
Chalmers/University of Gothenburg TMA521/MMA511
Department of Mathematical Sciences Project 1
Optimization Lagrangian duality
Ann-Brith Strömberg & Michael Patriksson 2018–01–17

Project 1: VLSI routing and Lagrangean duality

1 Introduction

The purpose of this project is to illustrate how a relatively difficult optimization problem
can be attacked by using Lagrangian duality. During the project you will write a
Matlab program for the solution of the Lagrangian dual problem. At your service are
two functions that are called from Matlab.

We consider a routing problem in “very large-scale integrated circuit design” (VLSI),
namely an application of the so-called “Manhattan channel routing problem”. The
mathematical classification of this problem is that of “vertex disjoint paths”. The
problem and the application are based on the article Lagrangian relaxation for testing
infeasibility in VLSI routing, by T.A. Feo and D.S. Hochbaum, published in Operations
Research, vol. 34, pp. 819–831 (1986), (dx.doi.org/10.1287/opre.34.6.819).

The program to be constructed is to be used to decide whether a given placement of
a number of connections is possible to implement with respect to the wiring necessary
between the components. The circuit board, where the connections are to be placed,
is such that on one side of the board wiring can only be done horizontally, and on the
other side only vertically. On the board there are predefined “vias” (or connectors), at
which it is possible to connect the two sides of the board. Figure 1 illustrates such a
problem having six horizontal wires on one side of the board and eight vertical wires
on the other, as well as 48 vias and six contact pairs.

A B C D E F

A’ B’ C’D’ E’F’

Figure 1: A Manhattan channel routing problem with the contact pairs A–A’, B–B’,
, . . . , F–F’.

Given a number of contact pairs, we wish to determine whether it is possible to
connect all of them on the two-sided board.

First, we introduce the notation needed to mathematically describe the network and
how the contact pairs are interconnected. Then we present the optimization problem,

1

the solution of which determines whether the routing problem has a solution or not.
This problem will then be studied by using Lagrangian duality, whose formulation
will be attacked using subgradient optimization. The program code for this algorithm
defines your first task.

Using the bounds on the optimal function value obtained we can then draw conclu-
sions about the existence of feasible solutions to the wiring problem.

2 Tasks to perform

2.1 Task 1

Study the problem carefully and write down a sketch of a Matlab program that follows
the scheme in Algorithm 1. Your task is to write the program code for the subgradient
optimization. The program is to be tested on problems that can be downloaded from the
course homepage. The files named “p6.m”, “p10.m,” and “p11.m” contain definitions
of dimX, dimY, k, and com (described in Section 5). The problem defined in “p6.m” is
illustrated in Figure 1, which hence suits as a trial problem for the algorithm coded.
This problem lacks solutions to the wiring problem. On the homepage are also two
additional functions, “gsp.c” and “visagrid.m”, described in Section 5.

To be handed in are
• The program code and a description in words of the algorithm.

• For each problem instance, the optimal dual objective value.

• For each problem instance, a graph with the dual objective value plotted on the
vertical axis against the iteration number on the horizontal axis.

• For each problem instance, a conclusion of whether it has a solution.

2.2 Task 2

In a second phase of the project you will implement a primal feasibility heuristic.
In the article by Feo ands Hochbaum there is no such heuristic; in this case this is
natural, considering the fact that the authors describe primal heuristic algorithms for
the problem that are already in use at BELLCORE.

Your task is, based on the Lagrangian subproblem and the constraints having been
Lagrangian relaxed, to construct a feasibility heuristic that manipulates a Lagrangian
subproblem solution to find a primal feasible solution. Since our problem is defined over
a graph it makes good sense to consider utilizing graph operations and/or optimization.
Note that the heuristic should not be very complicated, and that it must terminate;
that is, it must not be constructed such that there is any risk of it never terminating
with a solution; therefore, in the worst case, we must accept that the heuristic fails on
occasion. In particular, consider the different Lagrangian heuristic principles presented
at Lectures 4 and 6. Also, consider the methodologies presented in the MSc thesis by
Aldenvik and Schierscher (2015) as well as in the article Recovery of primal solutions
from dual subgradient methods for mixed binary linear programming by Gustavsson et
al. (2015).

The usefulness of the heuristic is two-fold: (a) it provides a pessimistic bound on
the optimal objective value, which can be used in a termination criterion for the dual
algorithm; (b) it provides a feasible solution at the end of the process, and this solution
can then be used as our candidate solution to be implemented.

2

To be handed in are
• This part of the program code and a description in words of the algorithm.

• The best solutions found in this way for each problem instance.

• For each problem instance, a graph where the primal and dual objective values
are plotted against the iteration number.

2.3 Task 3

In the project groups consisting of more than one person, each student, individually,
must hand in a written report on how the project work has been distributed within the
group and how the cooperation has worked out.

3 Mathematical model

We introduce mathematical notation to describe the routing problem.
Let the set V contain the nodes in the graph and let the set A contain the directed

links between the nodes. Let n be the number of nodes, that is, n = |V|. The nodes
correspond to the places—the so-called “vias”—on the circuit board where its two
sides can be connected. A link represents a possible connection between two nodes. In
Figure 1 a line represents two links, one in each direction between two nodes. Each
contact pair “starts” at a node and “terminates” at another node. Let k be the number
of contact pairs, and let sl and tl define the “start” and “terminal” nodes for the pairs
l = 1, . . . , k. Let the variable xijl ∈ {0, 1} denote whether ot not the contact pair l
uses the link from node i to node j. In addition let the variable xtlsll represent a link
directly from tl to sl for l = 1, . . . , k. These variables are interpreted as “direct links”
from A’ to A, from B’ to B, and so on. The corresponding links are not physical, but
logical, telling whether or not a connection is possible.

The problem of finding a solution with as many connections as possible can with the
above notation be expressed as to (the summations over the index j being simplified
to the not perfectly correct expression

∑n
j=1)

maximize

k∑
l=1

xtlsll, (1a)

subject to

n∑
j=1

(xjil − xijl) = 0, i ∈ V, l = 1, . . . , k, (1b)

k∑
l=1

n∑
j=1

xjil ≤ 1, i ∈ V, (1c)

xijl ∈ {0, 1}, i, j ∈ V, l = 1, . . . , k. (1d)

The model (1) can be interpreted as follows. The constraints (1d) make sure that a
contact pair passes through a link either once or not at all. The constraints (1c) make
sure that each node is passed at most once, i.e., it is used by at most one contact pair.
The constraints (1b) make sure that a node that has an incoming connection also has
an outgoing one. The objective function (1a) describes the maximization of the number
of connections that are made; the flow is circular according to our formulation, whence
it is enough to count the “direct links.”

3

If the optimal objective value is less than the total number of pairs that we wish
to connect, then there is no way in which they all can be connected, given the circuit
board at hand.

4 Lagrangean dual problem

Form a Lagrangian dual problem to (1), where the constraints (1c) are relaxed. The
number of constraints in (1c) equals the number of nodes in the network (i.e., n).
Let the dual variables be denoted by πi, i = 1, . . . , n. Since the dual variables are
associated with ≤ constraints in a maximization problem, there are also constraints
πi ≥ 0, i = 1, . . . , n. The Lagrangian dual problem is then written as that to

minimize
πππ≥0n

h(πππ), (2a)

where

h(πππ) := max
x


k∑
l=1

xtlsll +
n∑
i=1

πi

(
1−

k∑
l=1

n∑
j=1

xjil

) , (2b)

subject to
n∑
j=1

(xjil − xijl) = 0, i = 1, . . . , n, l = 1, . . . , k, (2c)

xijl ∈ {0, 1}, (i, j) ∈ A, l = 1, . . . , k. (2d)

The problem (2b)–(2d) is called the Lagrangian subproblem; the objective function in
(2b) can be rewritten as

h(πππ) =
n∑
i=1

πi + max
x


k∑
l=1

(
xtlsll −

n∑
i=1

n∑
j=1

πixjil

) .

We observe that since πi is a constant in the Lagrangian subproblem, it can be separated
into k independent problems, one for each contact pair.

For a given contact pair l the Lagrangian subproblem is then to

maximize

{
xtlsll −

n∑
i=1

n∑
j=1

πixjil

}
, (3a)

subject to

n∑
j=1

(xjil − xijl) = 0, i = 1, . . . , n, (3b)

xijl ∈ {0, 1}, (i, j) ∈ A. (3c)

The problem (3) is solved in two steps. First, find the cheapest route from node sl
to node tl, where the cost for passing node i is πi. Let zi, i = 1, . . . , n, describe this
route with zi = 1 if node i is passed, and zi = 0 otherwise. In step two, calculate the
route cost

∑n
i=1 πizi. If this route cost is < 1, then the problem (3) has a solution for

which the variables xijl corresponding to the links in the cheapest route are set to 1.
If the route cost is ≥ 1, then all variables for that node connection are set to 0.

4

The value of h(πππ) is, according to Lagrangian duality theory for a maximization
problem, an upper bound (UBD) on the optimal value for the original problem, that
is, an optimistic bound.

At iteration t, given the solutions to the k Lagrangian subproblems, i.e., the values
of the variables xijl = xtijl, a subgradient dt can be computed as

dti := 1−
k∑
l=1

n∑
j=1

xtjil, i = 1, . . . , n. (4)

The following interpretation in the network of the expression (4) is useful when calcu-
lating the search direction: For a given contact pair l, the sum

∑n
j=1 x

t
jil equals the

number of links used, initiated at the nodes j = 1, . . . , n that are adjacent to node i.
The dual variables are updated by taking a step in the direction of −dt, as

πt+1
i = max

{
0;πti − stdti

}
, i = 1, . . . , n (5)

(i.e., a step in the direction opposite to the subgradient). The step length st > 0 is
calculated, e.g., by the formula

st := λt
h(πππt)− LBD∑n

i=1

(
1−

∑k
l=1

∑n
j=1 x

t
jil

)2 . (6)

The value LBD should be a lower bound on the optimal value of the problem (a
pessimistic bound). We choose to set LBD equal to zero here (the value of LBD
may also be the value of the best known feasible solution to the primal problem, e.g.,
determined through a primal feasibility heuristic). To guarantee convergence to an
optimal dual solution, the parameter λt must have a value strictly between zero and
two, i.e., λt ∈ [ε1, 2− ε2], where ε1 > 0, ε2 > 0.

Note that the max operation in (5) is crucial in order to ensure that the multipliers
πππ maintain their sign after an update. (Start at a non-negative vector, such as π0i := 0
or π0i := 1/n for all i.)

Given the new values of the multipliers, πt+1
i , i = 1, . . . , n, according to (5), re-

solve the Lagrangian subproblem (3) until termination. The subgradient method is
normally terminated after a fixed number of iterations, since there are seldom enough
information on how close to the dual optimum the value is; here, a maximum number
of 1000 iterations might be appropriate. The parameter λt can, e.g., be initiated to 2
and multiplied by 0.95 every ten iterations. See the article by Feo and Hochbaum and
the MSc thesis by Junberg (2001) for alternative rules.

The subgradient scheme is summarized in Algorithm 1.

5 Help functions in Matlab

At your service are two ready-made functions in Matlab. One is a routine for finding k
cheapest routes in a graph. The other is a routine for graphically representing a graph
and a solution (a wiring).

nl=gsp(dimX,dimY,pi,k,com)

dimX and dimY are the number of “vias” in the x- and y-coordinates, respectively.

5

Algorithm 1 The subgradient scheme

1: Let t := 0 and initialize πππ0 and λ0
2: Solve the Lagrangean subproblem for πππ = πππt and calculate an upper bound h(πππt)

on the optimal value
3: Calculate a subgradient direction dt and the step length st
4: Calculate πππt+1 according to (5)
5: Update the value of λt
6: Until a termination criterion is fulfilled, let t := t+ 1 and repeat from 2

pi is a vector of dual variable values, with dimX∗dimY∗2 elements. k is the number
of contact pairs and com is a matrix describing the initial and ending nodes of
each contact pair. For example, com = [1 48; 2 42; 3 43], with k = 3, states
that the first pair starts at node 1 and ends at node 48, the second starts at node
2, and ends at node 42, and the third pair starts at node 3 and ends at node
43. The result coming from the function gsp is a list (nl) with node numbers
describing a cheapest route for each for each contact pair. For a graph with dimX

= 8 and dimY = 6 the nodes are numbered according to Figure 2.

1 2 3 4 5 6 7 8

9 10 11 12 13

4847464544...

...

49

50

51

53

52

54

55

56

57

58

...

96

95

94

93

...

Figure 2: Node numbering for the upper (left) and lower (right) layer.

Example: Let k = 3 with contact pair com = [1 48; 3 41; 5 42]. Suppose
all elements in the vector pi has the value 0.1. By calling nl = gsp(8, 6, pi,

k, com) we obtain nl = 48 47 46 45 44 43 42 41

54 53 52 51 50 49 1 42 60 59 58 57 56 55 2 43 66 65 64 63

62 61 3. �

Given the vectors pi, nl, com, and k, in order to find out which contact pairs
have a route cost < 1, use the following code:

% Calculate cost per route; remove route with

% cost > 1 (required routes stored in nl and pairs in com)

last = 0;

for i = 1 : k;

first = last+1;

slask = find(nl(last+1:length(nl)) == com(i,1));

last = slask(1)+first-1;

if (sum(pi(nl(first:last))) < 1)

okcom = [okcom i]; newnl = [newnl; nl(first:last)];

end

end

Having run this command there is a vector okcom containing the indices (row

6

numbers in the com vector) of the contact pairs with costs lower than one, and a
vector newnl containing all the node numbers for all the routes in these contact
pairs, sequentially stored in the vector.

Example (cont’d): With nl calculated in the previous example we get okcom =

2 3 and newnl = 42 60 59 58 57 56 55 2 43 66 65 64 63 62 61 3 as the
result from the above program code. Observe that the connection between 1 and
48 passes 15 nodes and hence has a route cost of 15 · 0.1 > 1. Therefore, the pair
is not included in okcom or newnl. �

visagrid(dimX,dimY,nl,com,pi,shift)

dimX and dimY are the number of “vias” in the x- and y-coordinates, respectively.
nl is a list of node numbers describing all the connections between contact pairs.
com is a matrix describing the start and end nodes for each contact pair. pi is
a vector of dual variable values with dimX∗dimY elements. shift is a number
describing the displacement of the vias on the screen; a good value is 25. See
Figure 3.

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

Figure 3: Example result from visagrid.

A Appendix: A short command list for Matlab

The Matlab program is stored with a name and the extension “.m”. The program is
started from Matlab by typing the name of the file you stored (without the .m) at the
prompt.

In general, if a row in Matlab is ended with a ;-sign, there will be no screen output.
Without the ;-sign Matlab will type out the result. Put a %-sign at the beginning of a
row if you wish Matlab to skip it.

In order to get help about a command, type “help < command >” at the Matlab
prompt. The command “who” shows which variables are defined and their respective
sizes.

Command Example Description

--

Variables and Matrices

--

7

A=[]; Sets the variable A to zero.

A=[1 2 7;4 5 6]; Assigns a matrix with two rows and three

columns to the variable A.

A(2,1)=4; Assigns the element on row 2 and column

1 to the value 4.

zeros A=zeros(3,1); Assigns to A a matrix with three rows

and one column with only zeros.

ones A=ones(3,1); Assigns to A a matrix with three rows

and one column with only ones.

--

Program control

--

a=13;

while while (a<=100) Executes the while-loop where a increases

a=a+1; by one until a is 100.

end

for for i=1:100 Executes for-loop where a increases by one

a=a+1; 100 times.

end

if if a==100 Checks if 1 equals 100; if so

a=a+1; a is increased by 1, otherwise

else decreased by 1.

a=a-1;

end

--

Operators

--

max [a,b]=max(x) Calculates the largest value and its

index in the vector x. Here, a is the

value while b is the index.

mod a=mod(x,10) a becomes zero if x is divisible by

ten, otherwise a becomes one.

sum a=sum(x) a becomes the sum of all the elements

of the vector x.

find a=find(x>1.5) a becomes the value of all indices of

elements of x where the value is larger

than 1.5. If more than one such index

exists, a becomes the vector of them.

--

Graphs

--

plot plot(y) Plots a graph of the values in y.

8

