34)158



�Di�erentiability properties of the dual funtionIn partiular, f is di�erentiable at x with gradient rf(x) if and onlyif it has rf(x) as its unique subgradient at x; in that ase, f 0(x;p) =rf(x)Tp.(d) [Danskin's Theorem|diretional derivatives of a onvex max fun-tion℄ Let Z be a ompat subset of Rm , and let � : Rn � Z ! R beontinuous and suh that �(�; z) : Rn ! R is onvex for eah z 2 Z. Letthe funtion f : Rn ! R be given byf(x) := maximumz2Z �(x; z); x 2 Rn : (6.35)The funtion f then is onvex on Rn and has a diretional derivative atx in the diretion of p equal tof 0(x;p) = maximumz2Z(x) �0(x; z;p); (6.36)where �0(x; z;p) is the diretional derivative of �(�; z) at x in the dire-tion of p, and Z(x) := f z 2 Rm j �(x; z) = f(x) g.In partiular, if Z(x) ontains a single point �z and �(�; �z) is di�eren-tiable at x, then f is di�erentiable at x, and rf(x) = rx�(x; �z), whererx�(x; �z) is the vetor with omponents ��(x ;�z)�xi , i = 1; : : : ; n.If further �(�; z) is di�erentiable for all z 2 Z and rx�(x; �) is on-tinuous on Z for eah x, then�f(x) = onv frx�(x; z) j z 2 Z(x) g; x 2 Rn :Proof. (a) This is a speial ase of [Ro70, Theorem 24.7℄.(b) This is [Ro70, Theorem 24.5℄.() This is [Ro70, Theorem 23.4 and 25.1℄.(d) This is [Ber99, Proposition B.25℄.Figure 6.2 illustrates the subdi�erential of a onvex funtion.We apply parts of the above results in order to haraterize a mini-mum of a onvex funtion on Rn .Proposition 6.18 (optimality of a onvex funtion over Rn ) Let f :Rn ! R be a onvex funtion. The following three statements are equiv-alent:1. f is globally minimized at x� 2 Rn ;2. 0n 2 �f(x�);3. f 0(x�;p) � 0 for all p 2 Rn . 159



Lagrangian duality
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Figure 6.2: The subdi�erential of a onvex funtion f at x.Proof. We establish the result thus: 1 =) 2 =) 3 =) 1.[1 =) 2℄: By the statement 1., we have that f(y) � f(x�) forevery y 2 Rn . This implies that for g = 0n, we satisfy the subgradientinequality (6.33). This establishes the statement 2.[2 =) 3℄: We an equivalently write�f(x) = f g 2 Rn j gTp � f 0(x;p); p 2 Rn g:With g = 0n this de�nition immediately yields the statement 3.[3 =) 1℄: By the ompatness of the subdi�erential [f. Propo-sition 6.17(a)℄ and Weierstrass' Theorem 4.6 the maximum in the ex-pression (6.34) is attained at some g 2 �f(x�). It follows that, in thesubgradient inequality (6.33), we get thatf(x� + p) � f(x�) + gTp � f(x�); p 2 Rn ;whih is equivalent to the statement 1.This result implies that a diretion p 2 Rn is a desent diretion withrespet to f at x if and only if f 0(x;p) < 0 holds. This result annotbe extended to non-onvex funtions, even when the funtion f is in C1or even C2. [Take f(x) := x3; x = 0; p = �1; see also the disussion onsaddle points in Example 11.2(b).℄160



�Di�erentiability properties of the dual funtion6.4.2 Di�erentiability of the Lagrangian dual fun-tionWe onsider the inequality onstrained problem (6.4), where we makethe following standing assumption:f; gi (i = 1; : : : ;m) 2 C0; X is nonempty and ompat. (6.37)Under this assumption, the set of solutions to the Lagrangian subprob-lem, X(�) := argminimumx2X L(x;�); � 2 Rm ; (6.38)is nonempty and ompat for any hoie of dual vetor � by Weierstrass'Theorem 4.6. We �rst develop the subdi�erentiability properties of theassoiated dual funtion q, stated in (6.9). The �rst result strengthensTheorem 6.4 under these additional assumptions.Proposition 6.19 (subdi�erentiability of the dual funtion) Suppose that,in the problem (6.4), the ompatness ondition (6.37) holds.(a) The dual funtion (6.9) is �nite, ontinuous and onave on Rm . Ifits supremum over Rm+ is attained, then the optimal solution set thereforeis losed and onvex.(b) The mapping � 7!7! X(�) is losed on Rm . If X(��) is the singletonset f�xg for some �� 2 Rm , and for some sequene Rm � f�kg ! ��,xk 2 X(�k) for all k, then fxkg ! �x.() Let � 2 Rm . If x 2 X(�), then g(x) is a subgradient to q at �,that is, g(x) 2 �q(�).(d) Let � 2 Rm . Then,�q(�) = onv f g(x) j x 2 X(�) g:The set �q(�) is onvex and ompat. Moreover, if U is a boundedset, then [�2U �q(�) is also bounded.(e) The diretional derivative of q at � 2 Rm in the diretion ofp 2 Rm is q0(�;p) = minimumg2�q(�) gTp:Proof. (a) Theorem 6.4 stated the onavity of q on its e�etive domain.Weierstrass' Theorem 4.6 states that q is �nite on Rm , whih is thenalso its e�etive domain. The ontinuity of q follows from that of any�nite onave funtion, as we have already seen in Theorem 4.26. Thelosedness property of the solution set is a diret onsequene of theontinuity of q (the upper level set then automatially is losed), andomplements the result of Theorem 6.9(a). 161



Lagrangian duality(b) Let f�kg be a sequene of vetors in Rm onverging to ��, andlet xk 2 X(�k) be arbitrary. Let x be arbitrary in X , and let further�x 2 X be an arbitrary limit point of fxkg (at least one exists by theompatness of X). From the property that for all k,L(xk;�k) � L(x;�k);follows, by the ontinuity of L, that, in the limit of k in the subsequenein whih fxkg onverges to �x,L(�x; ��) � L(x; ��);so that �x 2 X(��), as desired. The speial ase of a singleton set X(��)follows.() Let �� 2 Rm be arbitrary and let �x 2 X(��). We have thatq(��) = in�mumy2X L(y; ��) = f(x) + ��Tg(x)= f(x) + �Tg(x) + (��� �)Tg(x) � q(�) + (��� �)Tg(x);whih implies that g(x) 2 �q(�).(d) The inlusion �q(�) � onv f g(x) j x 2 X(�) g follows from ()and the onvexity of �q(�). The opposite inlusion follows by applyingthe Separation Theorem 3.24.5(e) See Proposition 6.17().The result in () is an independent proof of the onavity of q on Rm .The result (d) is partiularly interesting, beause by Carath�eodory'sTheorem 3.8 every subgradient of q at any point � is the onvex ombi-nation of a �nite number (in fat, at most m+1) of vetors of the formg(xs) with xs 2 X(�). Computationally, this has been utilized to deviseeÆient (proximal) bundle methods for the Lagrangian dual problem aswell as to devise methods to reover primal optimal solutions.Next, we establish the di�erentiability of the dual funtion underadditional assumptions.Proposition 6.20 (di�erentiability of the dual funtion) Suppose that, inthe problem (6.4), the ompatness ondition (6.37) holds.(a) Let � 2 Rm . The dual funtion q is di�erentiable at � if andonly if f g(x) j x 2 X(�) g is a singleton set, that is, if the value of thevetor of onstraint funtions is invariant over the set of solutions X(�)to the Lagrangian subproblem. Then, we have thatrq(�) = g(x);5See [BSS93, Theorem 6.3.7℄ for a detailed proof.162



�Subgradient optimization methodsfor every x 2 X(�).(b) The result in (a) holds in partiular if the Lagrangian subproblemhas a unique solution, that is, X(�) is a singleton set. In partiular, thisproperty is satis�ed for � � 0m if further X is a onvex set, f is stritlyonvex on X , and gi (i = 1; : : : ;m) are onvex, in whih ase q 2 C1.Proof. (a) The onave funtion q is di�erentiable at the point � (whereit is �nite) if and only if its subdi�erential �q(�) there is a singleton, f.Proposition 6.17().(b) Under either one of the assumptions stated, X(�) is a singleton,whene the result follows from (a). Uniqueness follows from the on-vexity of the feasible set and strit onvexity of the objetive funtion,aording to Proposition 4.10. That q 2 C1 follows from the ontinuityof g and Proposition 6.19(b).Proposition 6.21 (twie di�erentiability of the dual funtion) Suppose that,in the problem (6.4), X = Rn , and f and gi (i = 1; : : : ;m) are onvexfuntions in C2. Suppose that, at � 2 Rm , the solution x to the La-grangian subproblem not only is unique, but also that the partial Hessianof the Lagrangian is positive de�nite at the pair (x;�), that is,r2xxL(x;�) is positive de�nite:Then, the dual funtion q is twie di�erentiable at �, withr2q(�) = �rg(x)T[r2xxL(x;�)℄�1rg(x):Proof. The result follows from the Impliit Funtion Theorem, whihis stated in Chapter 2, applied to the Lagrangian subproblem.66.5 �Subgradient optimization methodsWe begin by establishing the onvergene of lassi subgradient opti-mization methods as applied to a general onvex optimization problem.6.5.1 Convex problemsConsider the onvex optimization problem tominimizex f(x); (6.39a)subjet to x 2 X; (6.39b)6See [Ber99, Pages 596{598℄ for a detailed analysis. 163



Lagrangian dualitywhere f : Rn ! R is onvex and the set X � Rn is nonempty, losedand onvex.The subgradient projetion algorithm is as follows: selet x0 2 X ,and for k = 0; 1; : : : generategk 2 �f(xk); (6.40a)xk+1 = ProjX (xk � �kgk); (6.40b)where the sequene f�kg is generated from one of the following threerules:The �rst rule is termed the divergent series step length rule, andrequires that�k > 0; k = 0; 1; : : : ; limk!1�k = 0; 1Xk=0�k = +1: (6.41)The seond rule adds to the requirements in (6.41) the square-summablerestrition 1Xk=0�2k < +1: (6.42)The onditions in (6.41) allow for onvergene to any point from anystarting point, sine the total step is in�nite, but onvergene is thereforealso quite slow; the additional ondition in (6.42) means fast sequenesare seleted. An instane of the step length formulas whih satis�es both(6.41) and (6.42) is the following:�k =  + �=(k + 1); k = 0; 1; : : : ;where � > 0,  � 0.The third step length rule is�k = �k f(xk)� f�kgkk2 ; 0 < �1 � �k � 2� �2 < 2; (6.43)where f� is the optimal value of (6.39). We refer to this step length for-mula as the Polyak step, after the Russian mathematiian Boris Polyakwho invented the subgradient method in the 1960s together with Er-mol'ev and Shor.How is onvergene established for subgradient optimization meth-ods? As shall be demonstrated in Chapters 11 and 12 onvergene ofalgorithms for problems with a di�erentiable objetive funtion is typi-ally based on generating desent diretions, and step length rules thatresult in the sequene fxkg of iterates being stritly desending in the164



�Subgradient optimization methodsvalue of f . For the non-di�erentiable problem at hand, generating de-sent diretions is a diÆult task, sine it is not true that the negative ofan arbitrarily hosen subgradient of f at a non-optimal vetor x de�nesa desent diretion.In bundle methods one gathers information from more than one sub-gradient (hene the term bundle) around a urrent iteration point sothat a desent diretion an be generated, followed by an inexat linesearh. We onentrate here on the simpler methodology of subgradientoptimization methods, in whih we apply the formula (6.40) where thestep length �k is hosen based on very simple rules.We establish below that if the step length is small enough, an itera-tion of the subgradient projetion method leads to a vetor that is loserto the set of optimal solutions. This tehnial result also motivates theonstrution of the Polyak step length rule, and hene shows that theonvergene of subgradient methods is based on the redution of the Eu-lidean distane to the optimal solutions rather than on the redution ofthe value of the objetive funtion f .Proposition 6.22 (dereasing distane to the optimal set) Suppose thatxk 2 X is not optimal in (6.39), and that xk+1 is given by (6.40) forsome step length �k > 0.Then, for every optimal solution x� in (6.39),kxk+1 � x�k < kxk � x�kholds for every step length �k in the interval�k 2 (0; 2[f(xk)� f�℄=kgkk2): (6.44)Proof. We have thatkxk+1 � x�k2 = kProjX (xk � �kgk)� x�k2= kProjX (xk � �kgk)� ProjX (x�)k2� kxk � �kgk � x�k2= kxk � x�k2 � 2�k(xk � x�)Tgk + �2kkgkk2� kxk � x�k2 � 2�k[f(xk)� f�℄ + �2kkgkk2< kxk � x�k2;where we have utilized the property that the Eulidean projetion is non-expansive (Theorem 4.31), the subgradient inequality (6.33) for onvex165



Lagrangian dualityfuntions, and the bounds on �k given by (6.44).Our �rst onvergene result is based on the divergent series steplength formula (6.41), and establishes onvergene to the optimal solu-tion set X� under an assumption on its boundedness. With the othertwo step length formulas, this ondition will be possible to remove.Reall the de�nition (3.11) of the minimum distane from a vetor toa losed and onvex set; our interest is in the distane from an arbitraryvetor x 2 Rn to the solution set X�:distX� (x) := minimumy2X� ky � xk:Theorem 6.23 (onvergene of subgradient optimization methods, I) Letfxkg be generated by the method (6.40), (6.41). If X� is bounded andthe sequene fgkg is bounded, then ff(xk)g ! f� and fdistX�(xk)g ! 0holds.Proof. We show that the iterates will eventually belong to an arbitrarilysmall neighbourhood of the set of optimal solutions to (6.39).Let Æ > 0 and BÆ := fx 2 Rn j kxk � Æ g. Sine f is onvex, X isnonempty, losed and onvex, andX� is bounded, it follows from [Ro70,Theorem 27.2℄, applied to the lower semi-ontinuous, proper7 and onvexfuntion f + �X8 that there exists an " = "(Æ) > 0 suh that the levelset fx 2 X j f(x) � f� + " g � X� + BÆ=2; this level set is denoted byX". Moreover, sine for all k, kgkk � supsfkgskg < 1, and f�kg ! 0,there exists an N(Æ) suh that �kkgkk2 � " and �kkgkk � Æ=2 for allk � N(Æ).The sequel of the proof is based on indution and is organized asfollows. In the �rst part, we show that there exists a �nite k(Æ) � N(Æ)suh that xk(Æ) 2 X� + BÆ . In the seond part, we establish that if xkbelongs to X� + BÆ for some k � N(Æ) then so does xk+1, by showingthat either distX�(xk+1) < distX�(xk) holds, or xk 2 X" so that xk+1 2X� +BÆ sine the step taken is not longer than Æ=2.Let x� 2 X� be arbitrary. In every iteration k we then havekx� � xk+1k2 = kx� � ProjX (xk � �kgk)k2 (6.45a)� kx� � xk + �kgkk2 (6.45b)= kx� � xkk2 + �k �2gTk (x� � xk) + �k kgkk2� ; (6.45)7A proper funtion is a funtion whih is �nite at least at some vetor and nowhereattains the value �1. See also Setion 1.4.8For any set S � Rn the funtion �S is the indiator funtion of the set S, thatis, �S(x) = 0 if x 2 S; and �S(x) = +1 if x 62 S. See also Setion 13.1.166



�Subgradient optimization methodswhere the inequality follows from the projetion property. Now, suppose2 gTs (x� � xs) + �s kgsk2 < �" (6.46)for all s � N(Æ). Then, using (6.45) repeatedly, we obtain that for anyk � N(Æ), kx� � xk+1k2 < x� � xN(Æ)2 � " kXs=N(Æ)�s;and from (6.40) it follows that the right-hand side of this inequality tendsto minus in�nity as k !1, whih learly is impossible. Therefore,2 gTk (x� � xk) + �k kgkk2 � �" (6.47)for at least one k � N(Æ), say k = k(Æ). From the de�nition of N(Æ), itfollows that gTk(Æ)(x��xk(Æ)) � �". From the de�nition of a subgradient(f. De�nition 6.16) we have that f(x�) � f(xk(Æ)) � gTk(Æ)(x� � xk(Æ)),sine x�;xk(Æ) 2 X . Hene, f(xk(Æ)) � f� + ", that is, xk(Æ) 2 X" �X� +BÆ=2 � X� +BÆ .Now, suppose that xk 2 X�+BÆ for some k � N(Æ). If (6.46) holdsfor s = k, then, by using (6.45), we have that kx� �xk+1k < kx� �xkkfor any x� 2 X�. Hene,distX�(xk+1) � kProjX� (xk)� xk+1k < kProjX� (xk)� xkk= distX�(xk) � Æ:Thus, xk+1 2 X�+BÆ. Otherwise, (6.47) must hold and, using the samearguments as above, we obtain that f(xk) � f� + ", i.e., xk 2 X" �x� +BÆ=2. Askxk+1 � xkk = kProjX (xk � �kgk)� xkk � kxk � �kgk � xkk= �k kgkk � Æ=2whenever k � N(Æ), it follows that xk+1 2 X�+BÆ=2+BÆ=2 = X�+BÆ.By indution with respet to k � k(Æ), it follows that xk 2 X� +BÆfor all k � k(Æ). Sine this holds for arbitrarily small values of Æ > 0and f is ontinuous, the theorem follows.We next introdue the additional requirement (6.42); the resultingalgorithm's onvergene behaviour is now muh more favourable, andthe proof is at the same time less tehnial. 167



Lagrangian dualityTheorem 6.24 (onvergene of subgradient optimization methods, II) Letfxkg be generated by the method (6.40), (6.41), (6.42). IfX� is nonemptyand the sequene fgkg is bounded, then ff(xk)g ! f� and fxkg ! x� 2X� holds.Proof. Let x� 2 X� and k � 1. Repeated appliation of (6.45) yieldskx� � xkk2 � kx� � x0k2 + 2 k�1Xs=0 �sgTs (x� � xs) + k�1Xs=0 �2s kgsk2 :(6.48)Sine x� 2 X� and gs 2 �f(xs) for all s � 0 we obtain thatf(xs) � f� � f(xs) + gTs (x� � xs) ; s � 0; (6.49)and hene that gTs (x� � xs) � 0 for all s � 0. De�ne  := supkfkgkkgand p = P1k=0 �2k, so that kgsk �  for any s � 0 and Pk�1s=0 �2s < p.From (6.48) we then onlude that kx� � xkk2 < kx� � x0k2 + p2 forany k � 1, and thus that the sequene fxkg is bounded.Assume now that there is no subsequene fxkig of fxkgwith fgTki(x��xki)g ! 0. Then there must exist an " > 0 with gTs (x� � xs) � �" forall suÆiently large values of s. From (6.48) and the onditions on thestep lengths it follows that fkx��xskg ! �1, whih learly is impossi-ble. The sequene fxkgmust therefore ontain a subsequene fxkig suhthat fgTki(x� � xki)g ! 0. From (6.49) it follows that ff(xki)g ! f�.The boundedness of fxkg implies the existene of an aumulation pointof the subsequene fxkig, say x1. From the ontinuity of f it followsthat x1 2 X�.To show that x1 is the only aumulation point of fxkg, let Æ > 0and hoose an M(Æ) suh that kx1�xM(Æ)k2 � Æ=2 andP1s=M(Æ) �2s �Æ=(22). Consider any k > M(Æ). Analogously to the derivation of(6.48), and using (6.49), we then obtain thatkx1 � xkk2 � x1 � xM(Æ)2 + k�1Xs=M(Æ)�2skgsk2 < Æ2 + Æ22 2 = Æ:Sine this holds for arbitrarily small values of Æ > 0, we are done.Note that the boundedness ondition on fgkg is ful�lled wheneverwe know before-hand that the sequene fxkg is bounded, suh as in thease when X itself is bounded; f. Proposition 6.17(a).We �nally present the even stronger onvergene properties of thesubgradient projetion method using the Polyak step.168



�Subgradient optimization methodsTheorem 6.25 (onvergene of subgradient optimization methods, III) Letfxkg be generated by the method (6.40), (6.43). If X� is nonempty thenff(xk)g ! f� and fxkg ! x� 2 X� holds.Proof. From Proposition 6.22 follows that the sequene fkxk � x�kgis stritly dereasing for every x� 2 X�, and therefore has a limit. Byonstrution of the step length, in whih the step lengths are boundedaway from zero and 2[f(xk) � f�℄=kgkk2, it follows from the proof ofProposition 6.22 that f[f(xk)� f�℄2=kgkk2g ! 0 must hold. Sine fgkgmust be bounded due to the boundedness of fxkg [Proposition 6.17(a)℄,we have that ff(xk)g ! f�. Further, fxkg is bounded, and due to theontinuity property of f every limit point must then belong to X�.It remains to show that there an be only one limit point. Thisproperty follows from the monotone derease of the distane kxk �x�k.In detail, the proof is as follows. Suppose two subsequenes of fxkgexist, suh that they onverge to two di�erent vetors in X�:fxmig ! x�1; fxlig ! x�2; x�1 6= x�2:We must then have fkxli � x�1kg ! � > 0. Sine x�1 2 X� and thedistane to X� is dereasing, fkxk � x�1kg ! � holds, and in partiularfkxmi � x�1kg ! �, whih is a ontradition.Contrary to the slow onvergene of the subgradient projetion al-gorithms that rely on the divergent series step length rule, under addi-tional onditions on the funtion f a subgradient algorithm based on thePolyak step length (6.43) is geometrially onvergent, in the sense thatthere exist  > 0 and � 2 (0; 1) withkxk � x�k � �k; k = 0; 1; : : : :See Setion 6.9 for referenes to other subgradient algorithms than thosepresented here.6.5.2 Appliation to the Lagrangian dual problemWe remind ourselves that the Lagrangian dual problem is a onavemaximization problem, and that the appearane of the dual funtion issimilar to that of the following example:Let h(x) := minimum fh1(x); h2(x)g, where h1(x) := 4 � jxj andh2(x) := 4� (x� 2)2. Then,h(x) = (4� x; if 1 � x � 4;4� (x� 2)2 if x � 1; x � 4; 169



Lagrangian duality
Figure 6.3: A onvex min-funtion with three piees.f. Figure 6.3.The funtion h is non-di�erentiable at x = 1 and x = 4, sine itsgraph has non-unique supporting hyperplanes there:�h(x) = 8>>>>>><>>>>>>:f4� 2xg; if x < 1;[�1; 2℄ ; if x = 1;f�1g; if 1 < x < 4;[�4;�1℄ ; if x = 4;f4� 2xg; if x > 4:the subdi�erential is here either a singleton (at di�erentiable points) ora losed interval (at non-di�erentiable points).Note the monotonially dereasing nature of the relation x 7! �h(x).Note also that 0 2 �h(1), whene x� = 1 de�nes a maximum over R.Now, let g 2 �q(��), and let U� be the set of optimal solutions to(6.10). Then, U� � f� 2 Rm j gT(�� ��) � 0 g:In other words, any subgradient de�nes a half-spae that ontains theset of optimal solutions; f. Figure 6.4. We therefore know that a smallenough step in the diretion of a subgradient gets us loser to the set ofoptimal solutions; f. Proposition 6.22. But again onsider Figure 6.4:an arbitrary subgradient, like the on depited, may not de�ne an asentdiretion! As we saw in the previous setion, onvergene must be basedon other arguments, like the dereasing distane to U� alluded to aboveand in the previous setion. In the next subsetion we disuss in briefthe generation of asent diretions.We onsider the Lagrangian dual problem (6.10). We suppose, asin the previous setion, that X is ompat so that the in�mum in (6.9)is attained for every � � 0m (whih is the set over whih we wish tomaximize q) and q is real-valued over Rm+ .170



�Subgradient optimization methodsPSfrag replaements
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Lagrangian duality(a) Let f�kg be generated by the method (6.50), (6.41). Then,fq(�k)g ! q�, and fdistU�(�k)g ! 0.(b) Let f�kg be generated by the method (6.50), (6.41), (6.42). Then,f�kg onverges to an optimal solution to (6.10).() Let f�kg be generated by the method (6.50), (6.51). Then, f�kgonverges to an optimal solution to (6.10).Proof. The results follow from Theorems 6.23, 6.24, and 6.25, respe-tively. Note that in the �rst two ases, boundedness onditions wereassumed for X� and the sequene of subgradients. The orrespondingonditions for the Lagrangian dual problem are ful�lled under the CQsimposed, sine they imply that the searh for an optimal solution is doneover a ompat set; f. Theorem 6.9(a) and its proof.6.5.3 The generation of asent diretionsProposition 6.18 shows that the existene of a desent diretion withrespet to the onvex funtion f : Rn ! R at some �x 2 Rn hinges onthe existene of some vetor �p 2 Rn suh that f 0(�x; �p) < 0. Aordingto the de�nition of the diretional derivative and the ompatness of�f(�x), this is equivalent to the statement that gT�p � " < 0 for everyg 2 �f(�x). In the ontext of Lagrangian duality we show below how wean generate an asent diretions for q at some � 2 Rm .De�nition 6.27 (steepest asent diretion) Suppose that the problem(6.4) is feasible, and that the ompatness ondition (6.37) holds. Con-sider the Lagrangian dual problem (6.10), and let � 2 Rm . A vetor�p 2 Rm is a steepest asent diretion ifq0(�; �p) = maximumkpk�1 q0(�;p)holds.Proposition 6.28 (the shortest subgradient yields the steepest asent di-retion) Suppose that the problem (6.4) is feasible, and that the om-patness ondition (6.37) holds. Consider the Lagrangian dual problem(6.10). The diretion �p of steepest asent with respet to q at � is givenbelow, where �g 2 �q(�) is the shortest subgradient in �q(�) with respetto the Eulidean norm: �p = (0m; if �g = 0m;�gk�gk ; if �g 6= 0m:172



�Obtaining a primal solutionProof. By De�nition 6.27 and Proposition 6.19(e), the following stringof equalities and inequalities an easily be veri�ed:maximumkpk�1 q0(�;p) = maximumkpk�1 in�mumg2�q(�) gTp� in�mumg2�q(�) maximumkpk�1 gTp= in�mumg2�q(�) kgk= k�gk: (6.52)If we an onstrut a diretion �p suh that q0(�; �p) = k�gk then by (6.52)�p is the steepest asent diretion. If �g = 0m then for �p = 0m weobviously have that q0(�; �p) = k�gk. Suppose then that �p 6= 0m, and let�p := �g=k�gk. Note thatq0(�;p) = in�mumg2�q(�) gT�p = in�mumg2�q(�) �gTgkgk= 1kgk in�mumg2�q(�) �k�gk2 + �gT(g � �g)	= k�gk+ 1kgk in�mumg2�q(�) �gT(g � �g): (6.53)Sine �g is the shortest vetor in �q(�), then, by the variational inequalityharaterization of the projetion of 0m onto �q(�) established in The-orem 4.23, we obtain that �gT(g � �g) � 0 for every g 2 �q(�). Hene,in�mumg2�q(�) �gT(g � �g) = 0 is ahieved at �g. From (6.53) it then fol-lows that q0(�; �p) = k�gk. We are done.6.6 �Obtaining a primal solutionIt remains for us to show how an optimal dual solution �� an be trans-lated into an optimal primal solution x�. Obviously, onvexity andstrong duality will be needed in general, if we are to be able to utilizethe primal{dual optimality haraterization in Theorem 6.7. It turnsout that the generation of a primal optimum is automati if q is dif-ferentiable at ��, whih is also the ondition under whih the famousLagrange multiplier method works. Unfortunately, in many ases, suhas for most non-stritly onvex optimization problems (like linear pro-gramming), this will not be the ase, and then the translation workbeomes more omplex.We start with the ideal ase. 173



Lagrangian duality6.6.1 Di�erentiability at the optimal solutionThe following results summarize the optimality onditions for the La-grangian dual problem (6.10), and their onsequenes for the availabilityof a primal optimal solution in the absene of a duality gap.Proposition 6.29 (optimality onditions for the dual problem) Suppose that,in the problem (6.4), the ompatness ondition (6.37) holds. Supposefurther that the Lagrangian dual problem has an optimal solution, ��.(a) The dual optimal solution is haraterized by the inlusion0m 2 ��q(��) +NRm+ (��): (6.54)In other words, there then exists � 2 �q(��)|an optimality-haraterizingsubgradient of q at ��|suh that0m � �� ? � � 0m: (6.55)There exists a �nite set of solutions xi 2 X(��) (i = 1; : : : ; k) wherek � m+ 1 suh that� = kXi=1 �ig(xi); kXi=1 �i = 1; �i � 0; i = 1; : : : ; k: (6.56)Hene, we have thatkXi=1 �i��i gi(xi) = 0; j = 1; : : : ;m: (6.57)(b) If there is a duality gap, then q is non-di�erentiable at ��.() If q is di�erentiable at ��, then there is no duality gap. Further,any vetor in X(��) then solves the primal problem (6.4).Proof. (a) The �rst result is a diret statement of the optimality ondi-tions of the onvex and subdi�erentiable program (6.10); the omplemen-tarity onditions in (6.55) are an equivalent statement of the inlusionin (6.54).The seond result is an appliation of Carath�eodory's Theorem 3.8to the ompat and onvex set �q(��).(b) The result is established one () is.() Let �x be any vetor in X(��) for whih rq(��) = g(�x) holds, f.Proposition 6.20(a). We obtain from (6.55) that0m � �� ? g(�x) � 0m:Hene, the pair (�; �x) ful�lls all the onditions stated in (6.12), so that,by Theorem 6.7, �x is an optimal solution to (6.4).174



�Obtaining a primal solutionRemark 6.30 (the non-oordinability phenomenon and deomposition al-gorithms) Many interesting problems do not omply with the onditionsin (); for example, linear programming is one where the Lagrangiandual problem often is non-di�erentiable at every dual optimal solu-tion.9 This is sometimes alled the non-oordinability phenomenon (f.[Las70, DiJ79℄). It was in order to ope with this phenomenon thatDantzig{Wolfe deomposition ([DaW60, Las70℄) and other olumn gen-eration algorithms, Benders deomposition ([Ben62, Las70℄) and general-ized linear programming were developed; notiing that the onvex om-bination of a �nite number of andidate primal solutions are suÆient toverify an optimal primal{dual solution [f. (6.57)℄, methodologies weredeveloped to generate those vetors algorithmially. See also [LPS99℄for overviews on the subjet of generating primal optimal solutions fromdual optimal ones, and [BSS93, Theorem 6.5.2℄ for an LP proedure thatprovides primal feasible solutions for onvex programs.Note that the equation (6.57) in (a) redues to the omplementar-ity ondition that ��i gi(�x) = 0 holds, for the averaged solution, �x :=Pki=1 �ixi, whenever all the funtions gi are aÆne.6.6.2 Everett's TheoremThe next result shows that the solution to the Lagrangian subproblemsolves a perturbed version of the original problem. We state the resultfor the general problem to �ndf� := in�mumx f(x); (6.58)subjet to x 2 X;gi(x) � 0; i = 1; : : : ;m;hj(x) = 0; j = 1; : : : ; `;where f : Rn ! R, gi : Rn ! R (i = 1; 2; : : : ;m), and hj : Rn ! R(j = 1; 2; : : : ; `) are given funtions, and X � Rn .Theorem 6.31 (Everett's Theorem) Let (�;�) 2 Rm+ � R` . Considerthe Lagrangian subproblem tominimizex2X nf(x) + �Tg(x) + �Th(x)o : (6.59)Suppose that �x is an optimal solution to this problem, and let I(�) �f1; : : : ;mg denote the set of indies i for whih �i > 0.9In other words, even if a Lagrange multiplier vetor is known, the Lagrangiansubproblem may not identify a primal optimal solution. 175



Lagrangian duality(a) �x is an optimal solution to the perturbed primal problem tominimizex f(x); (6.60)subjet to x 2 X;gi(x) � gi(�x); i 2 I(�x);hj(x) = hj(�x); j = 1; : : : ; `:(b) If �x is feasible in (6.58) and �Tg(�x) = 0 holds, then �x solves(6.58), and the pair (�;�) then solves the Lagrangian dual problem.Proof. (a) The proof proeeds by showing that the triple (�x;�;�) isa saddle point of the funtion (x;�;�) 7! f(x) + �T[g(x) � g(�x)℄ +�T[h(x)� h(�x)℄ over X � Rm+ � R` .Let x satisfy the onstraints of (6.60). Sine we have that h(x) =h(�x) and �Tg(x) � �Tg(�x), the optimality of �x in (6.59) yieldsf(x) + �Tg(�x) + �Th(�x) � f(x) + �Tg(x) + �Th(x)� f(�x) + �Tg(�x) + �Th(�x);whih shows that f(x) � f(�x). We are done.(b) �Tg(�x) = 0 implies that gi(�x) = 0 for i 2 I(�); from (a) �x solvesthe problem to minimizex f(x); (6.61)subjet to x 2 X;gi(x) � 0; i 2 I(�x);hj(x) = 0; j = 1; : : : ; `:In partiular, then, sine the feasible set of (6.58) is ontained in thatof (6.61) and �x is feasible in the former, �x must also solve (6.58). Thatthe pair (�;�) solves the dual problem follows by the equality betweenthe primal and dual objetive funtions at (�x;�;�), and weak duality.One important onsequene of the result is that if the right-hand sideperturbations gi(�x) and hi(�x) all are lose to zero, the vetor �x beingnear-feasible might mean that it is in fat aeptable as an approximatesolution to the original problem. (This interpretation hinges on thedualized onstraints being soft onstraints, in the sense that a smallviolation is aeptable. See Setion 1.8 for an introdution to the topiof soft onstraints.)176



�Sensitivity analysis6.7 �Sensitivity analysis6.7.1 Analysis for onvex problemsConsider the inequality onstrained onvex program (6.4), where f :Rn ! R and gi (i = 1; : : : ;m) are onvex funtions and X � Rn isa onvex set. Suppose that the problem (6.4) is feasible, and that theompatness ondition (6.37) and Slater ondition (6.16) hold. This isthe lassi ase where there exist multiplier vetors ��, aording toTheorem 6.9, and strong duality holds.For ertain types of problems where the duality gap is zero and wherethere exist primal{dual optimal solutions, we have aess to a beautifultheory of sensitivity analysis. The lassi meaning of the term is theanswer to the following question: what is the rate of hange in f� whena onstraint right-hand side hanges? This question answers importantpratial questions, like the following in manufaturing: If we buy oneunit of additional resoure at a given prie, or if the demand of a produtthat we sell inreases by a ertain amount, then how muh additionalpro�t do we make?We will here provide a basi result whih states when this sensitivityanalysis of the optimal objetive value an be performed for the problem(6.4), and establish that the answer is determined preisely by the valueof the Lagrange multiplier vetor ��, provided that it is unique.De�nition 6.32 (perturbation funtion) Consider the funtion p : Rm !R [ f�1g de�ned byp(u) := in�mumx f(x); (6.62)subjet to x 2 X;gi(x) � ui; i = 1; : : : ;m; u 2 Rm ; (6.63)it is alled the perturbation funtion, or primal funtion, assoiated withthe problem (6.4). Its e�etive domain is the set P := fu 2 Rm j p(u) <+1g.Under the above onvexity onditions, we an establish that p is aonvex funtion. Indeed, it holds that for any value of the Lagrange177



Lagrangian dualitymultiplier vetor �� for the problem (6.4) thatq(��) = in�mumx2X ff(x) + (��)Tg(x)g= in�mumf (u;x)2P�Xjg(x)�u g ff(x) + (��)Tg(x)g= in�mumf (u;x)2P�Xjg(x)�u g ff(x) + (��)Tug= in�mumu2P in�mumfx2Xjg(x)�u g ff(x) + (��)Tug:Sine �� is assumed to be a Lagrange multiplier vetor, we have thatq(��) = f� = p(0m). By the de�nition of in�mum, then, we have thatp(0m) � p(u) + (��)Tu; u 2 Rm ;that is, ��� (notie the sign!) is a subgradient of p at u = 0m (seeDe�nition 6.16). Moreover, by the result in Proposition 6.17(), p isdi�erentiable at 0m if and only if p is �nite in a neighbourhood of 0mand �� is a unique Lagrange multiplier vetor, that is, the Lagrangiandual problem (6.10) has a unique optimal solution. We have thereforeproved the following result:Proposition 6.33 (a sensitivity analysis result) Suppose that in the in-equality onstrained problem (6.4), f : Rn ! R and gi : Rn ! R(i = 1; : : : ;m) are onvex funtions and X � Rn is a onvex set. Sup-pose that the problem (6.4) is feasible, and that the ompatness as-sumption (6.37) and Slater ondition (6.16) hold. Suppose further thatthe perturbed problem de�ned in (6.62) has an optimal solution in aneighbourhood of u = 0m, and that on the set of primal{dual optimalsolutions to (6.4){(6.10), the dual optimal solution �� is unique. Then,the perturbation funtion p is di�erentiable at u = 0m, andrp(0m) = ���holds.It is intuitive that the sign of rp(0m) should be non-positive; if aright-hand side of the (less-than) inequality onstraints in (6.4) inreases,then the feasible set beomes larger. [This means that we might be ableto �nd feasible vetors x in the new problem with f(x) < f�, wheref� = p(0) is the optimal value of the minimization problem (6.4).℄The result speializes immediately to linear programming problems,whih is the problem type where this type of analysis is most oftenutilized. The proof of di�erentiability of the perturbation funtion atzero for that speial ase an however be done muh more simply. (SeeSetion 10.3.1.)178



�Sensitivity analysis6.7.2 Analysis for di�erentiable problemsThere exist loal versions of the analysis valid also for non-onvex prob-lems, where we are interested in the e�et of a problem perturbationon a KKT point. A speial suh analysis was reently performed byBertsekas [Ber04℄, in whih he shows that even when the problem isnon-onvex and the set of Lagrange multipliers are not unique, a sensi-tivity analysis is available as long as data is di�erentiable. Suppose thenthat in the problem (6.4) the funtions f and gi, i = 1; : : : ;m are inC1 and that X is nonempty. We generalize the onept of a Lagrangemultiplier vetor to here mean that it is a vetor �� assoiated with aloal minimum x� suh that rf(x�) + mXi=1 ��irgi(x�)!T p � 0; p 2 TX(x�); (6.64a)��i � 0; i = 1; : : : ;m; (6.64b)��i = 0; i 62 I(x�); (6.64)where TX(x�) is the tangent one to X at x� (f. De�nition 5.2). Notethat under an appropriate CQ this is equivalent to the KKT onditions,in whih ase we are simply requiring here that x� is a loal minimum.In the below result we utilize the notationg+i (x) := maximum f0; gi(x)g; i = 1; : : : ;m;and let g+(x) be the m-vetor of elements g+i (x), i = 1; : : : ;m.Theorem 6.34 (sensitivity from the minimum norm multiplier vetor) Supposethat x� is a loal minimum in the problem (6.4), and that the set of La-grange multipliers is nonempty. Let �� denote the Lagrange multipliervetor of minimum Eulidean norm. Then, for every sequene fxkg � Xof infeasible vetors suh that fxkg ! x� we have thatf(x�)� f(xk) � k��k � kg+(xk)k+ o(kxk � x�k): (6.65)Furthermore, if �� 6= 0m and TX(x�) is onvex, the above inequalityis sharp in the sense that there exists a sequene of infeasible vetorsfxkg � X suh that limk!1 f(x�)� f(xk)kg+(xk)k = k��k;and for this sequenelimk!1 g+i (xk)kg+(xk)k = ��ik��k ; i = 1; : : : ;m; 179



Lagrangian dualityholds.Theorem 6.34 establishes the optimal rate of ost improvement withrespet to infeasible onstraint perturbations (in e�et, those that implyan enlargement of the feasible set).We �nally remark that under stronger onditions still, even the op-timal solution x� is di�erentiable. Suh a result is reminisent to theImpliit Funtion Theorem, whih however only overs equality systems.If we are to study the sensitivity of x� to hanges in the right-hand sidesof inequality onstraints as well, then the analysis beomes ompliateddue to the fat that we must be able to predit if some ative onstraintsmay beome inative in the proess. In some irumstanes, di�erent di-retions of hange in the right-hand sides may ause di�erent subsets ofthe ative onstraints I(x�) at x� to beome inative, and this wouldmost probably then be a non-di�erentiable point. A suÆient ondition(but not neessary, at least in the ase of linear onstraints) for this tonot happen is when x� is stritly omplementary, that is, when thereexists a multiplier vetor �� with ��i > 0 for every i 2 I(x�).6.8 AppliationsWe provide two example appliations of Lagrangian duality. The �rstdesribes the primal{dual relationship between urrents and voltages inan eletrial network of devies (voltage soures, diodes, and resistors);this appliation illustrates that Lagrange multipliers often have diretinterpretations. The seond appliation onerns a lassi ombinatorialoptimization problem: the traveling salesman problem. We show howto approximately solve this problem through Lagrangian relaxation andsubgradient optimization.6.8.1 Eletrial networksAn eletrial network (or, iruit) is an interonnetion of analog ele-trial elements suh as resistors, indutors, apaitors, diodes, and tran-sistors. Its size varies from the smallest integrated iruit to an entireeletriity distribution network. A iruit is a network that has at leastone losed loop. A network is a onnetion of 2 or more simple iruitelements, and may not be a iruit. The goal when designing eletrialnetworks for signal proessing is to apply a prede�ned operation on po-tential di�erenes (measured in volts) or urrents (measured in amperes).Typial funtions for these eletrial networks are ampli�ation, osil-lation and analog linear algorithmi operations suh as addition, sub-tration, multipliation, and division. In the ase of power distribution180



Appliationsnetworks, engineers design the iruit to transport energy as eÆientlyas possible while at the same time taking into aount eonomi fators,network safety and redundany. These networks use omponents suhas power lines, ables, iruit breakers, swithes and transformers.To design any eletrial iruits, eletrial engineers need to be ableto predit the voltages and urrents in the iruit. Linear iruits (thatis, an eletrial network where all elements have a linear urrent{voltagerelation) an be quite easily analyzed through the use of omplex num-bers and systems of linear equations,10 while nonlinear elements requirea more sophistiated analysis. The lassi eletrial laws desribingthe equilibrium state of an eletrial network are due to G. Kirhho�[Kir1847℄; referred to as Kirhho�'s iruit laws they express in a math-ematial form the onservation of harge and energy.11Formally, we let an eletrial iruit be desribed by branhes (or,links) onneting nodes. We present a simple example where the onlydevies are voltage soures, resistors, and diodes. The resulting equi-librium onditions will be shown to be represented as the solution to astritly onvex quadrati program. In general, devies suh as resistorsan be non-linear, but linearity is assumed throughout this setion.� A voltage soure maintains a onstant branh voltage vs irrespe-tive of the branh urrent s. The power absorbed by the devieis �vss.� A diode permits the branh urrent d to ow in one diretion only,but onsumes no power regardless of the urrent or voltage on thebranh. Denoting the branh voltage by vd, the diretion onditionan be stated as a omplementarity ondition:d � 0; vd � 0; vdd = 0: (6.66)� A resistor onsumes power in relation with its resistane, denotedby Rr. We reognize the following law desribing the relationshipbetween the branh urrent and voltage in a linear resistor:vr = �Rrr: (6.67)The power onsumed is given by�vrr = v2rRr = Rr2r; (6.68)where we have utilized (6.67) to derive two alternative relations.10For suh networks already Maxwell [Max1865℄ had stated equilibrium onditions.11These laws an be derived from Maxwell's equations, but Kirhho� preededMaxwell and derived his equations from work done by G. Ohm. 181



Lagrangian dualityWe must be areful about the diretion of ow of urrents and volt-ages, and thus de�ne, for eah type of devie, a node{branh inidenematrix of the formnij := 8><>:�1; if branh j has node i as its origin;1; if branh j ends in node i;0; otherwise:The interpretation of a urrent ow variable is that the diretion isfrom the negative to the positive terminal of the devie, that is, fromthe origin to the ending node of the branh; a negative variable valuewill therefore orrespond to a ow in the opposite diretion. Note thatfor the diodes, the latter is not allowed, as seen in (6.66).For the three types of devies we hene yield inidene matriesdenoted by NS , NR, and ND, reating a partitioned matrix N =[NSNDNR℄. Similarly, we let  = (TS ; TD ; TR)T and v = (vTS ;vTD;vTR)Trepresent the vetors of branh urrents and voltages. We also let p =(pTS ;pTD;pTR)T denote the vetor of node potentials. Before stating theoptimization problem whose minimum desribes the equilibrium of thesystem, we reall the two fundamental equilibrium laws:Kirhho�'s urrent law: The sum of all urrents entering a node is equalto the sum of all urrents leaving the node. In other words, N = 0,or,12 NSS +NDD +NRR = 0: (6.69)Kirhho�'s voltage law: The di�erene between the node potentials atthe ends of eah branh is equal to the branh voltage. In other words,NTp = v, or,13 NTS p = vS ; (6.70a)NTDp = vD; (6.70b)NTRp = vR: (6.70)We summarize the equations representing the harateristis of theeletrial devies as follows: For the diodes, (6.66) yieldsvD � 0; D � 0; vTDD = 0: (6.71)For the resistors, (6.67) yieldsvR = �RR; (6.72)12This law is also referred to as the �rst law, the point rule, the juntion rule, andthe node law.13This law is a orollary to Ohm's law, and is also referred to as the loop law.182



AppliationsR being the diagonal matrix with elements equal to the values Rr.Hene, (6.69){(6.72) represent the equilibrium onditions of the ir-uit. We will now desribe the optimization problem whose optimalityonditions are, preisely, (6.69){(6.72) [note that vS is �xed℄:minimize 12TRRR � vTSS ; (6.73)subjet to NSS +NDD +NRR = 0;�D � 0:In the problem (6.73) we wish to determine branh urrents S , D,and R so as to minimize the sum of half the energy absorbed in the re-sistors and the energy loss of the voltage soure. Note the sign onditionon the diode urrents.Note that this is a onvex program with linear onstraints, and thusthe KKT onditions are both neessary and suÆient for the global op-timality of the urrents. It is instrumental to hek that the KKT ondi-tions for (6.73) are given by (6.69){(6.72), where the Lagrangemultipliersare given by (pT;vTD)T.In the disussion terminating in the Strong Duality Theorem 6.13,we showed that the Lagrangian dual of a stritly onvex quadrati opti-mization problem is yet another onvex quadrati optimization problem.In our ase, following that development, we an derive the following dualoptimization problem in terms of the node potentials p (notie, again,that vS is �xed): maximize � 12vTRR�1vR; (6.74)subjet to NTS p = vS ;NTDp� vD = 0;NTRp� vR = 0;vD � 0:In the dual problem (6.74) the matrix R�1 is the diagonal matrix ofondutanes. The objetive funtion is equivalent to the minimizationof the power absorbed by the resistors, and we wish to determine thebranh voltages vD and vR, and the potential vetor p.Verify that the KKT onditions for this problem, again, redue tothe equilibrium onditions (6.69){(6.72). In other words, the Lagrangemultipliers for the dual problem (6.74) are the (primal) branh urrents.183



Lagrangian dualityFinally, let us note that by Theorem 6.13(a) the two problems (6.73)and (6.74) have the same objetive value at optimality. That is,12TRRR + 12vTRR�1R � vTSS = 0:By (6.71){(6.72), the above equation redues tovTSS + vTDD + vTRR = 0;whih is preisely the priniple of energy onservation.6.8.2 A Lagrangian relaxation of the traveling sales-man problemLagrangian relaxation has shown to be remarkably eÆient for someombinatorial optimization problems. This is surprising when takinginto aount that suh problems are integer or mixed-integer problems,whih su�er from non-zero duality gaps in general. What then lies behindtheir popularity?� One an show that Lagrangian relaxation of an integer program isalways at least as good as that of a ontinuous relaxation14 (in thesense that the value of fR is higher for Lagrangian relaxation thanfor a ontinuous relaxation);� Together with heuristis for �nding primal feasible solution, goodfeasible solutions are often found;� The Lagrangian relaxed problems an be made omputationallymuh simpler than the original problem, while still keeping a lotof the struture of the original problem.6.8.2.1 The traveling salesman problemLet the graph G = (N ;L) be de�ned by a number of ities (or, nodes)i 2 N and undireted links in between subsets of pairs of them: (i; j) 2L � N �N . Notie that the links (i; j) and (j; i) are idential, and arein L represented by one non-direted link only.Let ij denote the distane between the ities i and j, fi; jg � N .We introdue the following binary variables:xij := (1; if link (i; j) is part of the TSP tour;0; otherwise; (i; j) 2 L:14The ontinuous relaxation amounts to removing the integrality onditions, re-plaing, for example, xj 2 f0; 1g by xj 2 [0; 1℄.184



AppliationsWith these de�nitions, the undireted traveling salesman problem(TSP) is tominimizex X(i;j)2L ijxij ; (6.75a)subjet to X(i;j)2L:fi;jg�S xij � jSj � 1; S � N ; (6.75b)X(i;j)2Lxij = n; (6.75)Xi2N :(i;j)2L xij = 2; j 2 N ; (6.75d)xij 2 f0; 1g; (i; j) 2 L: (6.75e)The onstraints have the following interpretation: (6.75b) impliesthat there an be no sub-tours, that is, a tour where fewer than n itiesare visited (if S � N then there an be at most jSj � 1 links betweennodes in the set S, where jSj is the ardinality{number of members{ofthe set S); (6.75) implies that in total n ities must be visited; and(6.75d) implies that eah ity is onneted to two others, suh that wemake sure to arrive from one ity and leave for the next.This problem is NP-hard, whih implies that there is no knownpolynomial algorithm for solving it. We resort therefore to the useof relaxation tehniques, in partiular Lagrangian relaxation. We havemore than one alternative relaxation to perform: If we Lagrangian re-lax the tree onstraints (6.75b) and (6.75) the remaining problem is a2-mathing problem; it an be solved in polynomial time. If we insteadLagrangian relax the degree onstraints (6.75d) for every node exept forone node the remaining problem is a 1-MST problem, that is, a speialtype of minimum spanning tree problem.The following de�nition is lassi: a Hamiltonian path (respetively,yle) is a path (respetively, yle) whih passes every node in the graphexatly one. Every Hamiltonian yle is a Hamiltonian path from a nodes to another node, t, followed by a link (t; s); a subgraph whih onsistsof a spanning tree plus an extra link suh that all nodes have degree two.This is then a feasible solution to the TSP.A 1-MST problem is the problem to �nd an MST in the graph thatexludes node s, followed by the addition of the two least expensive linksfrom node s to that tree. If all nodes happen to get degree two, thenthe 1-MST solution is a traveling salesman tour (that is, a Hamiltonianyle). The idea behind solving the Lagrangian dual problem is thento �nd proper multiplier values suh that the Lagrangian relaxation willprodue feasible solutions. 185



Lagrangian duality6.8.2.2 Lagrangian relaxation of the traveling salesman prob-lemSuppose that we Lagrangian relax the degree onstraints (3), exept fornode 1. We assume that the starting node for the trip, node s 2 N , andall the links in L onneted to it, have been removed temporarily (inthe 1-MST, this data is re-introdued later), but without hanging thenotation to reet this.The subproblem is the following: a 1-MST de�ned byq(�) = minimumx X(i;j)2L ijxij +Xj2N �j 0�2� Xi2N :(i;j)2Lxij1A= 2Xj2N �j +minimumx X(i;j)2L(ij � �i � �j)xij :We see immediately the role of the Lagrange multipliers: a high (low)value of the multiplier �j makes node j attrative (unattrative) in theabove 1-MST problem, and will therefore lead to more (less) links beingattahed to it.When solving the Lagrangian dual problem, we will use the lassof subgradient optimization methods, an overview of whih is found inSetion 6.5.What is the updating step in the subgradient method, and what is itsinterpretation? It is as usual an update in the diretion of a subgradient,that is, the diretion ofhi(x(�)) := 2� Xi2N :(i;j)2Lxij(�); i 2 N ;where the value of xij 2 f0; 1g is the solution to the 1-MST solutionwith link osts ij � �i � �j . We see from the diretion formula that�newj := �j + �0�2� Xi2N :(i;j)2Lxij(�)1A ; j 2 N ;where � > 0 is a step length. It is interesting to investigate what theupdate means:urrent degree at node j : 8<: > 2 =) �j # (link ost ")= 2 =) �j � (link ost onstant)< 2 =) �j " (link ost #)In other words, the updating formula in a subgradient method issuh that the link ost in the 1-MST subproblem is shifted upwards186



Appliations(downwards) if there are too many (too few) links onneted to node jin the 1-MST. We are hene adjusting the node pries of the nodes insuh a way as to try to inuene the 1-MST problem to always hoose 2links per node to onnet to.6.8.2.3 A feasibility heuristiA feasibility heuristi takes the optimal solution from the Lagrangianminimization problem over x and adjusts it suh that a feasible solutionto the original problem is onstruted. As one annot predit if, or when,a primal feasible solution will be found diretly from the subproblem, theheuristi will provide a solution that an be used in plae of an optimalone, should one not be found. Moreover, as we know from Lagrangianduality theory, we then have aess to both lower and upper bounds onthe optimal value f� of the original problem, and so we have a qualitymeasure of the feasible solutions found.A feasibility heuristi whih an be used together with our Lagrangianheuristi is as follows.Identify a path in the 1-MST with many links. Then form a subgraphwith the remaining nodes and �nd a path that passes all of them. Put thetwo paths together in the best way. The resulting path is a Hamiltonianyle, that is, a feasible solution.6.8.2.4 The Philips exampleIn 1987{1988 an M.S. projet was performed at the department ofmathematis at Link�oping University, in ooperation with the ompanyPhilips, Norrk�oping. The projet was initiated with the goal to improvethe urrent pratie of solving a prodution planning problem.The problem was as follows: Philips produe iruit boards, perhapsseveral hundreds or thousands of the same type. There is a new bath ofpatterns (holes) to be drilled every day, and perhaps even several suhbathes per day.In order to speed up the prodution proess the drilling mahine isonneted to a miroomputer that selets the ordering of the holes tobe drilled automatially, given their oordinates. The algorithm for per-forming the sorting used to be a simple sorting operation that found,for every �xed x-oordinate, the orresponding y-oordinates and sortedthem in inreasing order. The movement of the drill was therefore fromleft to right, and for eah �xed x-oordinate the movement was vertial.The time it took to drill the holes on one iruit board was, however,far too long, simply beause the drill traveled around a lot without per-forming any tasks, following a path that was too long. (On the other187



Lagrangian dualityhand, the atual ordering was very fast to produe!) All in all, the om-plete bath prodution took too long beause of the poorly planned drillmovement.It was observed that the prodution planning problem is a travel-ing salesman problem, where the ities are the holes to be drilled, andthe distanes between them orrespond to the Eulidean distanes be-tween them. Therefore, an eÆient TSP heuristi was devised and im-plemented, for use in onjuntion with the miroomputer. In fat, itwas based on preisely the above Lagrangian relaxation, a subgradientoptimization method, and a graph-searh type heuristi of the form dis-ussed above.A typial run with the algorithm took a few minutes, and was alwaysstopped after a �xed number of subgradient iterations; the generation offeasible solutions with the above-mentioned graph searh tehnique wasperformed at every Kth iteration, where K was set to a value stritlylarger than one. (Moreover, feasible solutions were not generated duringthe �rst iterations of the dual proedure, beause of the poor quality of�k for low values of k; it is often the ase that the traveling salesmantour resulting from the heuristi is better when the multipliers are near-optimal in the Lagrangian dual problem.)In one of the examples implemented it was found that the optimalpath length was in the order to 2 meters, and that the upper and lowerbounds on f� produed lead to the onlusion that the relative error ofthe path length of the best feasible solution found was less than 7 %, aquite good result, also showing that the duality gap for the problem athand (together with the Lagrangian relaxation hosen) is quite small.After implementing the new proedure, Philips ould report an in-rease in prodution by some 70 %. Hene, the slightly longer time ittook to provide a better prodution plan, that is, the traveling salesmantour for the drill to follow, was more than well ompensated by the fatthat the drilling ould be done muh faster.Here is hene an interesting ase where Lagrangian relaxation helpedto solve a large-sale, omplex and diÆult problem by utilizing problemstruture.6.9 Notes and further readingLagrangian duality has been developed in many soures, inluding earlydevelopments by Arrow, Hurwiz, and Uzawa [AHU58℄, Everett [Eve63℄,and Falk [Fal67℄, and later on by Rokafellar [Ro70℄. Our developmentfollows to a large extent that of portions of the text books by Bert-sekas [Ber99℄, Bazaraa et al. [BSS93℄, and Rokafellar [Ro70℄.188



ExerisesThe Relaxation Theorem 6.1 an almost be onsidered to be folklore,and an be found in a slightly di�erent form in [Wol98, Proposition 2.3℄.The di�erentiability properties of onvex funtions were developedlargely by Rokafellar [Ro70℄, whose text we mostly follow.Subgradient methods were developed in the Soviet Union in the1960s, predominantly by Ermol'ev, Polyak, and Shor. Text book treat-ments of subgradient methods are found, for example, in [Sho85, HiL93,Ber99℄. Theorem 6.23 is essentially due to Ermol'ev [Erm66℄; the proofstems from [LPS96℄. Theorem 6.24 is due to Shepilov [She76℄; �nally,Theorem 6.25 is due to Polyak [Pol69℄.Everett's Theorem is due to Everett [Eve63℄.Theorem 6.34 stems from [Ber04, Proposition 1.1℄.That the equilibrium onditions of an eletrial or hydrauli networkare attained as the minimum of the total energy loss were known morethan a entury ago. Mathematial programming models for the eletri-al network equilibrium problems desribed in Setion 6.8.1 date at leastas far bak as to DuÆn [Duf46, Duf47℄ and d'Auria [dAu47℄. DuÆnonstruts his objetive funtion as a sum of integrals of resistane fun-tions. The possibility of viewing the equilibrium problem in at least tworelated, dual, ways as that of either �nding the optimal ows of urrentsor the optimal potentials was also known early in the analysis of eletri-al networks; these two priniples are written out in [Cro36℄ in work onpipe networks, and expliitly stated as a pair of primal{dual quadratiprogramming problems in [Den59℄; we followed his development, as rep-resented in [BSS93, Setion 1.2.D℄.The traveling salesman problem is an essential model problem inombinatorial optimization. Exellent introdutions to the �eld an befound in [Law76, PaS82, NeW88, Wol98, Sh03℄. It was the work in[HWC74, Geo74, Fis81, Fis85℄, among others, in the 1970s and 1980s onthe traveling salesman problem and its relatives that made Lagrangianrelaxation and subgradient optimization popular, and it remains mostpopular within the ombinatorial optimization �eld.6.10 ExerisesExerise 6.1 (numerial example of Lagrangian relaxation) Consider theonvex problem to minimize 1x1 + 4x2 ;subjet to x1 + x2 � 4;x1; x2 � 0: 189



Lagrangian duality(a) Lagrangian relax the �rst onstraint, and write down the resultingimpliit dual objetive funtion and the dual problem. Motivate why therelaxed problem always has a unique optimum, whene the dual objetivefuntion is everywhere di�erentiable.(b) Solve the impliit Lagrangian dual problem by utilizing that thegradient to a di�erentiable dual objetive funtion an be expressed byusing the funtions that are involved in the relaxed onstraints and theunique solution to the relaxed problem.() Write down an expliit Lagrangian dual problem, that is, a dualproblem only in terms of the Lagrange multipliers. Solve it, and on�rmthe results in (b).(d) Find the original problem's optimal solution.(e) Show that strong duality holds.Exerise 6.2 (global optimality onditions) Consider the problem tominimize f(x) := x1 + 2x22 + 3x33;subjet to x1 + 2x2 + x3 � 3;2x21 + x2 � 2;2x1 + x3 = 2;xj � 0; j = 1; 2; 3:(a) Formulate the Lagrangian dual problem that results from La-grangian relaxing all but the sign onstraints.(b) State the global primal{dual optimality onditions.Exerise 6.3 (Lagrangian relaxation) Consider the problem tominimize f(x) := x21 + 2x22;subjet to x1 + x2 � 2;x21 + x22 � 5:Find an optimal solution through Lagrangian duality.Exerise 6.4 (Lagrangian relaxation) In many irumstanes it is of in-terest to alulate the Eulidean projetion of a vetor onto a subspae.Espeially, onsider the problem to �nd the Eulidean projetion of thevetor y 2 Rn onto the null spae of the matrix A 2 Rm�n , that is, to�nd an x 2 Rn that solves the problem tominimize f(x) := 12ky � xk2;subjet to Ax = 0m;190



Exeriseswhere A is suh that rankA = m.The solution to this problem is lassi: the projetion is given byx� = y �AT(AAT)�1Ay:If we let P := In�AT(AAT)�1A, where In 2 Rn�n is the unit matrix,be the projetion matrix, the formula is simply x� = Py.Your task is to derive this formula by utilizing Lagrangian duality.Motivate every step made by showing that the neessary properties areful�lled.[Note: This exerise is similar to that in Example 5.51, but utilizesLagrangian duality rather than the KKT onditions to derive the pro-jetion formula.℄Exerise 6.5 (Lagrangian relaxation, exam 040823) Consider the follow-ing linear optimization problem:minimize f(x; y) := x� 0:5y;subjet to �x+ y � �1;�2x+ y � �2;(x; y) 2 R2+ :(a) Show that the problem satis�es Slater's onstraint quali�ation.Derive the Lagrangian dual problem orresponding to the Lagrangianrelaxation of the two linear inequality onstraints, and show that its setof optimal solutions is onvex and bounded.(b) Calulate the set of subgradients of the Lagrangian dual funtionat the dual points (1=4; 1=3)T and (1; 0)T.Exerise 6.6 (Lagrangian relaxation) Provide an expliit form of the La-grangian dual problem for the problem tominimize mXi=1 nXj=1 xij lnxijsubjet to mXi=1 xij = bj ; j = 1; : : : ; n;nXj=1 xij = ai; i = 1; : : : ;m;xij � 0; i = 1; : : : ;m; j = 1; : : : ; n;where ai > 0, bj > 0 for all i; j, and where the linear equalities areLagrangian relaxed. 191



Lagrangian dualityExerise 6.7 (Lagrangian relaxation) Given is the problem tominimizex f(x) = 2x21 + x22 + x1 � 3x2; (6.76a)subjet to x21 + x2 � 8; (6.76b)x1 2 [1; 3℄; (6.76)x2 2 [2; 5℄: (6.76d)Lagrangian relax the onstraint (6.76b) with a multiplier �. Formu-late the Lagrangian dual problem and alulate the dual funtion's valueat � = 1, � = 2, and � = 3. Within whih interval lies the optimal valuef�? Also, draw the dual funtion.Exerise 6.8 (Lagrangian duality for integer problems) Consider the pri-mal problem to minimize f(x);subjet to g(x) � 0m;x 2 X;whereX � Rn , f : Rn ! R, and g : Rn ! Rm . If the restritions g(x) �0m are ompliating side onstraints whih are Lagrangian relaxed, weobtain the Lagrangian dual problem tomaximize��0m q(�);where q(�) := minimumx2X ff(x) + �Tg(x)g; � 2 Rm :(a) Suppose that the set X is �nite (for example, onsisting of a�nite number of integer vetors). Denote the elements of X by xp,p = 1; : : : ; P . Show that the dual objetive funtion is piee-wise linear.How many linear segments an it have, at most? Why is it not alwaysbuilt up by that many segments?[Note: This property holds regardless of any properties of f and g.℄(b) Illustrate the result in (a) on the linear 0/1 problem to �ndz� = maximum z = 5x1 + 8x2 + 7x3 + 9x4;subjet to 3x1 + 2x2 + 2x3 + 4x4 � 5;2x1 + x2 + 2x3 + x4 = 3;x1 ; x2 ; x3 ; x4 = 0=1;where the �rst onstraint is onsidered ompliating.() Suppose that the funtion f and all omponents of g are linear,and that the set X is a polytope (that is, a bounded polyhedron). Showthat the dual objetive funtion is also in this ase piee-wise linear.How many linear piees an it be built from, at most?192



ExerisesExerise 6.9 (Lagrangian relaxation) Consider the problem tominimize z = 2x1 + x2;subjet to x1 + x2 � 5;x1 � 4;x2 � 4;x1 ; x2 � 0; integer:Lagrangian relax the �rst onstraint. Desribe the Lagrangian funtionand the dual problem. Calulate the Lagrangian dual funtion at thesefour points: � = 0; 1; 2; 3. Give the best lower and upper bounds on theoptimal value of the original problem that you have found.Exerise 6.10 (surrogate relaxation) Consider an optimization problemof the form minimize f(x);subjet to gi(x) � 0; i = 1; : : : ;m; (P )x 2 X;where the funtions f; gi : Rn ! R are ontinuous and the set X � Rnis losed and bounded. The problem is assumed to have an optimalsolution, x�. Introdue parameters �i � 0, i = 1; : : : ;m, and de�nes(�) := minimum f(x);subjet to �Tg(x) � 0; (S)x 2 X:This problem therefore has exatly one expliit onstraint.(a) [weak duality℄ Show that x� is a feasible solution to the problem(S) and that s(�) � f� therefore always holds, that is, the problem (S) isa relaxation of the original one. Motivate also why maximum��0m s(�) �f� must hold. Explain the potential usefulness of this result!(b) [example℄ Consider the linear 0/1 problemz� = maximum z =5x1+8x2+7x3+9x4;subjet to 3x1+2x2+3x3+ 3x4 � 6; (1)2x1+3x2+3x3+ 4x4 � 5; (2)2x1+ x2+2x3+ x4 = 3;x1 ; x2 ; x3 ; x4 2 0=1:Surrogate relax the onstraints (1) and (2) with multipliers �1; �2 � 0and formulate the problem (S). Let �� = (1; 2)T. Calulate s(��). 193



Lagrangian dualityConsider again the original problem and Lagrangian relax the on-straints (1) and (2) with multipliers �1; �2 � 0. Calulate the Lagrangiandual objetive value at � = ��.Compare the two results!() [omparison with Lagrangian duality℄ Let � � 0m andq(�) := minimumx2X ff(x) + �Tg(x)g:Show that q(�) � s(�), and thatmaximum��0m q(�) � maximum��0m s(�) � f�holds.
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