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\ A standard LP problem and its Lagrangian Q:m_j

vrp = minimum c'x,
subject to Ax < b,
Dzx <d,
z e RY.
o We suppose for now that X is bounded.

o Let Px :={x', x? ... X} be the set of extreme
points in the polyhedron X :={x € R} | Az < b}.
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e Its Lagrangian dual with respect to Lagrangian
relaxing the constraints Dx < d is to find
vpp = vr = maximum q(u),

subject to pu > 0,
where

i T T _
q(p) == minimum {c'z+ p"(Dz—d)}

. T i , T i
pu— I& .
minimum {c"z' + p" (Dx )}

e Equivalent statement:

q(p) < 'z’ + pt (D' — d), i€ Px, p>0.

~

/

\o So, J

v = maximum z,
subject to z < cla’ + teﬁu&& —d), 1 € Py,
©> 0.

e We know that if at an optimal dual solution p*, the set
X (p*) is a singleton, then thanks to strong duality this
solution is optimal (and it is unique!). This typically
does not happen, unless an optimal solution «* happens
to be an extreme point of X. We know, however, that
x* always can be written as a convex combination of

such points. Let’s see how it can be generated.

o \




\ A cutting plane method for the Lagrangian Q:m_/
problem

e Suppose only a subset of Py is known, and consider the
following restriction of the Lagrangian dual problem:

A= max z, (1a)
st. 2<c'z' +pt(Dz' —d), i=1,...,k (1b)
p > 0. (1c)

e How do we determine if we have found the optimal

solution? And what IS the optimal solution when we
find it?

/o Let (pu*+1) 2¥*1) be the solution to the above EoE@E.\

then p**1 is optimal in the dual! Why?

e How to check optimality: find the most violated dual
constraint! That is, solve the subproblem to find

zeX
= minimum {c'z’ + (u**")" (D2’ — d)} .
i€Px
o If 2F+1 < g(uF*1) then p**?! is optimal in the dual;
otherwise, we have identified a constraint of the form
z < clz' + put(Dx' — d), where i € Px, which is
/ violated at (p**1, 25*1). Add this inequality and

\ If 28 < el + (pr )T (D' — d) holds for all i € Nx/

)

g(p*) := minimum {c"z + (") (Dz —d)} (2)

\

\ re-solve the LP problem! /

e We refer to this algorithm as a cutting plane algorithm,
for the reason that it is based on adding constraints to
the dual problem in order to improve the solution, in

the process cutting off the previous point.

e Consider the below picture. The think lines correspond
to the subset of k inequalities known at iteration k.

~




\ e Obviously, z°*! > ¢(p**') must hold, because of the /
possible lack of constraints. In this case, 25T > g(u**!)

holds, so in the next step when we evaluate q(p**1)

we
can identify and add the last lacking inequality; the
resulting maximization will then yield the optimal

solution p* shown in the picture.

e What is the relationship to the standard simplex
method?

e How do we generate a primal optimal solution from
this scheme? Let us look at the dual of the problem (1)
in this cutting plane algorithm.

N /

\ Duality relationships and the Dantzig—Wolfe /
algorithm

e We rewrite the problem (1) as follows:

maximize z,
(z.1)

subject to z — pu*(Dx' —d) < c'x', i=1,...,k,
p=>0.

N /

\ o With LP dual variables A; > 0 for the linear /
constraints, we obtain the LP dual to find

k
v = minimum M (cTx) N\,
i=1

subject to Muv:. =1,

that is,

N /
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4 N

k
¥ = minimum ¢’ M x|, (3)

subject to Mv:. =1,
A >0, 1=1,...,k,
k
D> xa') <d.
i=1

e We maximize ¢'z subject to x lying in the convex hull
of the extreme points x¢ found so far and fulfilling the

constraints that are Lagrangian relaxed.

- /
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\ e The problem (3) is known as the restricted master / \ e Three algorithms which are “dual” to each other: /
problem (RMP) in the Dantzig—Wolfe algorithm.

e In this algorithm, we have at hand a subset {1,...,k} Cutting plane applied to the Lagrangian dual
of extreme points of X (and a dual vector p*), and find —
a feasible solution to the original LP problem by solving Dantzig-Wolfe applied to the original LP
the restricted master problem (3). We then generate an —
optimal dual solution p**! to this restricted problem Benders decomposition applied to the dual LP.

problem, corresponding to the constraints Dax < d. If
and only if the vector x* generated in the next
subproblem (2) was already included, we have found
the optimal solution to the problem.

N / N /
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\ Column generation / \ Basic feasible solutions J
An LP with very many variables  ¢;,z; € R, aj,b € R™, B = {m elements from the set {1,...,n}} is a basis if the
m<Ln corresponding matrix B = (a;);cp has an inverse, B~

n A basic solution is given by £z = B~'b and z;=0,5¢B.
IMINImze = = M CiTj It is feasible if g > 0™
j=1

n A better basic feasible solution can be found by computing
subject to MU a;z;=>b reduced costs: ¢; = c¢; — cyB 'a; for j ¢ B
=1
! 2 >0 1 Let ¢; = minimum c¢;
;= U, J=1...,n Jj¢B

. . If ¢, < 0 = a better solution is received if x, enters the
The matrix (aq,...,a,) is too large to handle. Assume

that m is relatively small = the basic matrix is not too

@ﬁmm (m x m) K /ﬁ ¢s > 0 = xp is an optimal basic solution K

basis




h:@@o% the columns a; are defined by a set /
S={a;|j=1,...,n} being, e.g., solutions to a system of
equations (extreme points, integer points, ...)

The incoming column is then chosen by solving a
“subproblem”:
Let c(a;) = ¢;;

cla(B)) = EWE@CE c(a) — c;B 'a}
ac

a(B) is a column having the least reduced cost w.r.t. the
basis B

c(a(B))
a(B)

N /

If é(a(B)) < 0 let the column enter problem
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\ Example: Cutting stock /

Supply: (long) pieces of wood of length L

Demand: b; pieces of wood of length ¢; < L,i=1,...,m
Objective: minimize the number of pieces needed for
producing the pieces demanded

Cut pattern: number j contains a;; pieces of length ¢;
Feasible pattern if MUMMH l;a;; < L, where a;; > 0, integer
Variables: x; = number of times pattern j is used

n = total number of feasible cut pattern — very large
integer

N /
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hug_u_mmﬁ /

n
minimize M x;
j=1

subject to MU@@.MS = b, i1=1,....m
j=1
x; > 0, integer, j=1...,n
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\ Start solution and new columns J

Trivial: m unit columns (gives lots of waste) =

m
minimize M T;
=1

subject to xz; =0b;, j=1,...,m

19




20

am:mgﬁm better patterns (integer knapsack problem): Hv/ \ Formulation of LP on column generation /

new column form—Dantzig—Wolfe decomposition
. < L _ Let X = {x € R? | Az = b} (or Ax < b) be a polyhedron
1 — maximum a; minimize (¢; — cp B 'a + N
ik M ¥ ﬁ (c B »L with the extreme points ?, p € P and the extreme

i=1
m recession directions ", r € ﬁm

subject to M liag, < L,

i=1

a;r > 0, integer, 1=1,....m 12

Solution: ay
P={12,...,7}
R ={1,2}

N / N /
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\ r — M AaP + Mtﬁm\.ﬁ / \ An LP and its complete master problem J

peEP reER
Ap =1
xEX<— Mu b [LP1] 2" = minimum c'x
p
A >0, peP subject to Ax = b (“simple” constraints)
>0, reR Dx = d (complicating constraints)
: o . x>0
x € X is a convex combination of the extreme points plus =
a conical combination of the extreme directions Let X = {x > 0| Az = b} with the extreme points Z”,
This inner representation of the set X can be used to p € P and the extreme directions ", r € R =

reformulate a linear optimization problem according to the
Dantzig-Wolfe decomposition principle, which is then

ﬂo_ém by column generation. & / \




4 N

[LP2] z* =min Y A (c"@) + > p,(c'z")

peP reR
s.t. MUVJDAU&@V + MELU&J =d |«
peP reR

MywHH | q

peEP
Apytr 2> 0, Vp, 1

Number of constraints in [LP2] equals to “the number of
constraints in Dz =d” + 1

Number of columns very large (# extreme pts./dirs. to X)

N /
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\H he dual of [LP2] is given by (not all extreme pts./dirs. /
found yet: P C P; R CR)
[DLP2] z* < Hﬁsmwm d'm+q
q“Q
st. (Dz")'m+q<(c'@?), peP |\
(Dx")'m <(c'z"), reR |u

with solutions (7, q)

Reduced cost for the variable A,, p € P \ P is given by
(cT@P) — (D))" — = (c — D ®)"2? — ¢
Reduced cost for the variable y,, r € R\ R is given by
(c'2") — (D&")"7 = (c — D @) %"

N /
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\ Column generation /

The least reduced cost is found by solving the subproblem

min (¢ — D)z Am;

zeX

min (¢ — D7) Tx — QV

rzeX

Gives as solution an extreme point, &P, or an extreme
direction x"
— a new column in [LP2]: (if < 0)
c'zr c'z’
Either | Dx? | or | Dx" | enters the problem and

1 0

K:B_uaoz\om the solution K
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\ Example J

Zp =min 2z, + 32+ w3 +4xy
[IP]  s.t. 3xy 42wy + 3x3+ 224 =5 | De=d
T1+ To+ x3+ x4=2
x1  x2  x3 x4€{0,1}
1 1 1 0 0 0
D A N IR CH U0 T N O L G
of [t [ol |t] |o] |2
o/ \o/ \1t/ \o/ \1/ \1
/O@ﬁ:a& solution: fp = (0,1,1,0)T 2} =4 \

27
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LP-relaxation

/P2 = —min BA; £ 83X 46X + A\s + TAs + 5Ag

~

29

s.t. mvﬁ + @yw + @yw + mx/g + %v& + wv,m =)
z* = min 221 +3z2+ x3+4x4 THH& V,HIT ywnT ywnT vﬁuT v,mnT V&HH
[LP1] s.t. 3z + 22+ 323+ 224 =5 [Dz = d] A Aoy A As As, Ag>0
T1+ 22+ z3+ 24=2 [w€ X] Start columns: A, A2, A3
0< 23 23 =x x4<1 [xeX] FTE EHLUE
1 1 1 0 0 0 Z* <min 5A; + 33X 4+ 63 z*<max 57 +¢q
X = conv M , 0 , M , ! , M , M =conv{z',..., 2%} st. O + 62 +5A3=5 st. domr+q<5H
1 1
0 0 1 0 1 1 vSAT \/MAT v,w”H @ﬁ.l_lQAw
> <
n?m%;aanul%ﬁ YOMEPWESE y@wp@nr:;ﬂ At Az As 20 THgs0
/ \ /mogaosu A= (1,0,0)T, T=-2 q= 5\
30 31
\ Reduced costs / \ New, extended problem J
[DLP2]
[LP2] - .
. _ _ z* < max Hm +
min (¢ — D7)’z — g 2* < min BA; + 3Ag + 6Ag + 4A . ! _.
s.t. om+¢q <
= min [(e— D'm)Tzr — g St BAp +6Xg + 53 + 5Ny =5
p=1,. 6r+q<3
= win {[(2,3,1,4) - (3.2,3,2) - (-2)] " — 15} At et At A=l 57+ g <6
NVI e _—
>
= min{0,0,1,-1,0,0} = —1 <0 Ay Az Ag M 20 57+ q<4
New extreme point in [LP1]: 2* = (0,1,1,0)T Solution:
4 A=(0,0,0,1)F, 7=-1, §=9
Column in [LP2]: T 5 Reduced costs:
1 min Qm 5,4,6) 2”7 — 9} =min{1,0,2,0,2,1} =0

N

N /




\ Optimal solution to [LP2] and [LP1] /
A* =(0,0,0,1,0,0)T, ™=-1, ¢ =9

— z*=z*'=(0,1,1,0)" = xjp, 2 =4=zp

It was a coincidence that the solution was integral!

In general, the solution x* to [LP1] can have fractional
variable values.
Solution to [IP]

We need to find an integral solution (not certainly an
optimal solution to [IP]) among the columns generated,
i.e., solve

min {(2,3,1,4)z |(3,2,3,2)x =5, = € {&', &> z° z'} }

N /
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\ Numerical example of Dantzig-Wolfe /
decomposition
min r1 — 319 (0)
da — 21 + 225 < 6 (1) (complicating)
Ty + T2 m 5 va
T 5 T2 N O va
x
A w
(1
X = {zeRi|z +2, <5}
_ T T T
= conv {(0,0)",(0,5)",(5,0)"} "
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\ Complete DW-master problem /
\ 0 0 5\ (5
£r = v& + v,w + v,w =
0 5 0 59
T X <=
vﬁ + v,w + v,u =1
\ A1, A2, A3 > 0
min — va,w + myw AOV
M+ A+ A3 =1
A1, A2, A3 >0
The first master problem is constructed from the points
KAP 0)T and (0,5)T (corresponds to A\; and Ay) K

34
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New column:

o

Iteration 1

=min{-1x; | 71 + 29 < 5;x > 0%} =

'z = (1,-3)(5,0)
Dz = (~1,2)(5,0)"

2
T—5
— -5

min — 15\ (0)
s.t. 10X, <6 (1) | Solution:
A+ =1 Dual solution: 7= —
A, A2 >0
Least reduced cost: Ewm [(c" —7D)x — q]
Te

_ : . _ [ 3\(_— _
=min ([(1,-3) = (-3)(-1,2)] = - 0)

LAoHvaHA

35




\ Iteration 2 /

min —15As + 53

s.t.  10A2 —5A3 <6 | Solution: A= (0, M“ mve
A1+ Ao+ A3 =1 | Dual solution: ﬂll| Qllw
A1, A2, A3 >0

Least reduced cost: min [(¢" — 7D)z — q|
zeX

= min ([(1,=3) = (-4)(-L2)] @ — (-1)

zeX
=min{-1x;-1xo+ 3 |11+ 22 < B > 0%} =0
Optimal solution: A* = (0, W WVH

/HV8*|AW\/M?W>NV HAW MVHJ N*Hw|w¢||wm

36

max cix; + cixa+- -+ cix,
st.Dixy+Doxo+---+Dyx, <d |
Az, <b |z €X;
Asrxy <by|xy € Xy

A,x,<b,|xz, € X,

i, Lo, , &, >0

X=Xi xXyx...xX,

\ Block-angular structure /

N /
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\ DW decomposition as decentralized planning /

e Main office (master problem) sets prizes () for the
common resources (complicating constraints).

e Departments (subproblems) suggest (production) plans
(D;z¥) based on given prices.

e Main office mixes suggested plans optimally; new prices.

Master problem

prices prices
plan pla: g

Subproblem 1 Subproblem 2

Subproblem n

N /
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\ Find feasible solutions (right-hand side w:o@mﬁosy
Let M, peP,and i, 7 € R, j=1,...,n, be a feasible
and (almost) optimal solution to the master problem. A
good feasible ax-solution is then given by (for all j):

T
&) + > (D

maximize C; T

subject to Djx; < Muvm

peP reR
kﬁuau m @m
z; >0 [X;={x; >0|A;z; <b;}]
since then MU Dx; < MU D, MU \< S+ MUF <a
7j=1 j=1 peEP reR

<
/ z;€X; \

39




\ Estimates of the optimal objective value /

2" = min M (et ®P) + M (et E")

peP reR
s.t. MU A (AZP) + MU\&LU&J =d |
peP reR
Muy@ =1 | q

peEP

Ay >0, peEP, 7 €R

40

\hoﬁ Ay, p € P, and py, r € R, be optimal in the 85653/
master problem, and (7, §) an optimal dual solution for

the columns in P and R.

Multiply the right-hand side of the primal (d resp. 1) by 7
resp. ¢ —

0>z —z=2"-b"r—1-g=> X\ [(c"®")—(Dz")" "7 —q]

pEP
+y_up[(¢"E)—(D&") 7] > min [(¢'@") —(Da") 7 —q]
+>_ p;min [(¢'2) —(Da") 7]

N /
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\Hm the subproblem has an unbounded solution no o@ﬁEwmio/
estimate can be computed in this iteration; otherwise it
holds that:

min [(c'@®) — (Dz*)"'®] >0

7> 2" > 7+ mi -D'm)'z" —q

zZ>z |N+www Tn )T &
= Z4min(c— D7)’z —q
N+WMWAG ) x—q

=z

42

\ Convergence J

The number of columns generated is finite, because X is
polyhedral. When no more columns are generated, the
solution to the last master problem will also solve the
original linear problem. For each new column that is added
to the master problem, its optimal objective value will
decrease (or be kept constant). Hence, the pessimistic
estimate z;, will converge monotonically to z*.

The optimistic estimate 2z, also converges, but perhaps not
monotonically. If at iteration k£ an optimal solution to the
complete master problem is received, 2z, = z; holds.

Stopping criterion: z; — z; < ¢, where

mm = maXs=1, k2, and € >0 \

43




\ A linear integer problem /

Z*=min 27 + 22, ¥ =(1,0), z2*=1
s.t. 201 + 229 > 1
x1, 29 € {0,1},
Zip=min  x1 + 2x9 Tip = Aw“ov , waHW

s.t. 201 + 229 > 1
x1, 29 € [0, 1]

44

\ Branch—and—price for linear 0/1 problems /

[IP] 2 = min c'x
st. Dr=d
reX={xeB"| Aze=b}={a" |pc P}

Inner representation (and convexification):

conv X = HHMy@&w Mvﬁ”ﬁ Ap >0, peP

peEP peP

Let ¢, = ¢"@? and d, = Dz, p € P.

N /
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\ Stronger formulation—Master problem /

[CP] 2p = Z&p = min MU@U»@

peEP
st. > dy\,=d
peEP
A =1
peEP

Ay € {0,1}, peP

A continuous relaxation ([CP*™], to A\, > 0) of [CP] gives
the same lower bound as the Lagrangian dual for the
constraints D = d. (2;p < 288 < z8p)

The continuous relaxation [LP] of [IP] is never better than

GE\ Lagrange dual bound. &
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\ Restricted master problem J
Let P C P
[CP]  zép > 287" < Zcp = min MU CpAp
pEP
st Y dy), =d
peEP

Mwyﬁl ()

47
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N N

Cp c x’
e Generate columns | d, | = | Dz? | until an (almost)
1 1

-~ —

optimal solution to [CP“™|, X\, (p € P), is found

>| ‘\/ IE
= M@mﬁyna

\ Branching over variable z; with 0 <z; <1 /

x; =0 or
T T
HQHMUV{Y\M.W”O HQHMUV,%MWHH
pEP

pEP

¢ ¢

MU Ap =10 MU Ap =1 replaces (x)

quwuwwHH
0 0
M Ap =1 MU Ap =0 delete col’s

peP:zh=0

HQ.HH

delete col’s

replaces (%)

N /
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* *
RCPEKO Z *CPk

KHV Cut branches (r,s,...) with z8p.. > 2&pre

" ztp < 2p /
CPEk
.&.u. = O HQA = H
CPkO CPk1 St > 2o

>

e In each node (CP, CPO, CP1, ...): Generate columns
until (almost) optimal (all reduced costs > 0) or
verified infeasible

o If xf.p,, feasible = z{p,, > 2jp == Cut off the
branch (k,7,...)

/

\ The column generation subproblem, reduced OOmde

e min (c—D"7#")Te—G" = (c—D 7" Tz" —§* =: &(z")
zeX

(7%, %) is a dual solution to the RMP and
Xk=Xn{x|z; =k}, k€{0,1} (etc. down the tree)

cTzP

If WAN%V < 0 then | bz
1

is a new column in [CPk]

Minimization? &" is good enough if ¢(Z") < 0

If é(x?) > 0 then no more columns are needed to solve
[CPk] to optimality.

e Same columns may be generated in different nodes =

/ create “column pool” to check w.r.t. reduced costs ¢ \

51




\ An instance solved by Branch—and—price /

Zip=min x1+2r3 =2zhtp >z@p'=zjp=min =z + 2z
s.t. 2xy 4+ 229 >1 s.t. 2xq + 229 >1
.&.T.&.mmﬁoqu Om.&wu.&.mmH
oy (o) [1) [1 A+ : Ap >0
convX = conv , , , = 3T Mvﬁ =1; P =
0 1 0 1 Ao+ ) |2 Vp
ﬁﬁuwu_ Nmﬂwa = min 2Xo + A3 + 3\

s.t. w\/w + Mv,w x_v%vﬁ W 1
M+ A+ A3+ =1
V,Havfmuv,wuvzﬁwo

N /
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\ Start columns: \; and )3
0 1 . .
Choose e.g., and , that is, the variables A\; and A3
0 0
2&8t < min A3 = max m+gq

s.t. 2A3>1 s.t. q<0
A1 +XA3=1 2r4+¢q<1
v,T v,w > 0 T™> 0

Solution: (A1, A3) = (3, ) = 2= (3,007, 7=1,G=0
Reduced costs: mingeg 12 {(0,1)x} = 0 = Optimum for CP!

r1=0 or x1=1

¢ ¢

/ A3 =0 A =0

Fixations:

53

\ Branching, left (CP0): \3 =0 /
min 0 infeasible zopo < min 2o
st 0>1 U st 20 >1
— —
=1 add A+ A=1
A1>0 column A1, A2 >0
= max m+gq ~ o~
Solution: (A1, A2) = (3, 3)
s.t. q<0 R
=z = (0, wvﬂ
2r+¢q<2 R ~
=1, ¢q=0
>0

Reduced costs: mingeo 12 {(—=1,0)z — 0} = =1 <0

KHV New column! (A3 or Ay, but A3 = 0) = Choose Ay K

54
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zopo < min 2X0 4+ 34

S.t q<0

s.t. Mv/w AT%V&NH
2r4+q<2

A+ A+ =1
dr+q<3

V,Huvfwuv,%wo
T>0

N
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Branching, right (CP1): \; =0 /

Zepr <min Az
st. 2XA3>1
Az3=1
A3 >0

e Solution: Ag =1 = & = (1

= max Tw+gq
st. 2r+¢<l1

>0

)T 7=0,0=1

56

CPO1: v; = \/w =0

zopor < min  2Xs + 34
st 2X +4M2>1
A2+ =1
A2, A4 >0

\ Branching, left, right: (CP01) \; =0

= max w@w+gq
st. 2m+q<2
dr4+q¢<3

>0

~
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e Solution: (Mg, M) = (1,0)T = 2 =(0,1)T,7 =0, §=2
e Reduced costs: mingejo 2 {(1,2)z -1} = -1 <0 =
e Reduced costs: mingep 172 {(1,2)x — 2} = -2 <0
e Generate new column: Ay, but Ay =0 = Optimum for CP1 !! — Generate new column: A, but Ay = 0
— Generate new column: A3z, but A3 =0
Branching, left, left: (CP00) A\ = A\; =0 = Optimum for CP01 !!
Gwoo” Ao = A3 = Ay = 0 = infeasible \ / K
58 59
\ Branch—and-—price tree / \ T2 J
2ip 21
cont __ 1
Zop = 2 uww — NN:Q&UDH .
Zcp = (3,07 T
2ipo > 1 cp
. T = xr1 =
zZopo = m A3 = A1 =0
Bopo = (L, 1)T
cro=(i3) CPO CP1
z2 =0 x2 =1 ~
Ao =g = A =0 zopr =1 Topo
= _ T
CP00 CPO1 err = (1,0) .
zip <1 z! Zcp Z3 =Zopr = zip
infeasible zZcpo1 = 2
Zcopor = (0,1)7 2x1 +2z2 > 1

N

/

/




\ Benders decomposition for mixed-integer linear /
problems—Lasdon (1970)

e Model: o T
minimum ¢z + f(y),

subject to Ax + F(y) > b,

x>0" yeb.

e The variables y are “difficult” because
— the set S may be complicated, like S C {0, 1}?;
— fand/or F may be nonlinear;

— the vector F'(y) may cover every row, while the
problem in « for fixed y may separate;

/ — the problem in «x is linear. \

60

-

Typical application: Multi-stage stochastic /
programming. Choose y such that an expected cost

over time is minimized; uncertainty in data is

translated into future scenarios and variables @
representing future activities that “adjust” the y that
was chosen before knowledge of the values of the
stochastic variables has been revealed. The y should
therefore be chosen such that the expected value of the
future optimization over x is the best.

\
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\ e Idea: Temporarily fix y, solve the remaining problem /
over x parameterized over y. Utilize the structure of

the problem to improve the guess of an optimal value of
vy. Repeat.

e Similar to solving the problem of minimizing a function

n over two vectors (v, w) as follows:

inf n(v,w) = inf {(v), where {(v) = inf n(v, w), v € R™.

(v,w)
e In effect, we substitute the variable w by always

minimizing over it, and work with the remaining

problem in w.

N /
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Benders decomposition centers on the possibility to J
construct an approximation of this problem over v by
utilizing LP duality.

In the case that the problem over y also is linear we
recover the cutting plane methods from above. Benders
decomposition is more general however, because we can
solve problem that have a positive duality gap. In other
words, the workings of Benders decomposition does not
rely on the existence of optimal Lagrange multipliers

and strong duality.

/

63




64

-

The Benders sub- and master problems /

e Which y are feasible? We must choose y € S such that
the remaining problem in x is feasible. In other words:
choose y in the set

R:={y€S |3z >0"with Az > b— F(y)}

We apply Farkas’ Lemma to this system, or rather to
the equivalent system (with y fixed)

Ax —s=b— F(y), (4a)
x> 0" (4b)
s>0". (4c)

-

\

e From Farkas’ Lemma, y € R is and only if /
ATu <0, u>0" = [b—F(y)]"u<0,
in other words,
[b—F(y)]'u; <0

holds for every extreme ray u;, : =1,...,n, of the
polyhedral cone C = {u € R? | ATu < 0" }.

e We here made good use of the Representation Theorem
for a polyhedral cone.

e Given y € R, the optimal value in Benders’ subproblem

\
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is /

minimum ¢’ x,
xr

subject to Ax > b— F(y),
x >0",
which by LP duality equals
maximum [b — F(y)]"u,

u

subject to ATu < ¢,
u > 0",

provided that the first problem does not have an

infinite solution. K

-

o We prefer the dual formulation, since its constraints %y
not depend on y; moreover, the extreme rays of its
feasible set are given by the vectors w}, i =1,...,n,,
discussed above. Let u}, i =1,...,n,, denote the
extreme points of this set.

e This completes the subproblem. Let’s now study the
restricted master problem of Benders’ algorithm.
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\ e The original problem is equivalent to the problem to /

min { f(y)+max{ b—F(y)|"w |A"w < ciu > 0" }}

~ iy { )+ max (- Pl )}

yeR
= min 2
st. 2> fly)+[b—F(y)| ', i=1,...,n,,
Yy € R,
= min 2z
st. 2> fly)+[b—F(y)| b, i=1,...,n,,
0>[b—Fy)| ), i=1,...,n,,

yes. \
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Suppose then that not the whole sets of constraints 5/
the latter problem is known, and replace “7 =1,...,n,”
with “2 € 11", respectively “0 =1,...,n,” with

“i € I, where I C {1,...,n,} and I, C {1,...,n,}.
Since not all constraints are included, we get a lower
bound on the optimal value of the original problem.
Suppose then that (z°,y°) is a finite optimal solution
to this problem. In order to check if this is indeed an
optimal solution to the original problem, we check for
the most violated constraint, which we either satisfy
(thus having established that y° indeed is optimal) or,
if not, we include this new constraint, improving either
the set I; or Iy, and possibly improving the lower \
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bound. /

The search for a new constraint is of course the same as
solving the dual of Benders’ subproblem with y = °!

This problem gives us a feasible solution to the original
problem, and therefore also an upper bound, provided
that it is finite.

If this problem has an unbounded solution, then it is
unbounded along an extreme ray: [b — F(y°)]Tu! > 0.
We then add the constraint 0 > [b — F(y)] ! to the
RMP (enriching the set I).

/
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Suppose instead that we find a finite optimal mo_:ﬁos.J
Let u? be an optimal extreme point. If it holds that

22 < f(y°) + [b— F(y°)]Tu?, we add the constraint

z > [b— F(y)]Tu? to the description of the RMP
(enriching I).

If however 2° > f(y°) + [b — F(y")]"u! then in fact
equality holds in this inequality (> can never
happen—why?). We have then identified an optimal
solution to the original problem, and terminate.
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e Suppose that S is closed and bounded and that f and

Convergence /

F both are continuous on S. Then provided that the
computations are exact we terminate in a finite number

of iterations with an optimal solution.

Proof is by the finiteness of the number of constraints
in the complete master problem, that is, the number of

extreme points and rays in any polyhedron.

A numerical example of the use of Benders
decomposition is found in Lasdon (1970,
Sections 7.3.3-7.3.5).

\

\ e Note the resemblance to the Dantzig—Wolfe m_moiﬁpg_/

In fact, if f and F both are linear, then they coincide,
in the sense that their subproblems and restricted
master problems are identical!

Modern implementations of the Dantzig—Wolfe and
Benders algorithms are inexact, that is, at least their
RMP:s are not solved exactly. Moreover, their RMP:s
are often restricted such that there is an additional
“box constraint” added. This constraint forces the
solution to the next RMP to be relatively close to the
previous one. The effect is that of a stabilization;
otherwise, there is a risk that the sequence of solutions

/ to the RMP:s “jump about,” and convergence _omoogmmk
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slow as the optimal solution is approached. This was /
observed quite early on with the Dantzig-Wolfe
algorithm, which even can be enriched with non-linear
“penalty” terms in the RMP to further stabilize
convergence. In any case, convergence holds also under
these modifications, except perhaps for the finiteness.




