TMA521/MMA511 Large Scale Optimization Lecture 1
 Introduction: simple/difficult problems, matroid problems

Ann-Brith Strömberg
Associate Professor
Applied Mathematics/Optimization

2013-01-21

TMA521/MMA511 Optimization, project course

- Examiner/lecturer: Ann-Brith Strömberg (room L2087, anstr@chalmers.se)
- Lecturers: Michael Patriksson, Karin Thörnblad
- Schedule: 12 lectures, 3 seminars/workshops www.math.chalmers.se/Math/Grundutb/CTH/tma521/1213/
- Two projects:
- Lagrangian relaxation for a VLSI design problem (Matlab)
- Column generation applied to a real production scheduling problem (AMPL/Cplex, Matlab)
- Literature: Optimization theory for large systems (Lasdon, 2002, Cremona), An introduction to continuous optimization (Andréasson et al., Cremona), hand-outs from books and articles, lecture notes
- Examination: Written reports on the two projects, oral presentations and oppositions
- For higher grades than pass (4, 5, VG): oral exam

Topics: Turn difficult problems into sequences of simpler ones using decomposition and coordination

Prerequisites

- Linear Programming (LP), [Mixed] Integer Linear programming ([M]ILP), NonLinear Programming (NLP),
Decomposition methods covered
- Lagrangian relaxation (for MILP, NLP)
- Dantzig-Wolfe decomposition (for LP)
- Column generation (for LP, MILP, NLP)
- Benders decomposition (for MILP, NLP)
- Heuristics (for ILP)
- Branch \& Bound (for MILP, non-convex NLP)
- Greedy algorithms (for ILP, NLP)
- Subgradient optimization (for convex NLP, Lagrangian duals)

Properties of simple problems

- What we here call simple problems can be solved in polynomial time w.r.t. the problem size
- For simple problems, there exist polynomial algorithms preferably with a small largest exponent
- E.g., sorting an array of n elements can be done in time proportional to at most
- n^{2} operations (bubble sort)
- $n \log n$ operations (heapsort)

Examples of simple problems

- Network flow problems (see Wolsey):
- Shortest paths
- Maximum flows
- Minimum cost (single-commodity) network flows
- The transportation problem
- The assignment problem
- Maximum cardinality matching
- Problems over simple matroids (see Lawler)
- Linear programming (see Andréasson et al.)

Polynomial time solvable problems

Polynomial Time Solvable Problems

Example: Shortest path

Find the shortest path from node 1 to node 7

$$
d_{i}=\text { length of edge } i
$$

Shortest path from node 1 to node 7

Total length: 12

Example: Maximum flow

Find the maximum flow from node 1 to node 7
Maximum flow from node 1 to node 7

Minimum cut separating nodes 1 and 7

Matroids and the greedy algorithm (Lawler)

- Greedy algorithm
- Create a "complete solution" by iteratively choosing the best alternative
- Never regret a previous choice
- Which problems can be solved using such a simple method?
- Problems whose feasible sets can be described by matroids

Matroids and independent sets

- Given a finite set \mathcal{E} and a family \mathcal{F} of subsets of \mathcal{E} : If $\mathcal{I} \in \mathcal{F}$ and $\mathcal{I}^{\prime} \subseteq \mathcal{I}$ imply $\mathcal{I}^{\prime} \in \mathcal{F}$, then the elements of \mathcal{F} are called independent
- A matroid $M=(\mathcal{E}, \mathcal{F})$ is a structure in which \mathcal{E} is a finite set of elements and \mathcal{F} is a family of subsets of \mathcal{E}, such that

1. $\emptyset \in \mathcal{F}$ and all proper subsets of a set \mathcal{I} in \mathcal{F} are in \mathcal{F}
2. If \mathcal{I}_{p} and \mathcal{I}_{p+1} are sets in \mathcal{F} with $\left|\mathcal{I}_{p}\right|=p$ and $\left|\mathcal{I}_{p+1}\right|=p+1$, then \exists an element $e \in \mathcal{I}_{p+1} \backslash \mathcal{I}_{p}$ such that $\mathcal{I}_{p} \cup\{e\} \in \mathcal{F}$

- Let $M=(\mathcal{E}, \mathcal{F})$ be a matroid and $\mathcal{A} \subseteq \mathcal{E}$.

If \mathcal{I} and \mathcal{I}^{\prime} are maximal independent subsets of \mathcal{A}, then $|\mathcal{I}|=\left|\mathcal{I}^{\prime}\right|$

Example I: Matric matroids

- $\mathcal{E}=$ a set of column vectors in \mathbb{R}^{n}
- $\mathcal{F}=$ the set of linearly independent subsets of vectors in \mathcal{E}.
- Let $n=3$ and $\mathcal{E}=\left[e_{1}, \ldots, e_{5}\right]=\left[\begin{array}{lllll}1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 3 & 2 & 0 & 0 & 1\end{array}\right]$
- We have:
- $\left\{e_{1}, e_{2}, e_{3}\right\} \in \mathcal{F}$ and $\left\{e_{2}, e_{3}\right\} \in \mathcal{F}$ but
- $\left\{e_{1}, e_{2}, e_{3}, e_{5}\right\} \notin \mathcal{F}$ and $\left\{e_{1}, e_{4}, e_{5}\right\} \notin \mathcal{F}$

Example II: Graphic matroids

- $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}=$ the set of edges in an undirected graph
- $\mathcal{F}=$ the set of all cycle-free subsets of edges in \mathcal{E}

- $\left\{e_{1}, e_{2}, e_{4}, e_{7}\right\} \in \mathcal{F}, \quad\left\{e_{2}, e_{4}, e_{7}\right\} \in \mathcal{F}, \quad\left\{e_{2}, e_{3}, e_{5}\right\} \notin \mathcal{F}$, $\left\{e_{1}, e_{2}, e_{3}, e_{7}\right\} \in \mathcal{F}, \quad\left\{e_{1}, e_{4}, e_{5}, e_{6}, e_{7}\right\} \notin \mathcal{F}, \quad\left\{e_{2}\right\} \in \mathcal{F}$.

Matroids and the greedy algorithm applied to Example II

- Let $w(e)$ be the cost of element $e \in \mathcal{E}$. Problem: Find the element $\mathcal{I} \in \mathcal{F}$ of maximal cardinality such that the total cost is at minimum/maximum
- Example II, continued: $w(\mathcal{E})=(7,4,2,15,6,3,2)$

An element $\mathcal{I} \in \mathcal{F}$ of maximal cardinality with minimum total cost

The Greedy algorithm for minimization problems

1. $\mathcal{A}=\emptyset$.
2. Sort the elements of \mathcal{E} in increasing order with respect to $w(e)$.
3. Take the first element $e \in \mathcal{E}$ in the list. If $\mathcal{A} \cup\{e\}$ is still independent \Longrightarrow let $\mathcal{A}:=\mathcal{A} \cup\{e\}$.
4. Repeat from step 3. with the next element-until either the list is empty, or \mathcal{A} possesses the maximal cardinality.

Which are the special versions of this algorithm for Examples I and II?

Example I: Linearly independent vectors-matric matroids

- Let

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & -1 & -1 & 1 & 1 \\
3 & 2 & 8 & 1 & 4 \\
2 & 1 & 5 & 0 & 2
\end{array}\right), \\
\mathbf{w}^{\mathrm{T}} & =\left(\begin{array}{lllll}
10 & 9 & 8 & 4 & 1
\end{array}\right) .
\end{aligned}
$$

- Choose the maximal independent set with the maximum weight
- Can this technique solve linear programming problems?

Example II: minimum spanning trees (MST) -graphic matroids

- The maximal cycle-free set of links in an undirected graph is a spanning tree
- In a graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$, it has $|\mathcal{N}|-1$ links
- Classic greedy algorithm—Kruskal's algorithm has complexity $O(|\mathcal{E}| \cdot \log (|\mathcal{E}|))$. The main cost is in the sorting itself
- Prim's algorithm builds the spanning tree through graph search techniques, from node to node; complexity $O\left(|\mathcal{N}|^{2}\right)$.

Example III: continuous knapsack problem (in fact not a matroid problem)

- Continuous relaxation of the 0/1-knapsack problem (BKP):

$$
\begin{aligned}
& \operatorname{maximize} f(\mathbf{x}):=\sum_{j=1}^{n} c_{j} x_{j}, \\
& \text { subject to } \sum_{j=1}^{n} a_{j} x_{j} \leq b, \quad\left(a_{j}, b \in \mathcal{Z}_{+}\right) \\
& \quad 0 \leq x_{j} \leq 1, \quad j=1, \ldots, n
\end{aligned}
$$

- Greedy algorithm:

1. Sort c_{j} / a_{j} in descending order
2. Set the variables to 1 until the knapsack is full
3. One variable may become fractional and the rest zero

- Linear programming duality shows that the greedy algorithm solves the problem correctly

Example III, continued

Linear programming dual:

Hint: Complementarity slackness.

Example III, continued: Binary knapsack problem

- Rounding down the fractional variable value yields a feasible solution to (BKP)
- Is it also optimal in (BKP)?

$$
\begin{array}{ll}
\operatorname{maximize} & f(\mathbf{x}):=2 x_{1}+c x_{2}, \\
\text { subject to } & x_{1}+c x_{2} \leq c, \quad\left(c \in \mathcal{Z}_{+}\right) \\
& x_{1}, x_{2} \in\{0,1\},
\end{array}
$$

- If $c \geq 2$ then $x^{*}=(0,1)^{\mathrm{T}}$ and $f^{*}=c$.
- The greedy algorithm, plus rounding, always yields $\overline{\mathbf{x}}=(1,0)^{\mathrm{T}}$, with $f(\overline{\mathbf{x}})=2$
- This solution is arbitrarily bad (when c is large)

Example IV: The traveling salesperson problem (TSP)

The greedy algorithm for the TSP:

1. Start in node 1
2. Go to the nearest node which is not yet visited
3. Repeat step 2 until no nodes are left
4. Return to node 1 ; the tour is closed

- Greedy solution

Not optimal whenever $c>4$.

Optimal solution for $c \geq 4$

Example V: the shortest path problem (SPP)

- The greedy algorithm constructs a path that uses - locally the cheapest link to reach a new node. Optimal?
- Greedy solution

Not optimal whenever $c>9$

Optimal solution for $c \geq 9$

Example VI: Semi-matching

$$
\begin{aligned}
& \operatorname{maximize} f(\mathbf{x}):=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} x_{i j}, \\
& \text { subject to } \sum_{j=1}^{n} x_{i j} \leq 1, \quad i=1, \ldots, m \\
& \qquad x_{i j} \in\{0,1\}, \quad i=1, \ldots, m, j=1, \ldots, n .
\end{aligned}
$$

- Semi-assignment

Replace maximum \Longrightarrow minimum; " $\leq " \Longrightarrow "=$ "; let $m=n$

- Algorithm

For each i :

1. choose the best (lowest) $w_{i j}$
2. Set $x_{i j}=1$ for that j, and $x_{i j}=0$ for every other j

Matroid types

- Graph matroid: $\mathcal{F}=$ the set of forests in a graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$. Example problem: MST
- Partition matroid: Consider a partition of \mathcal{E} into m sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{m}$ and let $d_{i}(i=1, \ldots, m)$ be non-negative integers. Let

$$
\mathcal{F}=\left\{\mathcal{I}|\mathcal{I} \subseteq \mathcal{E} ; \quad| \mathcal{I} \cap \mathcal{B}_{i} \mid \leq d_{i}, i=1, \ldots, m\right\}
$$

Example problem: semi-matching in bipartite graphs.

- Matrix matroid: $S=(\mathcal{E}, \mathcal{F})$, where \mathcal{E} is a set of column vectors and \mathcal{F} is the set of subsets of \mathcal{E} with linearly independent vectors.
- Observe: The above matroids can be expressed as matrix matroids!

Problems over matroid intersections

- Given two matroids $M=(\mathcal{E}, \mathcal{P})$ and $N=(\mathcal{E}, \mathcal{R})$, find the maximum cardinality set in $\mathcal{P} \cap \mathcal{R}$
- Example 1: maximum-cardinality matching in a bipartite graph is the intersection of two partition matroids (with $d_{i}=1$). Draw illustration!
- The intersection of two matroids can not be solved by using the greedy algorithm
- There exist polynomial algorithms for them, though
- Examples: bipartite matching and assignment problems can be solved as maximum flow problems, which are polynomially solvable

Problems over matroid intersections, cont.

- Example 2: The traveling salesperson problem (TSP) is the intersection of three matroids:
- one graph matroid
- two partition matroids
(formulation on next page: assignment + tree constraints)
- TSP is not solvable in polynomial time.
- Conclusion (not proven here):
- Matroid problems are extremely easy to solve (greedy works)
- Two-matroid problems are polynomially solvable
- Three-matroid problems are very difficult (exponential solution time)
- The TSP—different mathematical formulations give rise to different algorithms when Lagrangean relaxed or otherwise decomposed

TSP: Assignment formulation for directed graphs

$$
\begin{array}{rlr}
\operatorname{minimize} \quad \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\text { subject to } & & i \in \mathcal{N} \\
\sum_{j=1}^{n} x_{i j} & =1, & j \in \mathcal{N} \\
\sum_{i=1}^{n} x_{i j} & =1, & \\
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} & =n, & \mathcal{S} \subset \mathcal{N} \\
\sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{S}} x_{i j} & \leq|\mathcal{S}|-1, & \\
x_{i j} & \in\{0,1\}, & i, j \in \mathcal{N} \tag{4}
\end{array}
$$

- (1)-(2): assignment; (3): sum of (1) (redundant); (4): cycle-free
- Relax (3)-(4) \Rightarrow Assignment
- Relax (1)-(2) \Rightarrow 1-MST

TSP: Node valence formulation for undirected

graphs

minimize
subject to

$$
\begin{align*}
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\sum_{j=1}^{n} x_{i j} & =2, \tag{1}\\
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} & =n, \tag{3}\\
\sum_{(i, j) \in(\mathcal{S}, \mathcal{N} \backslash \mathcal{S})} x_{i j} & \geq 1, \\
x_{i j} & \in\{0,1\}, \\
\mathcal{S} \subset \mathcal{N}, & i, j \in \mathcal{N} .
\end{align*}
$$

- (1): valence $=2$; (2): sum of (1); (3): cycle-free (alt. version)
- Hamiltonian cycle $=$ spanning tree + one link \Rightarrow every node receives valence $=2$
- Relax (1), except for node $s \Rightarrow 1$-tree relaxation.
- Relax (3) \Rightarrow 2-matching.

