
Contents

I: Introduction

II: Notation and Conventions

III: Getting Started

IV: Examples: using the student bundle package and interfacing with Matlab(R)

V: Modifying bundle

VI: A Note on the make command

I: Introduction

This guide has information for two different user groups: students who want to use the software in a project

and administrators who want to modify or upgrade the software. Both students and administrators should

read this introduction and section II: Notation and Conventions since these sections outline what the software

package does and how this document is formatted. Beyond these two sections, students need only read the

sections III: Getting Started and IV: Examples: using the student bundle package and interfacing with

Matlab(R). III: Getting Started explains how to install and run the software package. IV: Examples: using

the student bundle package and interfacing with Matlab(R) is the most important section for the student,

since it walks the student through the features of the software and instructive Matlab (R) examples. This

section includes numerous examples that can be pasted right into the terminal and Matlab (R). The remaining

two sections are for administrators and curious students. These final sections require an intermediate

understanding of how the Linux operating system works and how a program is constructed in C or C++. V:

Modifying bundle describes how to begin modifying the bundle and where to find additional information as

well as listing the most important changes made while upgrading bundle. This information should aid future

maintenance. Finally, VI: A Note on the make command explains what the make command does and some

features in the supplied makefile.

The student bundle package contains a bundle optimization program (the program bundle) and a conversion

program for converting set problems to various formats (the program convscp). The bundle part of the

package is a modification of the original sparse bundle package by Reine Säljö, described in his Master's

thesisi. The convscp part of the package was written by Douglas Potter in conjunction with updating the SCP

project for the course TMA521/MMA510 Optimization, project course, at Chalmers, University of

Technology and University of Gothenburg.

The bundle program loads a SCP (set covering problem) from a file which has, what will be referred to as,

the standard format. Then bundle constructs the Lagrangian dual of the SCP and uses a bundle dual ascent

algorithm to solve the Lagrangian dual problem to near optimality (at least for many problems). Many test set

covering problems are in, what is referred to as, the rail format, and thus bundle cannot solve them until they

have been converted to standard format by convscp. The program bundle, in most cases, outputs a near

optimal dual vector (in file: 'uVector'), a near optimal relaxed-primal vector(in file: 'xVector') and a dual

objective value (in file: 'objValue'). However the near optimal relaxed-primal vector usually does not

constitute a solution to the SCP (the primal problem) since the solution vector is often fractional. However,

'uVector', 'xVector' and 'objValue' can be used to construct a good feasible solution via many heuristics. Such

heuristics can be implemented in various computational environments such as MATLAB. One inconvenience

is that MATLAB takes several minutes to load even small SCP's. Fortunately, convscp can convert a rail or

standard formatted SCP to a MATLAB(R) .mat file. The .mat file is a compressed sparse representation of

the SCP (plus a file header) which MATLAB can load in seconds.

Finally, many set covering test problems can be found on-line at the OR-library maintained by J E Beasley
iii

.

II: Notation and Conventions

“Set covering problem” is abbreviated as SCP. Single quotes (i.e. 'single quotes') denote a variable, a file or a

directory. Double quotes (i.e. “Double quotes”) are reserved for quoting and citing published works.

Boldface usually denotes a command or a program along with options that can be executed verbatim from the

shell or within Matlab(R). Boldface can also denote an entry or command in a script or makefile. On a

general level, bundle refers to the “Object Bundle Package - an OOP version of a Bundle-type algorithm for

NonDifferentiable Convex Constrained Optimization” authored by Antonio Frangioniii. However,

specifically within the context of the student bundle package contained in 'student sparse.zip', bundle refers

to the “Object Bundle Package” configured for maximizing the Lagrangian dual of a SCP with a sparse cover

matrix.

III: Getting Started

Although the executables, bundle and convscp, are not included, the make command can be used to create

executables.

In order to build bundle and convscp from the terminal follow the subsequent instructions:

1.) unzip or unarchive sparse directory from 'student sparse.zip'

2.) in the terminal navigate to the sparse directory

3.) confirm the existence of the directories:

'obj' and 'scr'

and the files:

'Documentation for the SCP project.pdf', 'Makefile', 'Parameters', 'academic license for Bundle.txt',

'Manual for Bundle.txt','bundle', 'example1.m', 'example2.m', 'example3.m', 'openscpslow.m', 'scp41.txt',

'scp61.txt' and 'rail507'

4.) build convscp and bundle by running:

make

5.) set the path to the CPLEX license file for bundle by running:

export ILOG_LICENSE_FILE=/chalmers/sw/sup/cplex-10.1/ilm/access.ilm

6.) set the path to MATLAB by running:

export MATLAB=/chalmers/sw/sup/matlab-2006b

7.) set the library path to MATLAB for convscp by running:

export LD_LIBRARY_PATH=$MATLAB/bin/sol2:$MATLAB/sys/os/sol2:

$MATLAB/bin/glnx86:$MATLAB/sys/os/glnx86

(This should be input as one line.)

Both bundle and convscp are now ready to be run by typing:.

./bundle filename

./convscp options

Note: executing bundle and convscp in a new terminal requires only that steps 5-7 be repeated, since the

steps preceding steps 5-7 created bundle and convscp. The syntax of bundle is always ./bundle followed by

the file name of a scp problem in standard format. The syntax of convscp is more complicated. Executing

./convscp --help displays its documentation.

IV: Examples: using the student bundle package and interfacing with Matlab(R)

This section walks the reader through three examples. The purpose of these examples is not to provide the

best way of doing things. All the running times and results of the MATLAB examples can be greatly

improved. In fact, the examples originate from simplifications of strategies that lost the SCP competition in

2007 (a part of the Optimization Project Course at Chalmers University of Technology). The intention is to

show how to use convscp and bundle and to provide a simple framework for connecting bundle to

MATLAB—in short, to get pesky computer problems out of the way and let the user focus on mathematics

and optimization. The first example walks through running bundle on a standard formatted SCP and a rail

formatted SCP. The second example shows how to interface MATLAB and bundle. The third example

demonstrates a few useful MATLAB commands for working with sparse matrices and some basic ideas

concerning SCPs. The descriptions of examples two and three is limited since the MATLAB code is well-

commented.

Example 1: executing bundle from the terminal or shell

The first part of example 1 shows how to use bundle on a small SCP with 200 rows and 1000

columns. This SCP is in file 'scp41.txt' provide in 'student sparse.zip' and is in the standard format.

This SCP and other test SCP's are available from OR-Library maintained by J E Beasleyiii. Here is

how you run bundle on this SCP:

1. In the terminal navigate the directory where "student sparse.zip" was unarchived

2. Set the environment variables by executing:

export ILOG_LICENSE_FILE=/chalmers/sw/sup/cplex-10.1/ilm/access.ilm

3. Run bundle on the scp41.txt by executing:

./bundle scp41.txt

As long as the 'parameters' file has not be modified, bundle should output the iteration log followed

by:

--

-- Solution: --

--

f = 429

u-vector written to file: uVector

x-vector written to file: xVector

objective value written to file: objValue

--

If you did not receive this output, check to make sure you are running the BASH shell and try

decompressing the "student sparse.zip" again. You can enter the BASH shell from another shell by

executing bash. Now the files 'uVector', 'xVector' and 'objValue' can be opened in a standard editor

and examined. In order to understand iteration log, examine the source code (a good place to start is

'Oracle.C' found in the 'src' subdirectory) and the documentation of ILOG CPLEX 10iv.

Note: 'xVector' contains fractional elements since it is the solution to a relaxation of the SCP.

Now we turn to a larger SCP, 'rail507', which originates from a real world competition involving the

Italian railwaysv. The program bundle cannot process 'rail507' since 'rail507' is in the rail format. We

convert the 'rail507' to the standard format using convscp:

1. in the terminal, navigate the directory where "student sparse.zip" was unarchived

2. set the environment variables by executing the following two commands:

export MATLAB=/chalmers/sw/sup/matlab-2006b

export

LD_LIBRARY_PATH=$MATLAB/bin/sol2:$MATLAB/sys/os/sol2:$MATLAB/bin/glnx86:$

MATLAB/sys/os/glnx86 (note: lines two and three should be entered as one command without a

line break)

3. convert 'rail507' by executing:

./convscp -ir rail507 -os rail507.scp

4. to understand what the command-line arguments did, execute:

./convscp –help

The file 'rail507.scp' created by the command ./convscp -ir rail507 -os rail507.scp contains the same

SCP found in 'rail507' in the standard format. If you did not obtain this file, see the trouble shooting

advice given for the 'scp41.txt' in the first part of this example. Now bundle can process the SCP.

Before executing the following commands to do this, note that this will take a couple of minutes with

the default configuration.

1. in the terminal navigate the directory where "student sparse.zip" was unarchived

2. set the environment variables by executing:

export ILOG_LICENSE_FILE=/chalmers/sw/sup/cplex-10.1/ilm/access.ilm

3. run bundle on the scp41.txt by executing:

./bundle rail507.scp

The files 'uVector', 'xVector' and 'objValue' contain the solution vectors found by bundle. If data from

another SCP was in these files, it has been overwritten. While this situation is bothersome, it can be

resolved with a BASH script or even from Matlab(R). The second example provides Matlab(R) code

that takes care of this file bookkeeping. Scrolling back in the terminal, you can see the progress of

bundle ascending the dual problem. The primal problem, the SCP, is a minimization problem so

accordingly the dual problem is a maximization problem. Even though bundle usually has several

ascent vectors at its disposal, every iteration does not result in an increase of the dual object value.

This is because the local information available is not sufficient for determining how far to move in a

given ascent direction. For more information see the chapter on “Unconstrained Optimization” in An

Introduction to Continuous Optimizationvi.

Example 2: using bundle in Matlab(R)

This example is a guide through some of the useful features of convscp and Matlab(R). After

completing example 1, we know how to obtain the solution vectors of the Lagrangian dual problem.

Efficiently using these vectors to generate a good primal solution is our goal. The first step of this is

loading the scp problem in Matlab(R) and second step is loading the vectors from bundle. The

Matlab(R) code found in the function 'openscpslow' can open SCP's. In the Matlab(R) environment,

navigate to the directory where 'student sparse.zip' was unarchived. Then to load the cost vector and

the cover matrix of the SCP in 'scp41.txt', run

1.) [cover,cost] = openscpslow('scp41.txt');

Although this function, openscpslow, only takes a few seconds to load 'scp41.txt' or 'scp41.txt', the

loading time becomes unacceptable for even a medium sized SCP found in 'rail507.scp' (created

example 1). This inconvenience is circumvented by converting the SCP to a Matlab(R)'s .mat file

format using convscp. From the terminal, convscp convert 'rail507.scp' to .mat formated file by

running:

1.) in the terminal, navigate the directory where "student sparse.zip" was unarchived

2.) set the environment variables by executing the following two commands:

export MATLAB=/chalmers/sw/sup/matlab-2006b

export

LD_LIBRARY_PATH=$MATLAB/bin/sol2:$MATLAB/sys/os/sol2:$MATLAB/bin/glnx86:$

MATLAB/sys/os/glnx86 (note: lines two and three should be entered as one command without a

line break)

3.) run:

 ./convscp -is rail507.scp -om rail507.mat

Alternatively, if example 1 was not completed, the conversion can be performed on the original file

'rail507' by replacing step 3 above with:

3.) run:

./convscp -ir rail507 -om rail507.mat

Now in Matlab(R), the SCP in 'rail507' can be loaded by issuing this command:

1.) load rail507.mat

Issuing the above command, loads the cost vector into a variable called 'cost' and load the cover

matrix into a variable called 'cover'.

If you want to accomplish the conversion from within Matlab(R), we can set the environment

variables and run convscp with following commands:

1.) setenv('ILOG_LICENSE_FILE', '/chalmers/sw/sup/cplex-10.1/ilm/access.ilm');

2.) setenv('MATLAB','/chalmers/sw/sup/matlab-2006b');

3.) setenv('LD_LIBRARY_PATH','$MATLAB/bin/sol2:$MATLAB/sys/os/sol2:

$MATLAB/bin/glnx86:$MATLAB/sys/os/glnx86');

(This must be entered as one command on one line.)

4.) !./convscp -ir rail507 -om rail507.mat

Note: the first command is not really necessary, but it does make it possible to run bundle from within

Matlab(R) by running: !./bundle

The second part of this example is loading the output files('uVector', 'xVector' and 'objValue') from

bundle in Matlab(R). The Matlab(R) file 'example1.m' contains commented code that runs bundle on

a SCP, loads the output from bundle, loads the SCP and finds upper and lower bounds for the optimal

solution to the SCP. Consequently, it is highly recommend that you examine 'example1.m'. Moreover,

'example1.m' can automatically save the the output from bundle to uniquely named files and reload it

for later usage. The prerequisite for running 'example1.m' is that the SCP is in both in the standard

format ('scp41.txt') and in .mat Matlab(R) format ('scp41.mat'). The first part of this example covers

converting SCP files to the .mat format. Here is how 'example1.m' is run on 'scp41.txt' from

Matlab(R):

1.) [upper, lower] = example1('scp41firstattempt','scp41.txt','scp41.mat',1);

This should produce output similar to:

time(sec) running bundle: 0.06

time(sec) loading data: 0.01

time(sec) running the heuristic: 0.02

upper bound: 2884 lower bound: 428.9999

The inputs to 'example1.m' are respectively: a file handle for saving intermediary data

('scp41firstattempt'), a file name of SCP in standard format ('scp41.txt'), a file name of the SCP in .mat

format ('scp41.mat') and a flag specifying if bundle should be run (1 = run bundle, 0 = reuse existing

bundle output files saved using the file handle argument). The outputs from 'example1.m'--the upper

and lower bounds--are saved in the variables 'upper' and 'lower'. The output files from bundle are

saved to files using the file handle as a naming convention. If an error was received, the most common

cause is that 'example1.m' cannot find either the standard formated file ('scp41.txt') or the .mat

formated file ('scp41.mat'). If the standard formated file cannot be found, Matlab(R) is probably

pointing the wrong the directory. If Matlab(R) does not find the .mat formated file, either Matlab(R) is

set to the wrong directory or the .mat file has not been created. The existence of the .mat file can be

resolved by issuing the following command from the terminal in the directory where scp41.txt resides:

1.) ./convscp -is scp41.txt -om scp41.mat

If we were to modified the part of 'example1.m' that computes the upper bound, we would want to run

this updated code on the output from bundle on all the SCP's we had previously tested. However,

since bundle can take hours to run, we would like to avoid producing the output from bundle again.

Advantageously, 'example1.m' saves its intermediary output using the file handle. Thus, we can run

'example1.m' again reusing previously generated bundle output by running:

1.) [upper, lower] = example1('scp41firstattempt','scp41.txt','scp41.mat',0);

This should generate output similar to:

cpu time(sec) loading data: 0.01

cpu time(sec) running the heuristic: 0.03

upper bound: 2884 lower bound: 428.9999

The utility of this feature becomes clear when run on 'rail507' (note: the time spent running bundle):

1.) [upper, lower] = example1('rail507','rail507.scp','rail507.mat',1);

This should yield output similar to:

time(sec) running bundle: 1.17

time(sec) loading data: 0.22

time(sec) running the heuristic: 156.53

upper bound: 122399 lower bound: 156.7175

Example 3: tackling the competition in Matlab(R)

Examples 1 and 2 should have brought you up to speed on using bundle, convscp and loading and

managing the output from bundle in Matlab(R). The upper bound on the objective value of the SCP

was produced using 'example1.m' by simply adding columns to the solution (by setting the

corresponding primal variables to one) until feasibility was obtained (a feasible solution is an upper

bound) and the dual solution was used as the lower bound. However, these bounds were awful. The

files 'example2.m' and 'example3.m' utilize a few simple techniques for improving the upper bound.

'example2.m' introduces the idea of using the number of rows a column covers combined with the dual

solution in deciding which columns should be chosen. Note: keeping an already chosen column from

being chosen again, is achieved by setting its cost to the maximum While this works, chosen columns

could instead be removed from the cover matrix, reducing the size of the problem. Also if

'example1.m' has already been run on some SCP's, 'example2.m' can be run with the 0 option to save

time. For 'scp41.txt' and 'rail507', 'example2.m' produces:

run:

[upper, lower] = example2('scp41firstattempt','scp41.txt','scp41.mat',0);

results:

cpu time(sec) loading data: 0.02

cpu time(sec) running the heuristic: 0.01

upper bound: 438 lower bound: 428.9999

run:

[upper, lower] = example2('rail507','rail507.scp','rail507.mat',0);

results:

cpu time(sec) loading data: 0.21

cpu time(sec) running the heuristic: 92.01

upper bound: 70817 lower bound: 156.7175

The bounds and the running time for the heuristic have improved significantly for both problems, but

for 'rail507' we are still a long way from an acceptable result. One limitation of 'example2.m' is that

how much columns overlap is not considered. Thus, if two 'low cost' (according to the logic of

'example2.m') columns that cover essentially the same rows, they will probably both be added to the

solution. Instead, optimal only one of them should be added along with some columns that cover the

difference between the two similar columns. This issue is only partially resolved in 'example3.m' by

periodically recalculating the costs according to to how many rows are still uncovered and setting the

cost of the columns that no longer cover any uncovered rows to the maximum cost. It is time

consuming to update the costs so a parameter “freq” can be set to tune how often this occurs

(sometimes, we need a decent solution before a deadline). Here are some results for different cost

update frequencies for 'scp41.txt' and 'rail507':

'scp41.txt' with freq=10 (modify 'example3.m') and run:

[upper, lower] = example3('scp41firstattempt','scp41.txt','scp41.mat',0);

results:

cpu time(sec) loading data: 0.01

cpu time(sec) running the heuristic: 0.01

upper bound: 463 lower bound: 428.9999

'scp41.txt' with freq=5 (modify 'example3.m') and run:

[upper, lower] = example3('scp41firstattempt','scp41.txt','scp41.mat',0);

results:

cpu time(sec) loading data: 0.01

cpu time(sec) running the heuristic: 0.01

upper bound: 438 lower bound: 428.9999

'scp41.txt' with freq=1 (modify 'example3.m') and run:

[upper, lower] = example3('scp41firstattempt','scp41.txt','scp41.mat',0);

results:

cpu time(sec) loading data: 0.01

cpu time(sec) running the heuristic: 0.1

upper bound: 431 lower bound: 428.9999

'rail507' with freq=100 (modify 'example3.m') and run:

[upper, lower] = example3('rail507','rail507.scp','rail507.mat',0);

results:

cpu time(sec) loading data: 0.25

cpu time(sec) running the heuristic: 1.34

upper bound: 666 lower bound: 156.7175

'rail507' with freq=10 (modify 'example3.m') and run:

[upper, lower] = example3('rail507','rail507.scp','rail507.mat',0);

results:

cpu time(sec) loading data: 0.24

cpu time(sec) running the heuristic: 2.72

upper bound: 376 lower bound: 156.7175

'rail507' with freq=1 (modify 'example3.m') and run:

[upper, lower] = example3('rail507','rail507.scp','rail507.mat',0);

results:

cpu time(sec) loading data: 0.22

cpu time(sec) running the heuristic: 16.33

upper bound: 227 lower bound: 156.7175

The results indicate the upper bound, and thus the solution, can be significantly improved at the cost at

the expense of longer running times. Interestingly the method in 'example3.m' does not outperform

'example2.m' for 'scp41.txt' until freq is set to 1. This indicates, as noted above, that this technique,

only partially resolves the problem of column overlap or entanglement. Note: the dual vector has not

be used and we may have produced an over over (a feasible solution which remains feasible even if

one or more columns are removed).

V: Modifying bundle

If you intend on modifying the bundle C/C++ code or the Parameters file, it is highly recommended that you

read Säljö's Master's thesisvii and 'Manual for Bundle.txt' by Antonio FrangioniError! Bookmark not

defined. found in 'student sparse.zip'. The original sparse bundle package was configured to run on Solaris

with ILOG CPLEX(R) 9 in the TCSH shell and consequently it will not build on the current Chalmers

systems as of 2007. The current version is designed to work with Linux with ILOG CPLEX(R) 10 in BASH

(Bourne Again SHell). (Most students at Chalmers have BASH as their default shell when they open a

terminal on a Linux computer.) Furthermore several small changes have been made to bundle including the

precision of the output vectors, since with thousands of vectors being added and compared, the precision

default is not always adequate. In order to rebuild bundle on another system, it will probably be necessary to

recompile all the source files. This means recompiling the files included in 'student sparse.zip' as well as

recompiling several non-distributable files that are not included in the student distribution 'student sparse.zip'.

These non-distributable files are the files that correspond to the rows that have been commented out in the

bundle section of the 'Makefile' included in 'student sparse.zip'. Once these files have been obtained and

added to the source code directory 'src' and the corresponding lines uncommented, make realclean can be

run to remove all the obsolete objective files and then make can be run to build new object files and the

executables (see the VI: A Note on the make command). After this is done the rows

corresponding to the non-distributable files can once again be commented and then non-distributable files

should be removed from the 'src' directory before distributing the package.

The operation of bundle and convscp can be modified by changing the source files provide in the 'scr'

directory. It should be noted that not all the source files are included due to distribution restrictions. This

does not pose a problem since the necessary object files are included.

To conclude this section, the minimum modifications required for the original bundle package under the

current computer environment (as of February 2008) are listed. Specifically, the modifications are listed for

bundle as configured in 'spar_bundle.tar'. These modifications, with slight adjustments, will work on any of

the old bundle examples and configurations. These changes only suffice to get bundle working and do not

add all features provided in 'student sparse.zip'. When editing the 'Makefile' take special care not to delete or

add extra tabs at the beginning of any line

1.) Make sure your shell is BASH. If not, run in the terminal:

 bash

2.) uncompress 'spar_bundle.tar'

3.) uncompress 'hidden.tar' to the same directory where 'spar_bundle.tar' was unarchived

(It is important the files from 'spar_bundle.tar' and 'hidden.tar' are in the same directory and not just that

directories 'bundle' and 'hidden' are the same directory. If the latter is the case, merge these directories.)

4.) open the 'Makefile' in a text editor and make the following 11 changes:

1. change: setenv ILOG_LICENSE_FILE /usr/site/pkg/cplex-8.1/ilm/access.ilm

to: export ILOG_LICENSE_FILE=/chalmers/sw/sup/cplex-10.1/ilm/access.ilm

2. change: SYSTEM = ultrasparc_5_5.0

to: SYSTEM = x86_rhel4.0_3.4

3. under: SYSTEM = x86_rhel4.0_3.4

add: SHELL = /bin/bash

4. change: LIBFORMAT = static_pic_mt

to: LIBFORMAT = static_pic

5. change: CPLEXDIR = /usr/site/pkg/cplex-8.1/cplex81

to: CPLEXDIR = /chalmers/sw/sup/cplex-10.1/cplex101

6. change: CONCERTDIR = /usr/site/pkg/cplex-8.1/concert13

to: CONCERTDIR = /chalmers/sw/sup/cplex-10.1/concert23

7. change: CCC = CC

 to: CCC = g++

8. change: CCOPT = -O -xtarget=ultra -xarch=v8plus -DNDEBUG -pto -KPIC-DIL_STD

 to: CCOPT = -O1 -DNDEBUG -fPIC -DIL_STD -Wno-deprecated

9. change: CCLNFLAGS = -L$(CPLEXLIBDIR) -lilocplex -lcplex -

L$(CONCERTLIBDIR) \ -lconcert -mt -lm -lsocket -lnsl

 to: CCLNFLAGS = -L$(CPLEXLIBDIR) -lilocplex -lcplex \

 -L$(CONCERTLIBDIR) -lconcert -m32 -lm -lpthread

10. change: rm -f *~ Main.o Solver.o Oracle.o bundle

 to: rm -f *~ *.o bundle

11. under: Oracle2.o: Oracle2.C

 $(CCC) -c $(CCFLAGS) Oracle2.C -o Oracle2.o

 add: Bundle.o: Bundle.C

 $(CCC) -c $(CCFLAGS) Bundle.C -o Bundle.o

 Quad.o: BMinQuad.C

 $(CCC) -c $(CCFLAGS) BMinQuad.C -o BminQuad.o

 CMinQuad.o: CminQuad.C

 $(CCC) -c $(CCFLAGS) CMinQuad.C -o CMinQuad.o

 QPBundle.o: QPBundle.C

 $(CCC) -c $(CCFLAGS) QPBundle.C -o QPBundle.o

 (It is crucial on every other line begins with one tab and no a series of spaces)

5.) Open 'OPTtypes.h' in a text editor and make the following one change:

1. change: //#include <values.h>

to: #include <values.h>

6.) navigate in the terminal to directory where 'spar_bundle.tar' was unarchived

7.) to build bundle run:

make

8.) now bundle can be run by typing ./bundle followed by a SCP file. For example if scp41.txt was in the

local directory, we could run:

./bundle scp41.txt

VI: A Note on the make command

The make command follows the instructions of the 'Makefile' in the current directory, automating the

compiling and linking of the executables. Thus in practice, a 'Makefile' is a specialize script for controlling

and automating compiling and linking. The syntax is quite arcane and dates from the 1980s, but make is

available on most systems and does the job. For example, five space and tab have different meanings, so it is

necessary to quite careful when editing a makefile. The GNU Project's website provide a good reference for

makevii. One example of what make does can be seen by running make after changing one of the source

files and observing that make automatically detects this and re-builds the affected targets (usually

executables and object files). The 'Makefile' in the sparse directory provides additional functionality which is

illustrated by the following examples:

make - builds all the targets, in this case both bundle and convscp

make clean - remove the executables and the object files that the student version created

make bundle - only build bundle

make convscp - only build convscp

make realclean - remove the executables and all the object files

note: this last example should NOT be run unless all sources files are present in the 'scr' directory

i Reine Säljö

 Implementing of a bundle algorithm for convex optimization (2004)

 Chalmer University of Technolgoy, Göteborg, Sweden

 http://www.math.chalmers.se/Math/Grundutb/CTH/tma521/0607/Thesis.pdf

ii Antonio Frangioni

 http://www.di.unipi.it/~frangio

http://sorsa.unica.it/it/software.php

iii OR-Library

 J E Beasley
 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html

iv ILOG CPLEX 10.0 User’s Manual
 http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/usrcplex.pdf

v Alberto Caprara, Matteo Fischetti, Paolo Toth

 A Heuristic Method for the Set Covering Problem (1995)
http://citeseer.ist.psu.edu/cache/papers/cs/3135/http:zSzzSzpromet4.deis.unibo.itzSz~albertozSzscp.pdf/caprara95heuristic.pdf

vi Niclas Andréasson, Anton Evgrafov and Michael Patriksson (2005)

 An Introduction to Continuous Optimization

 Studentlitteratur, Lund, Sweden

vii GNU `make'
 http://www.gnu.org/software/make/manual/make.html

http://www.math.chalmers.se/Math/Grundutb/CTH/tma521/0607/Thesis.pdf
http://www.di.unipi.it/~frangio
http://www.di.unipi.it/~frangio
http://www.di.unipi.it/~frangio
http://sorsa.unica.it/it/software.php
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/usrcplex.pdf
http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/usrcplex.pdf
http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/usrcplex.pdf
http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/usrcplex.pdf
http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/usrcplex.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/3135/http:zSzzSzpromet4.deis.unibo.itzSz~albertozSzscp.pdf/caprara95heuristic.pdf
http://www.gnu.org/software/make/manual/make.html

