
Matlab

Matlab is too slow for demanding applications:

• Statements may be interpreted (not compiled, although there

is a Matlab compiler). In Matlab 6.5 (and later) there is a

JIT-accelerator (JIT = Just In Time).

• The programmer has poor control over memory.

• It is easy to misuse some language constructs, e.g. dynamic

memory allocation.

• Matlab is written in C, Java and Fortran.

• Matlab is not always predictable when it comes to perfor-

mance.

• The first assignment contains more examples and a case study.

You can start working with the Matlab assignment now.

17

Fortran90 and C

The next few pages contain the rudiments of Fortran90 and C

and a glance at Fortran77. It is sufficient for the assignments,

but you need more for real programming.

I have not tried to show all the different ways a program can

be written. Both C and Fortran have several forms of some

constructs. Professional code may have many extra details

as well.

I have not shown any C++ code (but my example is available

in C++-form on the web). C++ is too large and complicated

and my labs are not OO. But since C++ means C = C + 1, my

C-program is also a C++-program.

Some people use the C-part of C++ together with some

convenient C++-constructs (e.g. //-comments, reference

variables, simplified I/O).

Fortran90 is much nicer than Fortran77, almost a new language.

Fortran77 is quite primitive. Fortran77 is still used for HPC.

Millions of lines are available in Fortran77 (some of them will be

used in one lab) so it is necessary to understand the basics.

The example code contains one main-program one function and

a procedure (void function). The function computes the inner

product of two vectors and the procedure sums the elements in

an array and returns the sum in a parameter.

18

program main
!
! Comments: everything after !
! Case or blanks (between keywords) are not significant
! (unless they are in strings).
!
! Fortran has an implicit type rule but
! implicit none forces you to declare everything.
!

implicit none ! Highly recommended!
integer :: k, n, in
double precision :: s
double precision :: ddot ! a function

! Arrays start at one by default.
double precision, dimension(100) :: a, b

n = 100
print*, "Type a value for in:"
read*, in
print*, "This is how you write: in = ", in

do k = 1, n ! do when k = 1, 2, ..., n
a(k) = k
b(k) = -sin(dble(k)) ! using sin

end do
!
! Call by reference for all variables.
!

print*, "The inner product is ", ddot(a, b, n)

call sum_array(a, s, n) ! NOTE, call
print*, "The sum of the array is ", s

end program main

19

function ddot(x, y, n) result(s)
!
! You give the function a value by assigning
! something to the result variable, s (in this case).
!

implicit none
integer :: n
double precision, dimension(n) :: x, y
double precision :: s ! The type of the function

integer :: k

s = 0.0
do k = 1, n

s = s + x(k) * y(k)
end do

end function ddot

subroutine sum_array(a, s, n)
implicit none
integer :: n
double precision :: s
double precision, dimension(n) :: a

integer :: k

s = 0.0
do k = 1, n

s = s + a(k)
end do

end subroutine sum_array

20

Some comments. Since Fortran90 has support for array

operations the main program could have been shortened:

print*, "The inner product is ", dot_product(a, b)
print*, "The sum of the array is ", sum(a)

dot_product and sum are built-in.

A long statement can be broken up into several lines.

The continued line should end with a & .

1 is an integer constant.

1.0 is a real constant (single precision) and 1.0d0 is a double

precision constant in Fortran77.

In Fortran90 it is possible to parameterize the real- and integer

types and create more portable code using a module (similar to

a simple class) e.g.:

module floating_point
! sp = at least 5 significant decimals and
! |exponent range| <= 30 which implies
! IEEE single precision.

integer, parameter :: sp = selected_real_kind(5, 30)
integer, parameter :: dp = selected_real_kind(10, 300)
integer, parameter :: prec = dp ! pick one

end module floating_point

program main
use floating_point ! gives access to the module
real (kind = prec) :: x, y
real (kind = prec), dimension(100) :: a, b

x = 1.24_prec ! constant
y = 1.24e-4_prec ! constant

...

21

Here comes the Fortran77-version, but first some comments.

Fortran90 is almost a new language, but in my simple

example the differences are not that striking:

• F77 has a column oriented layout dating back to the

80 column punched card.

• No result-statement in functions.

• Different type declarations:

double precision a(n)

instead of

double precision, dimension(n) :: a

although F77-declarations are allowed in F90 as well.

A Fortran77-program is (essentially) also a Fortran90-program,

so it is possible to mix the two styles.

Fortran90 has array operations, pointers, recursion, prototypes,

modules, overloading of operators (and more). Fortran77 has

none of these.

The example program, coded in F77, is listed on the following

two pages. It violates the ANSI-standard in several ways, the

most important being the use of do/enddo. Here is the proper

way of writing a F77-loop using labels (you will see it in a lab):

do 10 k = 1, n
s = s + x(k) * y(k)

10 continue

22

program main
*
* Comments: c, C or * in column one
* text in columns > 72
* ! F90-comment
* First five columns: labels
* Continuation line: non-blank in column 6
* Statements: columns 7 through 72
* Case or blanks are not significant
* (unless they are in strings).
*
* Arrays start at one by default.
*234567890

integer k, n, in
double precision a(100), b(100), sum
double precision ddot ! a function

n = 100
print*, "Type a value for in:"
read*, in
print*, "This is how you write: in = ", in

do k = 1, n ! do when k = 1, 2, ..., n
a(k) = k
b(k) = -sin(dble(k)) ! using sin

end do
*
* Call by reference for all variables.
*

print*, "The inner product is ", ddot(a, b, n)

call sum_array(a, sum, n) ! NOTE, call
print*, "The sum of the array is ", sum

end

23

double precision function ddot(x, y, n)
*
* Fortran has an implicit type rule but
* implicit none forces you to declare everything.
* Highly recommended!
*

implicit none
integer n
double precision x(n), y(n)

integer k
double precision sum

sum = 0.0
do k = 1, n

sum = sum + x(k) * y(k)
end do

ddot = sum ! give the function its value

end

subroutine sum_array(a, sum, n)
implicit none
integer n
double precision a(n), sum

integer k

sum = 0.0 ! 0.0 is single and 0.0d0 double
do k = 1, n

sum = sum + a(k)
end do

end

24

How to compile

The Fortran compilers available on the student system are: g77
(Fortran77), gfortran and g95 (both Fortran90 and 77).

It would be interesting to use the Intel ifort-compiler, but we

do not have a license. You can fetch a free copy for Linux (pro-

vided you have the disk space, a few hundred Mbyte). See www.

In these handouts I will use g95 and I will assume that a Fortran90-

program has the suffix .f90. Some examples:

% my prompt
% g95 prog.f90 if everything in one prog.f90

prog.f would be Fortran77

Produces the executable file a.out
% a.out run (or ./a.out if no . in the path)

Suppose we have three files main.f90, dot.f90, sum.f90
% g95 main.f90 dot.f90 sum.f90

Can compile the files one by one.
-c means "compile only", do not link.

% g95 -c main.f90 -> object file main.o
% g95 -c dot.f90 -> object file dot.o
% g95 -c sum.f90 -> object file sum.o
% g95 main.o dot.o sum.o link the object files

% g95 main.o dot.f90 sum.o works as well, note .f90

Can give many options (or flags) to the compiler, e.g.

% g95 -O3 prog.f90 optimize the code
not standard names

Next comes the example program in C. See the course page for

the same program in C++.
25

/* /usr/include/stdio.h, definitions for IO. */
#include <stdio.h>
#include <math.h>

/* Here are the prototypes for our procedures */
void sum_array(double[], double *, int);
double ddot(double[], double[], int);

int main()
{

int k, n, in;
double a[100], b[100], sum;
/* Arrays are indexed from 0, a[0], ..., a[99] */

n = 100;
printf("Type a value for in: ");
scanf("%d", &in); /* & = the address, the pointer */

/* %d for int, %f or %e for float. \n is newline */
printf("This is how you write: in = %d\n", in);

for (k = 0; k < n; k++) { /* for k = 0, ..., n-1 */
a[k] = k + 1; /* k++ means k = k + 1 */
b[k] = -sin(k + 1); /* requires -lm */

}

/* Compute the inner product between a and b. */
printf("The inner product is %f\n", ddot(a, b, n));

/* Send the address of sum.
Arrays are passed by reference automatically. */

sum_array(a, &sum, n);

printf("The sum of the array is %f\n", sum);

return 0; /* return status to unix */
}

26

double ddot(double x[], double y[], int n)
{

int k;
double sum;

sum = 0.0;
for (k = 0; k < n; k++)

sum += x[k] * y[k]; /* short for sum = sum + ... */

return sum; /* return the result */
}

void sum_array(double a[], double *sum, int n)
/*
* void, i.e. not a "mathematical" function.
* double *sum means that *sum is a double. sum
* itself is the address, the pointer to sum.
*/

{
int k; /* k is local to sum_array */

sum = 0; / sum = 0 is WRONG; it will give a
Segmentation Fault */

for (k = 0; k < n; k++)
sum += a[k]; / i.e. *sum = *sum + a[k] */

}

Compile by: cc prog.c -lm or cc -O3 prog.c -lm .

cc is a link to gcc.
Separate files are OK (as for Fortran).

The C++-compiler is called g++.
One can fetch the Intel C/C++-compiler icc as well.

27

A few words on the unix path

The location of a file or a directory is given by its path.

An absolute path starts at the root in the file tree.

The root is denoted / (slash). The path to the HPC-directory is

/chalmers/users/thomas/HPC . The file ex.f90, in this

directory, has the path /chalmers/users/thomas/HPC/ex.f90.
There are also relative paths.

Suppose the current directory is /chalmers/users/thomas . A

path to the ex.f90 is then HPC/ex.f90 . Suppose your current

directory is something else, then ~thomas/HPC/ex.f90 is a path

to the file. ~, by itself, denotes your home directory, ~user, is

the path to the home directory of user.
So I could have written, ~/HPC/ex.f90 .

.. is the level above, and . is the current directory. That is

why we sometimes write ./a.out, se below.

The shell (csh, tcsh, sh, ksh, bash, ...) keeps several variables.

One important such variable is the path. I will concentrate on

[t]csh. The path contains a blank-separated list of directo-

ries. When you type a command (which is not built-in, such as

cd) the shell will search for a directory containing the command

(an executable file with the given name). If the shell finds the

command it will execute it, if not, it will complain:

% set path = () no directories
% cd HPC cd is built-in
% ls
ls: Command not found.
% /bin/ls works
A.mat ... etc

% set path = (/bin)
% ls now tcsh finds ls
A.mat ... etc

28

The set is local to the particular shell and lasts only the present

login session.

Sometimes there are several different versions of a command.

The shell will execute the command it finds first (from left to

right).

% which ls
/bin/ls

% which gfortran
/usr/bin/gfortran comes with the system

% which gfortran used in the course 2006
/chalmers/users/thomas/HPC/gfortran/bin/gfortran

In the first which, /usr/bin comes before the HPC-directory,

and in the second /usr/bin comes after.

If you do not have . in your path, the shell will not look for

executables in the current directory.

% pwd print current directory
/chalmers/users/thomas/HPC/Test

% a.out
a.out: Command not found. no . in the path
% ./a.out works
% set path = ($path .) add . to the path
% a.out works

$path is the value of path. Suppose the path contains ~ .

% cp a.out ~/a.out1
% which a.out1
a.out1: Command not found.

% rehash rebuild the internal hash table
% which a.out1
/chalmers/users/thomas/a.out1

29

A command does not have to be a compiled program.

% ls -l /bin/ls
-rwxr-xr-x 1 root root 82796 Jun 20 13:52 /bin/ls

% file /bin/ls
/bin/ls: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), stripped

% which cd
cd: shell built-in command.

% which apropos
/usr/bin/apropos
% file /usr/bin/apropos
/usr/bin/apropos: Bourne shell script text executable
% head -3 /usr/bin/apropos
#!/bin/sh
#
apropos -- search the whatis database for keywords.

A user would usually (perhaps not if one is a student; see be-

low for more details) set the path-variable in the startup file

.tcshrc which usually resides in the login directory. The pe-

riod in the name makes the file invisible. Type ls -a to see the

names of all the dot-files.

To see your path, type echo $path, or give the command set,
which prints all the shell variables.

30

Shell-variables are not exported to sub-processes so the shell

creates an environment variable, PATH, as well. PATH is exported

to sub-processes and it contains a :-separated list of directories).

% set var = hello
% echo $var like print
hello
% tcsh start a sub-shell
% echo $var
var: Undefined variable.
% exit

% setenv var hello an environment variable, no =
% tcsh sub-shell
% echo $var
hello

To see all your environment variables, type setenv. Another

useful environment variable is the manual search path, MANPATH
and the LD_LIBRARY_PATH (much more details later on).

A note on the student environment. To make it easier for begin-

ners (both teachers and students) Medic has set up a standard

environment where you do not have to create your own startup

files. One does not have to use it (I don’t), but if you do this

is how you can modify your environment. Edit (create, the first

time) the file .vcs4/tcshrc on your login-level. Here is sample

file:

setenv LD_LIBRARY_PATH .
alias m less
set prompt = ’> ’
set path = ($path .)

It sets an environment variable. An alias is created so that one

type m instead of less (less is a so called pager, very useful). I

do not like standard prompt so I have set it to > . The last row

appends . to the path. Be careful with the last one!

31

In order to test that the changes work one can logout and then

login. This is a bit slow, and if one has made a mistake in tcshrc

it may be impossible to login. One should then be able to do a

failsafe login and correct the mistake.

Less time consuming, and safer, is to open a new terminal

window (xterm or gnome). Each time a new terminal is opened

a shell is created as a subprocess under the terminal and the

shell reads the startup file. One can see if the changes work in

the new window.

Note that changes in tcshrc do not affect the already existing

shells (windows). If one does not use the standard environment

it is easy to update the existing shells as well.

32

More on * and & in C

In main we have reserved storage for the variable sum. The

variable has an address in memory. Let us add the following two

statements after the declaration of sum:

double *p; /* p is a pointer to double */
p = ∑ /* p = address of sum */

& gives the address of a variable, so the second line assigns the

address of sum to the pointer variable p, p points to sum.

Given p we can get the value of sum by using the indirection

(or dereferencing) operator, *. Thus *p is the value of sum.

This explains the first line, the declaration of p. It says that

*p is a double, so that p must be a pointer to double.

We can now understand how the parameters are passed in the

call, sum_array(a, &sum, n);. The address of sum, &sum, is

passed as a parameter to the function.

Inside the function it is possible to access (read and write) the

memory where sum is residing, since the function has been given

the address.

Inside the function sum equals the address (it is equivalent to

the pointer p above). Since we have passed the address (and not

the value) we must use * to access the value itself (and not the

address).

The variable n is copied to the function. If we change n
inside the function the original n (in main) will not be changed.

The compiler will pass the address of the first element, &a[0],
when we write the name of the array. So the function can access

all the elements in the array.

33

If-statements and logical expressions

real a, b, c, d
logical q

if(a < b .and. c == d .or. .not. q) then
... zero or more statements

else
... zero or more statements

end if

float a, b, c, d, q;

if(a < b && c == d || !q) {
... zero or more statements

} else {
... zero or more statements

}

Operation Fortran77 C Fortran90

< .lt. < <
≤ .le. <= <=
= .eq. == ==
6= .ne. != /=
≥ .ge. >= >=
> .gt. > >

and .and. && .and.
or .or. || .or.
not .not. ! .not.
true .true. 6= 0 .true.
false .false. 0 .false.

Note: if (! q == 1.25) ⇔ if ((!q) == 1.25),
not if(! (q == 1.25)).
Look at the predence table at the end of this handout.

34

Include (header) files

The cc-command first runs the C preprocessor, cpp. cpp looks

for lines starting with # followed by a directive (there are

several). From the man-page for cpp:

#include "filename"
#include <filename>

Read in the contents of filename at this location. This data is

processed by cpp as if it were part of the current file. When

the <filename> notation is used, filename is only searched for

in the standard “include” directories. Can tell cpp where to look

for files by using the -I-option.

A typical header file contains named constants, macros (some-

what like functions) and function protypes, e.g:

#define M_PI 3.14159265358979323846 /* pi */
#define __ARGS(a) a
extern int MPI_Send __ARGS((void *, int, MPI_Datatype, int, int, MPI_Comm));

It is common to store several versions of a program in one file

and to use cpp to extract a special version for one system.

In _ompc_init from Omni, a Japanese implementation of OpenMP:

...
#ifdef OMNI_OS_SOLARIS

lnp = sysconf(_SC_NPROCESSORS_ONLN);
#else
#ifdef OMNI_OS_IRIX

lnp = sysconf(_SC_NPROC_ONLN);
#else
#ifdef OMNI_OS_LINUX

... deleted code

Under Linux we would compile by:

cc -DOMNI_OS_LINUX ...

35

Using the man-command

% man sin
SIN(3) Linux Programmer’s Manual SIN(3)

NAME
sin, sinf, sinl - sine function

SYNOPSIS
#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);

DESCRIPTION
The sin() function returns the sine of x,
where x is given in radians.

RETURN VALUE
The sin() function returns a value between -1 and 1.

CONFORMING TO
SVID 3, POSIX, BSD 4.3, ISO 9899. The float and
the long double variants are C99 requirements.

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), tan(3)

You will not find man-pages for everything.

Can try to make a keyword search: man -k keyword.

36

Some useful C-tools
indent and cb (Sun) are pretty printers for C.

indent file.c saves the old file in file.c~. If the C-program

contains syntax errors indent can “destroy” it.

I use indent -i2 -kr -nut file.c.

lint is a C program checker (not Linux). From the manual:

lint detects features of C program files which are likely to be

bugs, non-portable, or wasteful.

lint also checks type usage more strictly than the compiler. lint

issues error and warning messages. Among the things it detects

are:

• Unreachable statements

• Loops not entered at the top

• Automatic variables declared and not used

• Logical expressions whose value is constant.

lint checks for functions that return values in some places and

not in others, functions called with varying numbers or types of

arguments, and functions whose values are not used or whose

values are used but none returned.

Using lint on our program gives:

% lint prog.c -lm

function returns value which is always ignored
printf scanf

declared global, could be static
sum_array lint.c(37)
ddot lint.c(58)

Add static, static void sum_array makes sum_array local

to the file (prog.c) it is defined in.
37

lint is not available on Linux systems. Here are two

alternatives. Ask the compiler to be more careful:

gcc -Wall programs ...

(there are several other W-options). No complaints on my exam-

ple. Much more details can be obtained from splint
(www.splint.org).

You may want to start with splint -weak

% splint -weak ex.c
Splint 3.1.1 --- 15 Jun 2004

ex.c: (in function main)
ex.c:23:5: Assignment of int to double: a[k] = k + 1

To allow all numeric types to match, use +relaxtypes.
ex.c:24:17: Function sin expects arg 1 to be double

gets int: k + 1
Finished checking --- 2 code warnings

These are warnings and not errors, but they are still worth to

check. By using a type cast we can make splint quiet.

a[k] = (double) k + 1; // or (double) (k + 1)
b[k] = -sin((double) k + 1);

Since we have a prototype for sin (from math.h) there was an

automatic cast to double in the first version of the code. Just

typing splint ex.c will lead to more complaints, e.g. that the

return status from scanf is ignored. They can be fixed by taking

care of the status, or explicitly ignoring it:

(void) scanf("%d", &in);

Having made the functions local to the file (static) there re-

mains a few comments, but they cannot be fixed unless one

adds so-called annotations (extra information in the form of spe-

cial comments) to the code. Another alternative is to switch of

a groups of warnings. splint -strict ex.c gives even more

warnings.

38

A common Fortran construction

Fortran77 does not have dynamic memory allocation (like For-

tran90 and C). If you need an m by n matrix A you would usually

reserve space for the largest matrix you may need (for a partic-

ular application). If you pass the matrix as an argument to a

procedure the procedure must be told about the extent of the

first dimension (the number of rows) in order to be able to com-

pute the address of an element. If the maximum number of rows

is max_m the address, adr(), of A(j, k) is given by

adr(A(j, k)) = adr(A(1, 1)) + max_m*(k - 1) + j - 1

So, a matrix is stored by columns in Fortran. In C it is stored by

rows (so the compiler must know the number of columns in the

matrix). Since you can allocate the precise number of elements

in C this is less of an issue.

A program may look like this:

integer :: m, n
integer, parameter :: max_m = 1000, max_n = 50
double precision, dimension(max_m, max_n) :: A

call sub (A, max_m, m, n) ! m, n actual sizes
end
subroutine sub (A, max_m, m, n)

integer :: max_m, m, n
double precision, dimension(max_m, *) :: A
... ! can have 1 instead of *

Better (but not necessary) is:

call sub (A, max_m, max_n, m, n)
...
subroutine sub (A, max_m, max_n, m, n)
integer :: max_m, m, n
double precision, dimension(max_m, max_n) :: A

since index checks can be made by the compiler.

39

Part of the manual page for the Lapack routine dgesv:

NAME
dgesv - compute the solution to a real system

of linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
INTEGER IPIVOT(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*)
...

ARGUMENTS
N (input) The number of linear equations, i.e., the

order of the matrix A. N >= 0.

NRHS (input)
The number of right hand sides, i.e., the
number of columns of the matrix B. NRHS >= 0.

A (input/output)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the
factorization A = P*L*U; the unit diagonal
elements of L are not stored.

LDA (input)
The leading dimension of the array A.
LDA >= max(1,N).

...

It is possible to construct a nicer interface in Fortran90 (C++).

Essentially subroutine gesv(A, B, ipiv, info) where

gesv is polymorphic, (for the four types S, D C, Z) and where

the size information is included in the matrices.

40

Array operations for Fortran90

You must be able to understand this kind of code in one

assignment, so here are some examples. One can do more.

program array_example
implicit none

! works for other types as well
integer :: k
integer, dimension(-4:3) :: a ! Note -4
integer, dimension(8) :: b, c ! Default 1:8
integer, dimension(-2:3, 3) :: M

a = 1 ! set all elements to 1
b = (/ 1, 2, 3, 4, 5, 6, 7, 8 /) ! constant array
b = 10 * b

c(1:3) = b(6:8)
print*, ’size(a), size(c) = ’, size(a), size(c)
print*, ’lbound(a), ubound(c) = ’,lbound(a),ubound(a)
print*, ’lbound(c), ubound(c) = ’,lbound(c),ubound(c)

c(4:8) = b(8:4:-1) ! almost like Matlab
print*, ’c = ’, c ! can print a whole array

print*, ’minval(c) = ’, minval(c) ! a builtin func.
a = a + b * c ! elementwise *
print*, ’a = ’, a
print*, ’sum(a) = ’, sum(a) ! another builtin

41

M = 0
M(1, :) = b(1:3) ! Row with index one
print*, ’M(1, :) = ’, M(1, :)

M(:, 1) = 20 ! The first column
where (M == 0) ! instead of two loops

M = -1
end where

print*, ’lbound(M) = ’, lbound(M) ! an array

do k = lbound(M, 1), ubound(M, 1) ! print M
print ’(a, i2, a, i2, 2i5)’, ’ M(’, k, ’, :) = ’, &

M(k, :)
end do

end

% ./a.out
size(a), size(c) = 8 8
lbound(a), ubound(c) = -4 3
lbound(c), ubound(c) = 1 8
c = 60 70 80 80 70 60 50 40
minval(c) = 40
a = 601 1401 2401 3201 3501 3601 3501 3201
sum(a) = 21408
M(1, :) = 10 20 30
lbound(M) = -2 1
M(-2, :) = 20 -1 -1
M(-1, :) = 20 -1 -1
M(0, :) = 20 -1 -1
M(1, :) = 20 20 30
M(2, :) = 20 -1 -1
M(3, :) = 20 -1 -1

42

Some dangerous things

for(k = 0; k < n; k++)
a[k] = b[k] + c[k];
e[k] = f[k] * g[k];

is not the same as

for(k = 0; k < n; k++) {
a[k] = b[k] + c[k];
e[k] = f[k] * g[k];

}

Similarly for if-statements.

if (j = 0) printf("j is equal to zero\n");

/* while a valid char... */
while ((c = getchar()) != EOF) { ...

k == 3;

Actual and formal parameters lists: check position, number and

type. Can use interface blocks (“prototypes”).

program main
double precision :: a, b

a = 0.0
call sub(a, 1.0, b)
print*, a, b

end
subroutine sub(i, j)

integer :: i, j

i = i + 1
j = 10.0

end
43

% a.out
Segmentation fault % result depends on the compiler

Remove the line j = 10.0 and run again:

% a.out
2.1219957909653-314 0. % depends on the compiler

C- and Fortran compilers do not usually check array bounds.

void sub(double a[]);

#include <stdio.h>
main()
{

double b[1], a[10];

b[0] = 1;
sub(a);
printf("%f\n", b[0]);

}

void
sub(double a[])
{

a[11] = 12345.0;
}

Running this program we get:

% a.out
12345.000000

Changing a[10] to a[1000000] gives Segmentation fault.

44

Some Fortran-compilers can check subscripts (provided you do

not lie):

program main
double precision, dimension(10) :: a

call lie(a)
print*, ’a(1) = ’, a(1)

end program main
subroutine lie(a)

double precision, dimension(10) :: a

do j = 1, 100 !!! NOTE
a(j) = j

end do

end subroutine lie

% ifort -CB lie.f90
% ./a.out
forrtl: severe (408): fort: (2): Subscript #1 of the
array A has value 11 which is greater than the upper
bound of 10

Change dimension(10) to
dimension(100) in lie

% ifort -CB lie.f90
% a.out
a(1) = 1.0000000000000

45

Precedence and associativity of C-operators

Operators have been grouped in order of decreasing precedence,

where operators between horizontal lines have the same prece-

dence.

Operator Meaning Associativity

() function call →
[] vector index

-> structure pointer

. structure member

++ postfix increment

- postfix decrement

! logical negation ←
~ bitwise negation

++ prefix increment

-- prefix decrement

+ unary addition

- unary subtraction

* indirection

& address

(type) type cast

sizeof number of bytes

* multiplication →
/ division

% modulus

+ binary addition →
- binary subtraction

« left shift →
» right shift

< less than →
<= less or equal

> greater than

>= greater or equal

== equality →
!= inequality

46

Operator Meaning Associativity

& bitwise and →
^ bitwise xor →
| bitwise or →
&& logical and →
|| logical or →
?: conditional expression ←
= assignment ←
+= combined assignment and addition

-= combined assignment and subtraction

*= combined assignment and multiplication

/= combined assignment and division

%= combined assignment and modulus

&= combined assignment and bitwise and

^= combined assignment and bitwise xor

|= combined assignment and bitwise or

«= combined assignment and left shift

»= combined assignment and right shift

, comma →

Here are a few comments, see a textbook or my links for a

complete description.

• Left to right associativity (→) means that a-b-c is evaluated

as (a-b)-c and not a-(b-c). a = b = c, on the other hand,

is evaluated as a = (b = c). Note that the assignment

b = c returns the value of c.

if (a < b < c) ...; means if ((a < b) < c) ...;
where a < b is 1 (true) if a < b and 0 (false) otherwise. This

number is then compared to c. The statement does not

determine “if b is between a and c”.

47

• a++; is short for a = a + 1;, so is ++a;. Both a++ and ++a
can be used in expressions, e.g. b = a++;, c = ++a;. The

value of a++; is a’s value before it has been incremented and

the value of ++a; is the new value.

• a += 3; is short for a = a + 3;.

• As in many languages, integer division is exact (through

truncation), so 4 / 3 becomes 1. Similarly, i = 1.25;, will

drop the decimals if i is an integer variable.

• expr1 ? expr2 : expr3 equals expr2 if expr1 is true, and

equals expr3, otherwise.

• (type) is used for type conversions, e.g. (double) 3
becomes 3.0 and (int) 3.25 is truncated to 3.

• sizeof(type_name) or sizeof expression gives the size

in bytes necessary to store the quantity. So, sizeof(double)
is 8 on the Sun system and sizeof (1 + 2) is 4 (four bytes

for an integer).

•When two or more expressions are separated by the comma

operator, they evaluate from left to right. The result has the

type and value of the rightmost expression. In the following

example, the value 1 is assigned to a, and the value 2 is

assigned to b. a = b = 1, b += 2, b -= 1;

• Do not write too tricky expressions. It is easy to make

mistakes or to end up with undefined statements.

a[i++] = i; and i = ++i + 1; are both undefined.

See the standard, section 6.5, if you are interested in why.

48

Precedence of Fortran 90-operators

Operators between horizontal lines have the same precedence.

Operator Meaning

unary user-defined operator

** power

* multiplication

/ division

+ unary addition

- unary subtraction

+ binary addition

- binary subtraction

// string concatenation

== .EQ. equality

/= .NE. inequality

< .LT. less than

<= .LE. less or equal

> .GT. greater than

>= .GE. greater or equal

.NOT. logical negation

.AND. logical and

.OR. logical or

.EQV. logical equivalence

.NEQV. logical non-equivalence

binary user-defined operator

Comments:

== is the Fortran90 form and .EQ. is the Fortran77 form, etc.

In Fortran90 lower case is permitted, .e.g .not. .

About the user defined operators. In Fortran90 it is possible

to define ones own operators by overloading existing operators

or by creating one with the name .name. where name consists

of at most 31 letters.

49

C can be very hard to read. An example from the 3rd

International Obfuscated C Code Contest (this program

is by one of the winners, Lennart Augustsson).

See http://www.ioccc.org/ for more examples.

typedef struct n{int a:3,
b:29;struct n*c;}t;t*
f();r(){}m(u)t*u;{t*w,*z;
z=u->c,q(z),u->b=z->b*10,
w=u->c=f(),w->a=1,w->c=z->
c;}t*k;g(u)t*u;{t*z,*v,*p,
*x;z=u->c,q(z),u->b=z->b,v
=z->c,z->a=2,x=z->c=f(),x
->a=3,x->b=2,p=x->c=f(),p
->c=f(),p->c->a=1,p->c->c=
v;}int i;h(u)t*u;{t*z,*v,*
w;int c,e;z=u->c,v=z->c,q(
v),c=u->b,e=v->b,u->b=z->b
,z->a=3,z->b=c+1,e+9>=c&&(
q(z),e=z->b,u->b+=e/c,w=f(
),w->b=e%c,w->c=z->c,u->c=
w);}int(*y[4])()={r,m,g,h};
char *sbrk();main(){t*e,*p,*o;
o=f(),o->c=o,o->b=1,e=f(),
e->a=2,p=e->c=f(),p->b=2,
p->c=o,q(e),e=e->c,(void)write
(1,"2.",2);for(;;e=e->c){q(e),
e->b=write(1,&e->b["0123456789"],
1);}}t*f(){return i||(i=1000,
k=(t*)sbrk(i*sizeof(t))),k+--i;
}q(p)t*p;{(*y[p->a])(p);}

% a.out
2.7182818284590452353602874713526624977572470936999
595749669676277240766303535475945713821785251664274
274663919320030599218174135966290435729003342952605
956307381323286279434907632338298807531952510190115^C

50

Using make

Make keeps track of modification dates and recompiles

the routines that have changed.

Suppose we have the programs main.f90 and sub.f90 and that

the executable should be called run. Here is a simple makefile

(it should be called Makefile or makefile):

run: main.o sub.o
g95 -o run main.o sub.o

main.o: main.f90
g95 -c main.f90

sub.o: sub.f90
g95 -c sub.f90

A typical line looks like:

target: files that the target depends on
^Ia rule telling make how to produce the target

Note the tab character. Make makes the first target in the make-

file. -c means compile only (do not link) and -o gives the name

of the executable.

To use the makefile just give the command make.

% make
g95 -c main.f90
g95 -c sub.f90
g95 -o run main.o sub.o

To run the program we would type run .

51

If we type make again nothing happens (no file has changed):

% make
‘run’ is up to date.

Now we edit sub.f90 and type make again:

% make
g95 -c sub.f90
g95 -o run main.o sub.o

Note that only sub.f90 is compiled. The last step is to link

main.o and sub.o together (g95 calls the linker, ld).

Writing makefiles this way is somewhat inconvenient if we have

many files. make may have some builtin rules, specifying how to

get from source files to object files, at least for C. The following

makefile would then be sufficient:

run: main.o sub.o
g95 -o run main.o sub.o

Fortran90 is unknown to some make-implementations and on the

student system one gets:

% make
make: *** No rule to make target ‘main.o’,

needed by ‘run’. Stop.

We can fix that by adding a special rule for how to produce an

object file from a Fortran90 source file.

run: main.o sub.o
g95 -o run main.o sub.o

.SUFFIXES: .f90

.f90.o:
g95 -c $<

52

