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Project 2: Production scheduling

1 The project task

The project task is to define and implement a decomposition algorithm for
the scheduling problem described below. For this, there are two alternatives,
composed by the two models the engineer’s model and the time indexed model.
The algorithm that should be used is the Dantzig-Wolfe reformulation solved
by column generation.

1.1 Problem files and implementation

At your service, AMPL model files (.mod) for the two mathematical models
are provided at the course homepage together with a script file (.run) and a
set of data files (.dat) for each model. These files can be used to solve the
problem cases by the Cplex solver, to get key solutions for comparisons. All
files named *MTC3* correspond to the engineer’s model and all files named
*MTC4* correspond to the time indexed model.

The decomposition algorithm chosen should be implemented in AMPL or
Matlab (or C/C++ if you prefer). The sub and master problems should be
solved by Cplex MILP solver.

Instructions on how to write scripts in the AMPL command language can be
found, e.g., at the web page www.ampl.com/NEW/index.html#LoopTest under
“Looping and Testing 1 & 2”. Instructions for the AMPL and Matlab interfaces
to Cplex are found, e.g., in www.math.chalmers.se/Math/Grundutb/CTH/
mvel65/0910/Exercises/LP_Exc_1003.pdf

1.2 Deadlines and examination

A preliminary report should be sent to anstr.chalmers@analys.urkund.se on
Friday, 7th of October and the final report should be sent in on Tuesday, 11th
of October. The program codes should be sent in on Tuesday, 11th of October.

The examination of the project includes an oral presentation of the same
and an opposition to another groups project, during the seminar on Wednesday,
12th of October. The competition will also take place at this seminar.

1.3 Applying the algorithm to the models

The machining problem (see Section 4) should be solved using the column
generation method, but the feasibility problem may be solved directly, without
decomposition, using the Cplex MILP-solver.



In the column generation algorithm applied to the machining problem, a
column is suitably defined by one schedule (composed by a sequence of opera-
tions) for each machine (and for the time indexed model also the corresponding
allocation of operations to machines). When a final set of columns has been
generated (what “final” means is your decision), the corresponding restricted
master problem, with integer requirements on the appropriate variables, may
be solved by Cplex MIP-solver.

If any of these instructions or the AMPL-files are unclear or seem unsuitable,
please tell me and your fellow students.

You are also welcome to discuss any difficulty or indistinct instruction in
this assignment with me or Karin, but don’t forget to discuss also with your
fellow students.

1.4 Presentation of results

The types of results that should be presented in the report and at the seminars
include upper and lower bounds on the optimal value as functions of number of
iterations and of CPU-time, the best solution (i.e., schedule) found, the value
of the best solution found compared with the key solution (found using the
AMPL-files supplied).

In order to receive solutions (schedules) with different properties, different
objective functions should be formulated and tried out in the computations.

The specific competition task will be revealed at the 11th of October.

2 Definition of the problem

2.1 Indices and sets
The queue of jobs j to the multitask cell go through three different phases:

e Planned orders not yet released, i.e. exist only in the planning system.
e Released jobs, or so called production orders, i.e. physical parts being
processed elsewhere on their way to the MT cell.

e Jobs checked in into the MT cell, i.e. parts inside the MT cell waiting to
be processed.

J denotes the whole set of jobs to be done during the planning period. Some
jobs are to be processed on the same part, and the pairs of two such jobs
adjacent in the routing, form the set Q C J x J. For the part, which routing
is described by Figure 1, the pairs (j,q) and (q,!) belongs to the set Q.

Figure 1: Routing of a part with jobs j, ¢ and l. (j,q),(q,l) € Q.

Each job j consists of n; operations ¢ to be processed inside the MT cell,
ie N; ={1,..,n;}. A typical routing for a job is listed in the table below.



Description

Mounting into fixture
Turning/Milling/Drilling
Manual deburring
Automatic deburring
Demounting
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Table 1: The possible route operations ¢ in the multitask cell.

In order to fix the order in the schedule between two jobs of the same type
for the same type of parts, the set P C J x J is populated by pairs (j,q) of
these jobs where the release date of job j is less than or equal to the release
date of job ¢. The set K denotes the 10 resources k that the multitask cell
consists of.

k Description

MC 1-5 Multitask machines

Man Gr Manual deburring station
DBR Automatic deburring machine

M/DM 1-3 Mount/demount stations

Table 2: The resources k of the multitask cell

2.2 Parameters

1, if operation (i,7) can be processed on resource k,
Aijh = { 0, otherwise.
ap : the time when resource k£ will be available the first time.
d; : the due date of job j, i.e. the point in time when the last
operation n; of job j is planned to be completed.
r; : the release date for job j.
pij : the processing time in hours for operation i of job j
w : the transportation time for a product inside the multitask cell
vjq © the interoperation time between the jobs j and ¢, where (j,q) € Q
M : a sufficiently large positive number, i.e. greater than the planning
horizon.
All dates described above are given in hours relative to a time point, g, which
is the starting time of the schedule to be calculated.

2.3 Realistic release dates and interoperation times

If a job j is checked in into the MT cell, i.e. the part is ready to be processed at
time g, r; is set to 0. Release dates for the other two phases, i.e. released jobs
and planned orders, see Section 2.1, are not that easy to get hold on. In the
planning system of the MT cell, there are a planned latest release date for each
job, let us denote it p;. This means that the job j in the MT cell is planned to
be started at the latest at this point in time. The desired release date, r;, we



want to get hold on in the optimization model is however the realistic point
in time when the part arrives to the MT cell. The best guess we can make is
that this is given by

rj = max(g; — to — 0.89;; 1Y),

where V? is the standard lead time from the operation where the part is about
to be processed at time ¢y till it arrives in the multitask cell. Let pq4.¢ denote
this actual operation. Then 1/;3 is given by

Hm ;-1

1/;] = Z (P + s +9) +0.29;,
H=Hact+1

where p,, ¢, and 9, denote the process, setup and queue times of operation
w processed elsewhere, i.e. not in the MT cell, see Figure 2.

Uiq

Figure 2: The interoperation time, vjq, is marked out together with VJQ for the
case of a planned order, i.e. figet = [11.

In order to prevent the possibility that job j and ¢ are scheduled too close
in time, when both jobs are to be performed on the same physical part, the
parameter vj, is introduced. This is the planned interoperation time between
the completion time of job j and the starting time of job ¢ for jobs done outside
the multitask cell. The definition of vjq is

Hmg—1

vig= Y. (pu+su+0,)+0.20,,

H=Hm;+1

where p,, ¢, and ¥, denote the process, setup, and queue times of operation
w processed elsewhere as in (2.3).

3 The engineer’s mathematical model

3.1 Variables
o { 1, if operation (i,7) is allocated to resource k,
ik 0, otherwise.
1, if op (7,7) is being processed before op (p,q) on resource k,

Yijpak = { 0, otherwise.

ti; = the starting time of operation (4, j).

8j = tn;,j + Dn;,j, the completion time of job j.

b — { sj —dj, if s; >.dj, i.e. the tardiness of job j,

J 0, otherwise.



3.2 Objective functions

The objective function, is chosen so that it minimizes the job finish times
together with the total tardiness, according to

> (55 + hy).

JjeT

If also the time used in the fixure is considered, the objective function becomes

> (5 — ety + hy),

JjeT

where € € [0,1).

3.3 The optimization model

Minimize Z(Sj + hj), (1a)
JjeT

subject to Zzijk =1, ieN;, jeJ, (1b)
ke

Zijkg)\ijk, ’iE./\/j, jej, k‘GK, (1 )
yiquk"i_ypqijkgzijk’ ie-/\/-j"pEqujaquv (ivj)#(p’Q)vk )

Zijkt Zpgk — Yijpak — Ypqgijk < 1, i€Nj,pEN, G, €T, (1,7)# (P, q), k )
tij +pij — M(1=Yijpge) <tpg, 1EN;,PENG, j,q€ T, (i,)#(p,q). k )
tij +pij +w <ty , i€N;\{n;}, j€T, (1g)

tljZ’I”j, jej, (1 )

tij — agzijr =0, jeT, keEK, (1i)

tig = sj 2 vje,  (J,9) €2, (1)

8j = tn;j =Dnjj» JET, (1k)

sj—h;<d;, jeJ, (11)

hj >0, VISV (Im)
tijzo’ ie-/\/-j’jej’ ( )
zijk € {0,1},1€N;, jeJ, kek, (1o)
Yijpgk € 10,1}, 1€ NG, pENy, j,a€ T, (i,5) # (p, q), k€ K,(1p)

where (1b) ensures that every operation is processed exactly once, and (1c)
makes sure that each operation is scheduled on a resource allowed for that op-
eration. The constraints (1d) and (1le) determine an ordering of the operations
that are processed on the same resource. The constraints (1d) make sure that
at most one of the variables y;,qx and ypqi;x may attain the value 1, and the
constraints (le) regulates that at least one of the variables y;jpqr and Ypgijk
must have the value 1 if operations (i, j) and (p,q) are to be performed on the
same resource.

The constraint (1f) makes sure that the starting time of operation (p,q)
is scheduled after the completion of the previous operation on the same re-
source. Generally, in scheduling problems, the symmetry preventing constraint
tpg + Ppg — Myijpgr < t;j is required, but this becomes redundant here since
the variables ¥;jpqr and ypq:;i are regulated by the inequalities (1d) and (1e).
The constraints (1g) ensure that the operations within the same job, j, are



scheduled in the right order and that each operation starts after the previous
operation is completed and the goods is transported to the next resource.

Equation (1h) regulates the starting times of the first operation of every job,
so that no job is scheduled before its release date. Equation (1i) makes sure
that no operation is scheduled on resource k before this resource is available
for the first time. The constraint (1j) regulates that any pair of jobs to be
processed on the same physical part is scheduled in the right order. The
constraints (1k) through (1m) calculate the finish times and the tardiness for
the objective function. The constraints (1n) are the nonnegativity constraints
of the starting times. This is redundant due to equations (1g) through (1i)
provided that r; is nonnegative for all j. The constraints (1o) and (1p) are the
binary constraints on the variables.

Note: In order to simplify the implementation of the column generation
algorithm, you may disregard the constraints (1j) (a pair of jobs to be processed
on the same physical part is scheduled in the right order).

4 Decomposition into a machining and a feasibility
problem

4.1 Variables
I 1, if job j is allocated to resource k,
* 7 0, otherwise.
- _ J 1, if job j is being processed before job g on resource k,
Yiak = 0, otherwise.
t; = the starting time of the machining operation of job j.
sj = tj +pj+p5, the completion time of job j,
where p?m is the sum of the post-machining route operations.
heo—d Si— d;, if s; > dj, i.e. the tardiness of job j,
J 0, otherwise.

4.2 The machining problem

Minimize — » (s7+h8), (2a)
JjeT

subject to Z 2y =1, jeJ, (2b)
kek B

25k < Ak jeJ, kek, (2c)

Yigk + Ygin < Ziks haed, kek,j#q  (2d)

y;nqk—i_ygjk—i—lz'z;nk—i_'z;nk? ],QEJ, ]#q’ kElC, (28)

t5=>17, jed, (2g)

ti > apzjy, jeJ, (2h)

ty = 85+ V5, (4.q) € Q, (2i)

si=tj+pj+pi.jed, (2j)

h; > 8§ —dj jeJd, (2k)



h2 >0, jed, (21)
£5>0, ied. (2m)
25, €{0,1}, jeJd, kek, (2n)
Yiak € {0, 1}, ha€Jd,j#q kek, (20)

where v, = vjq +t14 and p?m =3 pij-
Note: Analogously with the previous note, you may disregard the con-

straints (2i).

4.3 The feasibility problem

The aim of the feasibility problem is to produce good feasible schedules for the
remaining resources of the MT cell, i.e. the three setup and the two deburring
stations. The objective function consists of three terms. The first term is
minimizing the total processing lead time, i.e. the time the fixture for each
job is occupied, s; — t1;. The next term is minimizing the total tardiness and
the last term is a weight wy times the variable z;j, in order to avoid large
computation times caused by the computation of symmetric solutions for the
three setup stations.

Minimize Y (s = 0.001t1; +hy + > D wizi) (3a)

JjeJ 1eN; kek
subject to Z Zijk =1, ieN;, jed, (3b)
kek
Zijkg)\ijk, iG./\fj, jEj, k‘E/C, (3C)
Yijpak T Ypgijk < Zijks  1E€EN;, DENG, 1, €T, (i) # (p, q), k€ K,(3d)
Zijk+zqu_yiquk_ypqijk < 1’ iGJ\/},pGNq,j, qej? (Zaj) 7é (pa Q), /-CEIC,(?)Q)
tij+pij— M (1= Yijpgr) Stpg,  1EN;,PENG, J,a€ T, (i, 5) # (p, q), kEK, (3f)
tij +pij +w <tiy1;, i€N;\ {n;}, j€JT, (3g)
tyj=>ry, JjeJ, (3h)
tij — QkZijk > 0, jej, k‘E/C, (3i)
tiy —sj =g, (5,0)€Q, (3))
8j —tn;j=Dn;j, JET, (3k)
sj—h;<dj, j€JT, (31)
n>0,  jed. (3m)
tijzo, iG./\/j, J1€J, (3n)
Y2j2qk = Yjgr, J,4€T, kEK, (30)
zojk =2, JET, kKEK, (3p)
zijk € {0,1},i€eNj, jeJ, kek, (3q)
Yijpak € {0,1}, iGJ\/},pGNq,j,QGJ, (4,7)# (p,q), k€K, (3r)

where y?;k and zﬂ are the solutions obtained from the machining problem.
Note: Analogously with the previous notes, you may disregard the con-
straints (3j).



5 The time indexed machining model

5.1 Time intervals

The time horizon of the schedule is divided into T + 1 time intervals, and the
index u € 7T = {0,1,...,T} denotes a time interval starting at u and ending at
u + 1 with length £.

time
0123 u ut1 TT+1
5.2 Variables
1, if job j is to start at the beginning of time interval v on
Tjjy = resource k,
0, otherwise.
sj = the completion time of job j.
e si +p§m —dj;, if s —i—p?m > dj, i.e. the tardiness of job j,
J 0, otherwise.
5.3 The time indexed optimization model
Minimize Z(sj + hj), (4a)
JjeJ
subject to Z Z Tjky =1, je J, (4b)
ke}% ueT
Y ik <Ak, je€T, keKk, (4c)
ueT
v ~
Yo ) ww<l, keKu=0,....T, (4d)
JE€T v=(u—pj+1)+

oSzt —1

T UTUjq
S (X wmt Y waw) <L G €Q u=0,.T— v+ 1, (4e)
v=0

kel H=u ~
Ty =0, JjeJ, kekK,u=0,1,... max{r;j,ax}, (4f)

kefé ue7
sj—h;<d;, jeJ, (4h)
Tire €{0,1},j €T, ke, ueT, (4j)
where v;jl‘t =pj+ p?m—i—vjq. The constraints (4e) can be equivalently expressed

as (this version is implemented in the 2011 version of the AMPL mod-file)
u utofg
Z (Zxﬂw— Z qu,,> >0, (j,9)€Q, u=0,....,T—uv5:*, (5)
kel H=0 v=0
Note: Analogously with the previous notes, you may disregard the con-
straints (4e) (as well as (5)).



