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Abstract.

Error bounds for the Strang splitting in the presence of unbounded operators are
derived in a general setting and are applied to evolutionary Schrödinger equations and
their pseudo-spectral space discretization.
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1 Introduction.

In partial differential equations of quantum mechanics and many other areas,
a widely used approach to numerically solving the linear initial value problem

u′ = (A + B)u, u(0) = u0,(1.1)

is the symmetric operator splitting, known as Strang splitting (after [11]) or
symmetric Trotter splitting,

un+1 = e
1
2 τBeτAe

1
2 τBun,(1.2)

which determines recursively approximations un to u(nτ). Convergence of this
approximation is known under very weak conditions from the Trotter product
formula [12], which gives, however, no estimate for the speed of convergence.
For bounded A and B, second-order error bounds follow easily by using the
exponential series, but they depend on the norms of A and B. The question
of error bounds in the case of unbounded A and/or B has recently received
attention in various settings; see [1]–[10] and further references therein.

In the present paper we derive error bounds based on commutator bounds.
Our results are apparently the first results showing second-order convergence
in the case of an unbounded operator, under rather mild or even no regularity
conditions on the initial data. The proof is rather simple but uses arguments
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different from those in the literature. A basic observation is that the princi-
pal error terms are just quadrature errors. In Section 2 we derive the error
bounds in an abstract framework. Theorem 2.1 is concerned with A generating
a strongly continuous semigroup and with bounded B. The estimates in Theo-
rem 2.1 require higher regularity of the initial data. Theorem 2.2 deals with A
generating an analytic semigroup and with bounded B. It gives a second-order
error bound in the operator norm. Theorem 2.3 gives an error bound of order
3/2 in the operator norm in a situation where both A and B are unbounded,
but B(−A)−1/2 is bounded. In Section 3 the abstract error bounds are applied
to a Schrödinger equation and its pseudo-spectral semi-discretization. Their
asymptotic sharpness is illustrated by numerical experiments.

2 General error bounds.

In this section we consider the error of the Strang splitting for the abstract
evolution equation (1.1) on a Banach space X with norm and induced operator
norm denoted by ‖·‖. We assume that A is the generator of a strongly continuous
semigroup etA on X , and B is a bounded linear operator on X . Possibly after
a rescaling u(t) → e(λ+µ)tu(t) with associated shifts A → A + λI, B → B + µI
and the choice of a suitable equivalent norm on X , we may assume

‖etA‖ ≤ 1, ‖etB‖ ≤ 1, ‖et(A+B)‖ ≤ 1 (t ≥ 0),

and the fractional power operators (−A)γ are well-defined for arbitrary positive
γ, with ‖v‖ ≤ ‖(−A)γv‖ for all v. The phrase “for all v” means here and in
the following: for all v in an appropriate dense domain, in the present case the
domain of (−A)γ . We may equally assume ‖v‖ ≤ ‖(A + B)v‖ for all v. These
assumptions are made throughout this section, except for the boundedness of
B, which is replaced by bounds of B(−A)−1/2 in Theorem 2.3.

Our main assumptions concern the commutator [A, B] = AB − BA and the
repeated commutator [A, [A, B]] = A2B − 2ABA + BA2. We assume that there
are non-negative α or β with

‖ [A, B] v‖ ≤ c1 ‖(−A)αv‖ for all v,(2.1)

‖ [A, [A, B]] v‖ ≤ c2 ‖(−A)βv‖ for all v.(2.2)

Under these conditions, the following bounds hold for the local error of the
Strang splitting for (1.1).

Theorem 2.1. (a) Under condition (2.1) with α ≥ 0,∥∥∥e
1
2 τBeτAe

1
2 τBv − eτ(A+B)v

∥∥∥ ≤ C1 τ2 ‖(−A)αv‖(2.3)

for all v. Here C1 depends only on c1 and ‖B‖.
(b) Under conditions (2.1) and (2.2) with β ≥ 1 ≥ α,∥∥∥e

1
2 τBeτAe

1
2 τBv − eτ(A+B)v

∥∥∥ ≤ C2 τ3 ‖(−A)βv‖(2.4)
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for all v. Here C2 depends only on c1, c2 and ‖B‖.
Proof. (a) We start from the variation-of-constants formula

eτ(A+B)v = eτAv +
∫ τ

0

esABe(τ−s)(A+B)v ds.

Expressing the last term under the integral once more by the same formula yields

eτ(A+B)v = eτAv +
∫ τ

0

esABe(τ−s)Av ds + R1v,

where

R1 =
∫ τ

0

esAB

∫ τ−s

0

eσABe(τ−s−σ)(A+B) dσ ds,

which is bounded by ‖R1‖ ≤ 1
2 τ2‖B‖2. On the other hand, using the exponential

series for e
1
2 τB leads to

e
1
2 τBeτAe

1
2 τBv = eτAv + 1

2τ
(
BeτA + eτAB

)
+ R2v,

where ‖R2‖ ≤ 1
2τ2‖B‖2. Consequently, the error is of the form

e
1
2 τBeτAe

1
2 τBv − eτ(A+B)v = d + r,(2.5)

where r = R2v − R1v and, with f(s) = esABe(τ−s)Av,

d = 1
2τ

(
f(0) + f(τ)

)
−

∫ τ

0

f(s) ds(2.6)

= −τ2

∫ 1

0

(1
2 − θ) f ′(θτ) dθ = 1

2τ3

∫ 1

0

θ(1 − θ)f ′′(θτ) dθ

is the error of the trapezoidal rule, written in first- and second-order Peano form.
Since f ′(s) = esA[A, B]e(τ−s)Av, condition (2.1) yields the error bound (2.3).

(b) For the error bound (2.4), we use f ′′(s) = esA[A, [A, B]]e(τ−s)Av and
condition (2.2) to bound

‖d‖ ≤ 1
12 c2τ

3 ‖(−A)βv‖.(2.7)

It remains to study r = R2v − R1v. We have

R1 =
∫ τ

0

esAB

∫ τ−s

0

eσABe(τ−s−σ)A dσ ds + R̃1

with ‖R̃1‖ ≤ Cτ3‖B‖3, and

R2 = 1
8 τ2

(
B2eτA + 2BeτAB + eτAB2

)
+ R̃2
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with ‖R̃2‖ ≤ Cτ3‖B‖3. We thus obtain

r = d̃ + r̃,(2.8)

where r̃ = R̃2v − R̃1v is bounded by ‖r̃‖ ≤ Cτ3 ‖B‖3 ‖v‖ and, with g(s, σ) =
esABeσABe(τ−s−σ)Av,

d̃ = 1
8 τ2

(
g(0, 0) + 2g(0, τ) + g(τ, 0)

)
−

∫ τ

0

∫ τ−s

0

g(s, σ) dσ ds

is the error of a quadrature formula that integrates constant functions exactly.
Hence,

‖d̃‖ ≤ c̃ τ3

(
max

∥∥∥∥∂g

∂s

∥∥∥∥ + max
∥∥∥∥ ∂g

∂σ

∥∥∥∥
)

,

where the maxima are taken over the triangle 0 ≤ s ≤ τ , 0 ≤ σ ≤ τ − s. Since

∂g

∂s
(s, σ) = esA[A, B]eσABe(τ−s−σ)Av + esABeσA[A, B]e(τ−s−σ)Av,

we obtain, using (2.1) with α = 1,∥∥∥∥∂g

∂s

∥∥∥∥ ≤ c1 (c1 + ‖B‖) ‖Av‖ + ‖B‖ c1 ‖Av‖.

Similarly, ‖∂g/∂σ‖ ≤ ‖B‖ c1 ‖Av‖, so that finally

‖d̃‖ ≤ Cτ3 ‖Av‖.

Together with the above bounds for r̃ and d this yields the error bound (2.4).
Remark. In Theorem 2.1 (b), the condition β ≥ 1 ≥ α can be replaced by

β ≥ α and ‖ [(−A)α, B] v‖ ≤ c1 ‖(−A)βv‖ for all v.
The local error bounds (2.3) and (2.4) together with the formula

un − u(nτ) = Snu0 − T nu0 =
n−1∑
j=0

Sn−j−1(S − T )T ju0,(2.9)

with S = e
1
2 τBeτAe

1
2 τB and T = eτ(A+B), immediately yield the following global

error bounds for the Strang splitting (1.2) at t = nτ (n ≥ 0):

‖un − u(t)‖ ≤ τ · C1 t max
0≤s≤t

‖(−A)αu(s)‖,(2.10)

‖un − u(t)‖ ≤ τ2 · C2 t max
0≤s≤t

‖(−A)βu(s)‖(2.11)

in cases (a) and (b) of Theorem 2.1, respectively. If A generates an analytic
semigroup, then stronger estimates hold which require only bounds of the norm
‖u0‖ of the initial data. In that case we have the operator bounds

‖AetA‖ ≤ κ/t, ‖(A + B)et(A+B)‖ ≤ κ/t (t > 0).(2.12)
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Theorem 2.2. Assume that A generates an analytic semigroup. Under condi-
tions (2.1) and (2.2) with α ≤ β = 1, the error of the Strang splitting is bounded
by

‖un − u(nτ)‖ ≤ C τ2 log n ‖u0‖ (n ≥ 2).(2.13)

The constant C depends only on c1, c2, ‖B‖ and κ of (2.12).
Proof. The proof proceeds by estimating the terms in (2.9). By Theorem 2.1

with β = 1 and by (2.12), the following bounds hold for j ≥ 1:

‖(S − T )T ju0‖ ≤ C2τ
3
∥∥Aejτ(A+B)u0

∥∥
≤ C2τ

3
∥∥(A + B)ejτ(A+B)u0

∥∥ + C2τ
3‖B‖ ·

∥∥ejτ(A+B)u0

∥∥(2.14)

≤ C2τ
3 (1 + ‖B‖)

∥∥(A + B)ejτ(A+B)u0

∥∥ ≤ C2(1 + ‖B‖) κτ2

j
‖u0‖.

The term for j = 0 is estimated using the arguments in the proof of Theorem 2.1
together with (2.12). This gives in particular (for v = u0)

‖d‖ ≤ 1
2τ3

∫ 1

0

θ(1 − θ) c2

∥∥Ae(1−θ)τAu0

∥∥ dθ ≤ 1
4τ2 c2κ ‖u0‖,

so that ∥∥∥e
1
2 τBeτAe

1
2 τBu0 − eτ(A+B)u0

∥∥∥ ≤ Cτ2‖u0‖.(2.15)

The bounds (2.14) and (2.15) inserted into (2.9) yield the result.
The boundedness of B is not essential for the arguments in the proofs of

Theorems 2.1 and 2.2. It does not enter into the estimate for d, and r can be
estimated also under weaker assumptions on B. As an example we consider a
situation that applies to convection-diffusion equations with smooth coefficients.
We assume

‖(−A)(k−1)/2Bv‖ ≤ K ‖(−A)k/2v‖, for all v,

‖(−A)k/2etBv‖ ≤ M ‖(−A)k/2v‖, k = 0, 1, 2, 3.
(2.16)

Theorem 2.3. Assume that A generates an analytic semigroup. Under con-
dition (2.16) and the commutator bounds (2.1) and (2.2) with α = 1 and β = 3

2 ,
the error of the Strang splitting is bounded by

‖un − u(nτ)‖ ≤ Cτ3/2 ‖u0‖ (n ≥ 1).(2.17)

The constant C depends only on c1, c2, K, M , and on κγ with γ = 1
2 , 1, 3

2 in
(2.18) below.

Proof. The proof follows the lines of the previous proofs. As in the proof of
Theorem 2.1 and of (2.15), and via a careful estimation of the remainder terms
using (2.16) and the bounds

‖(−A)γetA‖ ≤ κγt−γ , ‖(−A)γet(A+B)‖ ≤ κγt−γ (t > 0)(2.18)
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for γ > 0 (used with γ = 1
2 , 1, 3

2 ), one obtains the local error bounds

‖e
1
2 τBeτAe

1
2 τBv − eτ(A+B)v‖ ≤

{
Cτ3 ‖(−A)3/2v‖,
Cτ3/2 ‖v‖.(2.19)

The result then follows as in the proof of Theorem 2.2, using (2.18) with γ = 3
2 .

3 Application to a Schrödinger equation and its semi-discretization.

We consider the Schrödinger equation

i
∂u

∂t
= −∆u + V u(3.1)

and its parabolic counterpart, the imaginary-time Schrödinger equation

∂u

∂t
= ∆u − V u(3.2)

with the Laplacian ∆ on (−π, π)m and a smooth potential V : Rm → R that is
2π-periodic in every coordinate direction. We impose periodic boundary condi-
tions and the initial condition u(x, 0) = u0(x).

When considered as evolution equations on L2((−π, π)m), the equations (3.1)
and (3.2) fit into the framework of Theorems 2.1 and 2.2, respectively. The
commutator bounds (2.1) and (2.2) are satisfied with α = 1

2 and β = 1, because
the commutator of the Laplacian and a multiplication operator is a first-order
differential operator, and the commutator of the Laplacian and a first-order
differential operator is a second-order differential operator. In the following we
show that Theorems 2.1 and 2.2 apply also to the spatial semi-discretization
of (3.1) and (3.2), uniformly in the discretization parameter. For notational
simplicity only, we discuss this for the one-dimensional case.

A standard space discretization of these equations is given by the pseudo-
spectral method. Here, a trigonometric polynomial

U(x, t) =
N−1∑

k=−N

eikx ûk(t)

is determined such that, in the case of (3.1),

i
∂U

∂t
(x�, t) = −∂2U

∂x2
(x�, t) + V (x�)U(x�, t) (t > 0), U(x�, 0) = u0(x�)

is satisfied at the mesh-points x� = �π/N with � = −N, . . . , N − 1. Setting
Û(t) = (ûk(t)) (k = −N, . . . , N − 1) the vector of Fourier coefficients, this is
equivalent to solving

iÛ ′ = −D2Û + WÛ (t > 0), Û(0) = Û0,(3.3)
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where D = diag (ik) (k = −N, . . . , N − 1), W = F2N diag
(
V (x�)

)
F−1

2N with
F2N the 2N -dimensional discrete Fourier transform, and Û0 = F2N

(
u0(x�)

)
.

With the Strang splitting over a time step τ , this differential system is solved
approximately by computing recursively Ûn = (ûn

k ) (k = −N, . . . , N − 1) via

Ûn+1 = e−
i
2 τWeiτD2

e−
i
2 τW Ûn,(3.4)

where the action of e−
i
2 τW = F2N diag

(
e−

i
2 τV (x�)

)
F−1

2N is inexpensive to com-
pute. Then, U(x, nτ) is approximated by

Un(x) =
N−1∑

k=−N

eikx ûn
k .(3.5)

The discrete equation corresponding to (3.2) is

Û ′ = D2Û − WÛ (t > 0), Û(0) = Û0,(3.6)

for which the splitting reads

Ûn+1 = e−
1
2 τW eτD2

e−
1
2 τW Ûn.(3.7)

In the following, ‖·‖ denotes the Euclidean norm on R2N and the induced matrix
norm, and (·, ·) is the Euclidean scalar product. Parseval’s formula yields the
norm identities

‖U(·, t)‖L2 = ‖Û(t)‖,

‖U(·, t)‖H1 =
(
Û(t), (−D2 + I)Û(t)

)1/2 = ‖(−D2 + I)1/2Û(t)‖,(3.8)

‖U(·, t)‖H2 = ‖(−D2 + I)Û(t)‖,

where H1 and H2 refer to the first- and second-order Sobolev norms.
The following lemma establishes the commutator bounds (2.1) and (2.2) with

α = 1
2 and β = 1, uniformly in N .

Lemma 3.1. For a C5-smooth potential V , the commutator bounds

‖ [−D2 + I, W ] v‖ ≤ c1 ‖(−D2 + I)1/2v‖,
‖ [−D2 + I, [−D2 + I, W ]] v‖ ≤ c2 ‖(−D2 + I)v‖

hold with constants c1, c2 independent of N and v ∈ R2N .
Proof. W is the circulant matrix

W =
(
ŵk−l

)N−1

k,l=−N
, where ŵj =

∞∑
m=−∞

v̂j+2mN

with v̂j the Fourier coefficients of V . Hence,

[−D2 + I, W ] = [−D2, W ] =
(
(k2 − l2)ŵk−l

)
.
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This matrix is split as L+M +R, where L contains only the entries for k−l ≥ N ,
M those for |k − l| < N , and R those for k − l ≤ −N . To bound M , we write

k2 − l2 = (k − l)2 + 2(k − l)l

and split M = M2 − 2iM1D, where M2 has entries (k − l)2ŵk−l and M1 has
entries (k − l)ŵk−l. We have

N−1∑
j=−N

j2|ŵj | ≤
∞∑

j=−∞
j2|v̂j |,

which is a finite bound if V is C3. Hence, the absolute row and column sums of
M2 and M1 are bounded independently of N , and consequently also their matrix
norms induced by the Euclidean norm. It follows that for v ∈ R2N

‖Mv‖ ≤ ‖M2‖ · ‖v‖ + 2 ‖M1‖ · ‖Dv‖ ≤ C ‖(−D2 + I)1/2v‖.

With k2 − l2 = (k + l)2 − 2(k + l)l, similar arguments yield also

‖Lv‖ + ‖Rv‖ ≤ C ‖(−D2 + I)1/2v‖

with the same constant C. This proves the bound for ‖ [−D2 + I, W ] v‖. Using

[−D2 + I, [−D2 + I, W ]] =
(
(k2 − l2)2ŵk−l

)
,

the second commutator bound is obtained in the same way.
With these commutator bounds, Theorem 2.1 yields the following error bounds

for the Strang splitting (3.4), (3.5) for Equation (3.1).
Theorem 3.2. For a C5-smooth potential V , the error of the Strang splitting

(3.4), (3.5) in the pseudo-spectral discretization of the Schrödinger equation (3.1)
is bounded by

‖Un − U(·, nτ)‖L2 ≤ Cτ ‖U0‖H1 ,(3.9)

‖Un − U(·, nτ)‖L2 ≤ Cτ2 ‖U0‖H2 .(3.10)

The constants C are independent of the discretization parameter N , of n and τ
with nτ in a bounded interval, and of the initial data U0.

Proof. Combining Lemma 3.1, Theorem 2.1, and the norm identities (3.8),
we obtain the local error bounds

‖U1 − U(·, τ)‖L2 ≤ C1τ
2 ‖U0‖H1 ,

‖U1 − U(·, τ)‖L2 ≤ C2τ
3 ‖U0‖H2 .

The result then follows from formula (2.9) with the roles of S and T interchanged,
and from the observation that

‖Un‖H1 ≤ (1 + cnτ) ‖U0‖H1 , ‖Un‖H2 ≤ (1 + cnτ)2 ‖U0‖H2

for all n.
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Theorem 2.2 yields the following error bound for the parabolic case.
Theorem 3.3. For a C5-smooth non-negative potential V , the error of the

Strang splitting (3.7), (3.5) in the pseudo-spectral discretization of the imaginary-
time Schrödinger equation (3.2) is bounded by

‖Un − U(·, nτ)‖L2 ≤ Cτ2 log n ‖U0‖L2 .

The constant C is independent of N , n, τ , and U0.
Let us illustrate these results by numerical experiments. We take V (x) =

1 − cosx, N = 256, and choose a random vector v̂ ∈ R2N scaled to Euclidean
norm 1. We define two initial values Û0

(1) and Û0
(2) as (−D2 + 1)−1/2v̂ and

(−D2 +1)−1v̂ scaled to Euclidean norm 1. They contain the Fourier coefficients
of functions with ‖U0

(1)‖H1 ≈ 14 and ‖U0
(1)‖H2 ≈ 2100, and ‖U0

(2)‖H2 ≈ 20.
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Figure 3.1: Error versus step size; smooth potential.
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Figure 3.2: Error versus step size; nonsmooth potential.

The left-hand figure of Figure 3.1 shows the norms ‖Ûn − Û(t)‖ at t = nτ = 1
of the errors of the Strang splitting (3.4) versus the step size τ . The two error
curves correspond to the two initial values Û0

(1), Û
0
(2). The dashed lines indicate

the errors divided by τ and τ2, respectively. For step sizes larger than 10−2, they
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are almost constant, in perfect agreement with Theorem 3.2. Only for smaller
step sizes the convergence order becomes 2 also for the less regular initial data.

The right-hand figure gives the analogous error curves for the parabolic case
(3.7), for initial data v̂, Û0

(1), Û
0
(2), which all give second-order convergence, as pre-

dicted by Theorem 3.3. The dashed lines indicate the errors divided by τ2. The
least regular initial value v̂ even gives the best (absolute) accuracy, due to the
strong smoothing in the parabolic case. The relative errors ‖Ûn− Û(1)‖/‖Û(1)‖
are almost identical for the three initial data, starting with a relative error of
0.1 for τ = 1.

Figure 3.2 illustrates the role of the smoothness of the potential V in the error
bounds. It shows the errors corresponding to the above data, but now for the
discontinuous 2π-periodic extension of V (x) = x+π for x ∈ (−π, π). Compared
with Figure 3.1, the observed convergence is slower for both equations (3.1)
and (3.2).
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