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The Relaxation Theorem

◮ Problem: find

f ∗ = infimum
x

f (x), (1a)

subject to x ∈ S , (1b)

where f : R
n 7→ R is a given function and S ⊆ R

n

◮ A relaxation to (1a)–(1b) has the following form: find

f ∗R = infimum
x

fR(x), (2a)

subject to x ∈ SR , (2b)

where fR : R
n 7→ R is a function with fR ≤ f on S and

SR ⊇ S .
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Relaxation example (maximization)

◮ Binary knapsack problem:

z∗ = maximize
x∈{0,1}4

7x1 + 4x2 + 5x3 + 2x4

subject to 3x1 + 3x2 + 4x3 + 2x4 ≤ 5

◮ Optimal solution: x∗ = (1, 0, 0, 1), z∗ = 9

◮ Continuous relaxation:

z∗LP = maximize
x∈[0,1]4

7x1 + 4x2 + 5x3 + 2x4

subject to 3x1 + 3x2 + 4x3 + 2x4 ≤ 5

◮ Optimal solution: x∗R = (1, 2
3 , 0, 0), z∗R = 9 2

3 > z∗

◮ x∗R is not feasible in the binary problem

Ann-Brith Strömberg Lagrangian duality



The relaxation theorem

1. [relaxation] f ∗R ≤ f ∗

2. [infeasibility] If (2) is infeasible, then so is (1)

3. [optimal relaxation]
If the problem (2) has an optimal solution x∗R ∈ S for which

fR(x∗R) = f (x∗R),

then x∗R is an optimal solution to (1) as well.

◮ Proof portion. For 3., note that

f (x∗R) = fR(x∗R) ≤ fR(x) ≤ f (x), x ∈ S
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Lagrangian relaxation, I

◮ Consider the optimization problem:

f ∗ = infimum
x

f (x), (3a)

subject to x ∈ X , (3b)

gi (x) ≤ 0, i = 1, . . . ,m, (3c)

where f : R
n 7→ R and gi : R

n 7→ R (i = 1, 2, . . . ,m) are
given functions, and X ⊆ R

n

◮ Here we assume that

−∞ < f ∗ < ∞, (4)

that is, that f is bounded from below and that the problem
has at least one feasible solution
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Lagrangian relaxation, II

◮ For a vector µ ∈ R
m, we define the Lagrange function

L(x,µ) = f (x) +

m
∑

i=1

µigi (x) = f (x) + µ
Tg(x)

◮ We call the vector µ
∗ ∈ R

m a Lagrange multiplier if it is
non-negative and if f ∗ = infx∈X L(x,µ∗) holds.
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Lagrange multipliers and global optima

◮ Let µ
∗ be a Lagrange multiplier.

Then, x∗ is an optimal solution to

f ∗ = inf{f (x) |x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m},

if and only if it is feasible and

x∗ ∈ arg min
x∈X

L(x,µ∗), and µ∗
i gi (x

∗) = 0, i = 1, . . . ,m

◮ Notice the resemblance to the KKT conditions:
◮ If X = R

n and all functions are in C 1 then
“x∗ ∈ argminx∈X L(x, µ∗)” ⇔ “force equilibrium condition”,
i.e., the first row of the KKT conditions.

◮ The second item, “µ∗

i gi(x
∗) = 0 for all i” ⇔ complementarity

conditions
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The Lagrangian dual problem associated with the

Lagrangian relaxation

◮ The Lagrangian dual function is

q(µ) = infimum
x∈X

L(x,µ)

◮ The Lagrangian dual problem is to

q∗ = maximize
µ≥0m

q(µ) (5)

◮ For some µ, q(µ) = −∞ is possible. If this is true for all
µ ≥ 0m then

q∗ = supremum
µ≥0m

q(µ) = −∞
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The Lagrangian dual problem, cont’d

◮ The effective domain of q is Dq = { µ ∈ R
m | q(µ) > −∞}

[Theorem] Dq is convex, and q is concave on Dq

◮ Very good news: The Lagrangian dual problem is always
convex!

◮ Maximize a concave function

◮ Need still to show how a Lagrangian dual optimal solution can
be used to generate a primal optimal solution
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Weak Duality Theorem

Let x and µ be feasible in

f ∗ = inf{f (x) |x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m}

and
q∗ = max{ q(µ) |µ ≥ 0m },

respectively. Then,
q(µ) ≤ f (x).

In particular,
q∗ ≤ f ∗.

If q(µ) = f (x), then the pair (x,µ) is optimal in the respective
problem and

q∗ = q(µ) = f (x) = f ∗.
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Weak Duality Theorem, cont’d

◮ Weak duality is also a consequence of the Relaxation
Theorem: For any µ ≥ 0m, let

S = X ∩ { x ∈ R
n | g(x) ≤ 0m },

SR = X ,

fR = L(µ, ·)

Apply the Relaxation Theorem

◮ If q∗ = f ∗, there is no duality gap.

◮ If there exists a Lagrange multiplier vector, then by the weak
duality theorem, there is no duality gap.
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Global optimality conditions

◮ The vector (x∗,µ∗) is a pair of an optimal primal solution and
a Lagrange multiplier if and only if

µ
∗ ≥ 0m, (Dual feasibility) (6a)

x∗ ∈ arg min
x∈X

L(x,µ∗), (Lagrangian optimality) (6b)

x∗ ∈ X , g(x∗) ≤ 0m, (Primal feasibility) (6c)

µ∗
i gi (x

∗) = 0, i = 1, . . . ,m (Complementary slackness) (6d)

◮ If ∃(x∗,µ∗) that fulfil (6), then there is a zero duality gap and
Lagrange multipliers exist
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Saddle points

◮ The vector (x∗,µ∗) is a pair of an optimal primal solution and
a Lagrange multiplier if and only if x∗ ∈ X, µ

∗ ≥ 0m, and
(x∗,µ∗) is a saddle point of the Lagrangian function on
X × R

m
+, that is,

L(x∗,µ) ≤ L(x∗,µ∗) ≤ L(x,µ∗), (x,µ) ∈ X × R
m
+,

holds.

◮ If ∃(x∗,µ∗), equivalent to the global optimality conditions,
the existence of Lagrange multipliers, and a zero duality gap
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Strong duality for convex programs, introduction

◮ Convexity of the dual problem comes with very few
assumptions on the original, primal problem

◮ The characterization of the primal–dual set of optimal
solutions is also quite easily established

◮ To establish strong duality—sufficient conditions under which
there is no duality gap—takes much more

◮ In particular—as with the KKT conditions—we need regularity
conditions (constraint qualifications) and separation theorems
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Strong duality theorem

◮ Consider the problem (3), that is,

f ∗ = inf{f (x) |x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m},

where f : R
n 7→ R and gi (i = 1, . . . ,m) are convex and

X ⊆ R
n is a convex set

◮ Introduce the following constraint qualification (CQ):

∃x ∈ X with g(x) < 0m (7)
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Strong duality theorem

Suppose that −∞ < f ∗ < ∞, and that the CQ (7) holds for the
(convex) problem (3)

(a) There is no duality gap and there exists at least one Lagrange
multiplier µ

∗. Moreover, the set of Lagrange multipliers is
bounded and convex

(b) If infimum in (3) is attained at some x∗, then the pair (x∗,µ∗)
satisfies the global optimality conditions (6)

(c) If the functions f and gi are in C 1 and X is open (for
example, X = R

n) then (6) equals the KKT conditions

If all constraints are linear we can remove the CQ (7).
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Example I: An explicit, differentiable dual problem

◮ Consider the problem to

minimize
x

f (x) := x2
1 + x2

2 ,

subject to x1 + x2 ≥ 4,

xj ≥ 0, j = 1, 2

◮ Let
g(x) = −x1 − x2 + 4

and
X = { (x1, x2) | xj ≥ 0, j = 1, 2 } = R

2
+
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Example I, cont’d

◮ The Lagrangian dual function is

q(µ) = min
x∈X

L(x, µ) := f (x) + µ(−x1 − x2 + 4)

= 4µ + min
x≥0

{x2
1 + x2

2 − µx1 − µx2}

= 4µ + min
x1≥0

{x2
1 − µx1} + min

x2≥0
{x2

2 − µx2}, µ ≥ 0

◮ For a fixed µ ≥ 0, the minimum is attained at
x1(µ) = µ

2 , x2(µ) = µ

2

◮ Substituting this expression into q(µ) ⇒

q(µ) = f (x(µ)) + µ(−x1(µ) − x2(µ) + 4) = 4µ − µ
2

2

◮ Note that q is strictly concave, and it is differentiable
everywhere (since f , g are differentiable and x(µ) is unique)
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Example I, cont’d

◮ Recall the dual problem

q∗ = max
µ≥0

q(µ) = max
µ≥0

(

4µ −
µ2

2

)

◮ We have that q′(µ) = 4 − µ = 0 ⇐⇒ µ = 4.
As 4 ≥ 0, this is the optimum in the dual problem!

⇒ µ∗ = 4 and x∗ = (x1(µ
∗), x2(µ

∗))T = (2, 2)T

◮ Also: f (x∗) = q(µ∗) = 8

◮ Here, the dual function is differentiable. The optimum x∗ is
also unique and automatically given by x∗ = x(µ∗).
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Example II: Implicit non-differentiable dual problem

◮ Consider the linear programming problem to

minimize
x

f (x) := −x1 − x2,

subject to 2x1 + 4x2 ≤ 3,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 1

◮ The optimal solution is x∗ = (3/2, 0)T, f (x∗) = −3/2

x1

x2
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Example II: Lagrangian relax the first constraint

L(x, µ) = −x1 − x2 + µ(2x1 + 4x2 − 3);

q(µ) = −3µ+ min
0≤x1≤2

{(−1 + 2µ)x1}+ min
0≤x2≤1

{(−1 + 4µ)x2}

=







−3 + 5µ, 0 ≤ µ ≤ 1/4, ⇔ x1(µ) = 2, x2(µ) = 1
−2 + µ, 1/4 ≤ µ ≤ 1/2, ⇔ x1(µ) = 2, x2(µ) = 0

− 3µ, 1/2 ≤ µ ⇔ x1(µ) = x2(µ) = 0

µ

µ∗ = 1
2 , q(µ∗) = −3

2

q(µ)

1
2 1

−1

−2

−3
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Example II, cont’d

◮ For linear (convex) programs strong duality holds, but how
obtain x∗ from µ∗?

◮ q is non-differentiable at µ∗ ⇒ Utilize characterization in (6)

◮ The subproblem solution set at µ∗ is
X (µ∗) = {

(2α

0

)

| 0 ≤ α ≤ 1 }.

◮ Among the subproblem solutions, we next have to find one
that is primal feasible as well as complementary

◮ Primal feasibility means that 2 · 2α + 4 · 0 ≤ 3 ⇐⇒ α ≤ 3/4

◮ Complementarity means that
µ∗ · (2x∗

1 + 4x∗
2 − 3) = 0 ⇐⇒ α = 3/4, since µ∗ 6= 0.

◮ Conclusion: the only primal vector x that satisfies the system
(6) together with the dual solution µ∗ = 1/2 is x∗ = (3/2, 0)T

◮ Observe finally that f ∗ = q∗
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A theoretical argument for µ∗ = 1/2

◮ Due to the global optimality conditions, the optimal solution
must in this convex case be among the subproblem solutions

◮ Since x∗
1 is not in one of the “corners” of X (0 < x∗

1 < 2), the
value of µ∗ must be such that the cost term for x1 in L(x, µ∗)
is zero! That is, −1 + 2µ∗ = 0 ⇒ µ∗ = 1/2!

◮ A non-coordinability phenomenon—a non-unique subproblem
solution means that the optimal solution is not obtained
automatically

◮ In non-convex cases (e.g., integrality constraints) the optimal
solution may not be among the points in X (µ∗) (the set of
subproblem solutions at µ∗)

◮ What do we do then??
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