
$<, a so called macro, is short for the Fortran file.

One can use variables in make, here OBJS and FFLAGS.

OBJS = main.o sub.o
FFLAGS = -O3

run: $(OBJS)
g95 -o run $(FFLAGS) $(OBJS)

.SUFFIXES: .f90

.f90.o:
g95 -c $(FFLAGS) $<

OBJS (for objects) is a variable and the first line is an assignment

to it. $(OBJS) is the value (i.e. main.o sub.o) of the variable

OBJS. FFLAGS is a standard name for flags to the Fortran com-

piler. I have switched on optimization in this case. Note that

we have changed the suffix rule as well.

Make knows about certain variables, like FFLAGS. Suppose we

would like to use the ifort-compiler instead. When compiling

the source files, make is using the compiler whose name is stored

in the variable FC (or possible F90 or F90C). We write:

OBJS = main.o sub.o
FC = ifort
FFLAGS = -O3

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS)

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

It is usually important to use the same compiler for compiling

and linking (or we may get the wrong libraries). It may also be

important to use the same Fortran flags.

53

Sometimes we wish the recompile all files (we may have changed

$(FFLAGS) for example). It is common to have the target clean.
When having several targets we can specify the one that should

be made:

OBJS = main.o sub.o
FC = g95
FFLAGS = -O3

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS)

Remove objects and executable
clean:

rm -f $(OBJS) run

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

Without -f, rm will complain if some files are missing.

We type:

% make clean
rm -f main.o sub.o run

54

Suppose we like to use a library containing compiled routines.

The new makefile may look like:

OBJS = main.o sub.o
FC = g95
FFLAGS = -O3
LIBS = -lmy_library

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS) $(LIBS)

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

If you are using standard functions in C sin, exp etc. you must

use the math-library:

cc ... -lm

The equivalent makefile for C-programs looks like:

OBJS = main.o sub.o
CC = cc
CFLAGS = -O3
LIBS = -lmy_library -lm

run: $(OBJS)
$(CC) -o run $(CFLAGS) $(OBJS) $(LIBS)

clean:
rm -f $(OBJS) run

55

For the assignments it is easiest to have one directory and one

makefile for each. It is also possible to have all files in one

directory and make one big makefile.

OBJS1 = main1.o sub1.o
OBJS2 = main2.o sub2.o
CC = cc
CFLAGS = -O3
LIBS1 = -lm
LIBS2 = -lmy_library

all: prog1 prog2

prog1: $(OBJS1)
$(CC) -o $@ $(CFLAGS) $(OBJS1) $(LIBS1)

prog2: $(OBJS2)
$(CC) -o $@ $(CFLAGS) $(OBJS2) $(LIBS2)

clean:
rm -f $(OBJS1) $(OBJS2) prog1 prog2

When one is working with (and distributing) large projects it

is common to use make in a recursive fashion. The source code

is distributed in several directories. A makefile on the top-level

takes care of descending into each sub-directory and invoking

make on a local makefile in each directory.

There is much more to say about make. See e.g. the O’Reilly-

book, Robert Mecklenburg, Managing Projects with GNU Make,

3rd ed, 2004.

56

Computer Architecture

Why this lecture?

Some knowledge about computer architecture is necessary:

• to understand the behaviour of programs

• in order to pick the most efficient algorithm

• to be able to write efficient programs

• to know what computer to run on

(what type of architecture is your code best suited for)

• to read (some) articles in numerical analysis

• when looking for the next computer to buy

(and to understand those PC-ads., caches, GHz, RISC...)

The change of computer architecture has made it necessary to

re-design software, e.g Linpack ⇒ Lapack.

57

A very simple (and traditional) model of a computer:

CPU Memory devices
I/O

bus
I/O busMemory

The CPU contains the ALU, arithmetic and logic unit and the

control unit. The ALU performs operations such as +, -, *, / of

integers and Boolean operations.

The control unit is responsible for fetching, decoding and

executing instructions.

The memory stores instructions and data. Instructions are fetched

to the CPU and data is moved between memory and CPU using

buses.

I/O-devices are disks, keyboards etc.

The CPU contains several registers, such as:

• PC, program counter, contains the address of the next

instruction to be executed

• IR, instruction register, the executing instruction

• address registers

• data registers

The memory bus usually consist of one address bus and one data

bus. The data bus may be 64 bits wide and the address bus may

be ≥ 32 bits wide. With the introduction of 64-bit computers,

buses tend to become increasingly wider. The Itanium 2 uses

128 bits for data and 44 bits for addresses.

Operations in the computer are synchronized by a clock.

A modern CPU may run at a few GHz (clock frequency). The

buses are usually a few (4-5) times slower.

58

A few words on 64-bit systems

Why 64 bit?

• A larger address range, can address more memory.

With 32 bits we can (directly) address 4 Gbyte, which is

rather limited for some applications.

•Wider busses, increased memory bandwidth.

• 64-bit integers.

Be careful when mixing binaries (object libraries) with your own

code. Are the integers 4 or 8 bytes?

% cat kind.c
#include <stdio.h>

int main()
{

printf("sizeof(short int) = %d\n", sizeof(short int));
printf("sizeof(int) = %d\n", sizeof(int));
printf("sizeof(long int) = %d\n", sizeof(long int));

return 0;
}

% gcc kind.c On the student system
% a.out
sizeof(short int) = 2
sizeof(int) = 4
sizeof(long int) = 4

% a.out On another Opteron-system
sizeof(short int) = 2
sizeof(int) = 4
sizeof(long int) = 8 4 if gcc -m32

59

CISC (Complex Instruction Set Computers) before ≈ 1985.

Each instruction can perform several low-level operations, such

as a load from memory, an arithmetic operation, and a memory

store, all in a single instruction.

Why CISC?

For a more detailed history, see the literature.

• Advanced instructions simplified programming

(writing compilers, assembly language programming).

Software was expensive.

• Memory was limited and slow so short programs were good.

(Complex instructions ⇒ compact program.)

Some drawbacks:

• complicated construction could imply a lower clock frequency

• instruction pipelines hard to implement

• long design cycles

• many design errors

• only a small part of the instructions was used

According to Sun: Sun’s C-compiler uses about 30% of the

available 68020-instructions (Sun3 architecture). Studies show

that approximately 80% of the computations for a typical

program requires only 20% of a processor’s instruction set.

When memory became cheaper and faster, the decode and

execution on the instructions became limiting.

Studies showed that it was possible to improve performance with

a simple instruction set and where instructions would execute in

one cycle.

60

RISC - Reduced Instruction Set Computer

• IBM 801, 1979 (publ. 1982)

• 1980, David Patterson, Berkeley, RISC-I, RISC-II

• 1981, John Hennessy, Stanford, MIPS

• ≈ 1986, commercial processors

A processor whose design is based on the rapid execution of a

sequence of simple instructions rather than on the provision of

a large variety of complex instructions.

Some RISC-characteristics:

• load/store architecture; C = A + B

LOAD R1,A
LOAD R2,B
ADD R1,R2,R3
STORE C,R3

• fixed-format instructions (the op-code is always in the same

bit positions in each instruction which is always one word

long)

• a (large) homogeneous register set, allowing any register to

be used in any context and simplifying compiler design

• simple addressing modes with more complex modes replaced

by sequences of simple arithmetic instructions

• one instruction/cycle

• hardwired instructions and not microcode

• efficient pipelining

• simple FPUs; only +, -, *, / and √ .

sin, exp etc. are done in software.

61

Advantages: Simple design, easier to debug, cheaper to

produce, shorter design cycles, faster execution,

easier to write optimizing compilers

(easier to optimize many simple instructions than a few

complicated with dependencies between each other).

CISC - short programs using complex instructions.

RISC - longer programs using simple instructions.

So why is RISC faster?

The simplicity and uniformity of the instructions make it

possible to use pipelining, a higher clock frequency and to write

optimizing compilers.

Will now look at some techniques used in all RISC-computers:

• instruction pipelining

work on the fetching, execution etc. of instructions in parallel

• cache memories

small and fast memories between the main memory and the

CPU registers

• superscalar execution

parallel execution of instructions (e.g. two integer

operations, *, + floating point)

The most widely-used type of microprocessor, the x86 (Intel), is

CISC rather than RISC, although the internal design of newer

x86 family members is said to be RISC-like. All modern CPUs

share some RISC characteristics, although the details may differ

substantially.

62

Pipelining - performing a task in several
steps, stages

Analogy: building cars using an assembly line in a factory.

Suppose there are five stages (can be more), .e.g

IF Fetch the next instruction from memory.

ID Instruction decode.

EX Execute.

M, WM Memory access, write to registers.

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

Clock cycle number

1 2 3 4 5 6 7 8 9

Instruction

k+1

k+2

k+3

k+4

k

63

So one instruction completed per cycle once the pipeline is filled.

Not so simple in real life: different kind of hazards, that pre-

vent the next instruction from executing during its designated

clock cycle. Can make it necessary to stall the pipeline (wait

cycles).

• Structural hazards arise from resource conflicts, e.g.

• two instructions need to access the system bus (fetch data,

fetch instruction),

• not fully pipelined functional units (division usually takes

10-20 cycles, for example).

• Data hazards arise when an instruction depends on the

results of a previous instruction (will look at some cases in

later lectures) e.g.

a = b + c
d = a + e d depends on a

The second addition must not start until a is available.

• Control hazards arise from the pipelining of branches

(if-statements).

An example of a control hazard:

if (a > b - c * d) then
do something

else
do something else

end if

Must wait for the evaluation of the logical expression.

If-statements in loops may cause poor performance.

64

Several techniques to minimize hazards (look in the literature

for details) instead of just stalling. Some examples:

Structural hazard:

Add hardware. If the memory has only one port LOAD adr,R1
will stall the pipeline (the fetch of data will conflict with a later

instruction fetch). Add a memory port (separate data and

instruction caches).

Data hazards:

• Forwarding: b + c available after EX, special hardware

“forwards” the result to the a + e computation (without in-

volving the CPU-registers).

• Instruction scheduling. The compiler can try and rearrange

the order of instruction to minimize stalls.

Try to change the order between instructions using the wait-

time to do something useful.

a = b + c
d = a + e

load b
load c
add b + c has to wait for load c to complete

load b
load c
load e give the load c time to complete
add b + c in parallel with load e

65

Control hazards: (many tricks)

• Add hardware; can compute the address of the branch target

earlier and can decide whether the branch should be taken

or not.

• Branch prediction; try to predict, using “statistics”, the way

a branch will go. Compile-time/run-time. Can work very

well. The branch att the end of a for-loops is taken all the

times but the last.

• Branch delay slot: let the compiler rearrange instructions so

that something useful can be done while it is decided whether

we should branch or not.

loop: instr loop: instr
instr instr
... --> ...

FADD R1, R2, R3 if j < n goto loop
if j < n goto loop FADD R1, R2, R3

Perform the FADD-instruction while waiting for the

if to complete.

A more general construction, speculative execution: Assume

the branch not taken and continue executing (no stall). If

the branch is taken, must be able do undo.

66

Superscalar CPUs

Fetch, decode and execute more than one instruction in parallel.

More than one finished instruction per clock cycle. There may,

e.g. be two integer ALUs, one unit for floating point addition

and subtraction one for floating point multiplication. The units

for +, - and * are usually piplined (they need several clock cycles

to execute).

There are also units for floating point division and square root;

these units are not (usually) pipelined.

MULT xxxxxxxx
MULT xxxxxxxx
MULT xxxxxxxx

Compare division; each xxxxxxxxxx is 22 cycles (on Sun):

DIV xxxxxxxxxx
DIV xxxxxxxxxx
DIV xxxxxxxxxx

How can the CPU keep the different units busy?

The CPU can have circuits for arranging the instructions in

suitable order, dynamic scheduling (out-of-order-execution).

To reduce the amount of hardware in the CPU we can let the

compiler decide a suitable order. Groups of instructions (that

can be executed in parallel) are put together in packages. The

CPU fetches a whole package and not individual instructions.

VLIW-architecture, Very Long Instruction Word.

The Intel & HP Itanium CPU uses VLIW (plus RISC ideas).

Read the free chapter from: W. Triebel, Itanium Architecture

for Software Developers. See the first chapter in: IA-32 Intel

Architecture Optimization Reference Manual for details aboute

the Pentium 4. Read Appendix A in the Software Optimization

Guide for AMD64 Processors. See the web-Diary for links.
67

More on parallel on floating point operations.

flop = floating point operation.

flops = plural of flop or flop / second.

In numerical analysis a flop may be an addition-multiplication

pair. Not unreasonable since (+, *) often come in pairs, e.g. in

an inner product.

Top floating point speed =

of processors × flop / s =

of processors × # flop / clock cycle × clock frequency

Top performance for some CPUs. I have used (double precision):

CPU + or * clock f. top speed

per cycle GHz Gflops

IBM RS6000 4 0.16 0.64

Itanium 2 4 0.9 3.6

AMD Opteron 2 2 4

AMD64 2 2 4

Pentium 4 1 2 2

Some Intel, AMD and Motorola CPUs have another unit (a kind

of vector unit) that can work on short vectors of numbers. These

technologies have names like: SSE3, 3DNow! and AltiVec. More

details later in the course.

To use the the vector unit you need a compiler that can vec-

torize. The vector unit may not be IEEE 754 compliant (not

correctly rounded). So results may differ between the vector-

ized and unvectorized versions of the same code.

See www.spec.org for benchmarks with real applications.

Why do we often only get a small percentage of these speeds?

Is it possible to reach the top speed (and how)?

68

Example on a 167 MHz Sun; top speed 334 Mflops:

Instr. fl. p. registers

fmuld %f4,%f2,%f6 faddd %f4,%f2,%f6
faddd %f8,%f10,%f12 faddd %f8,%f10,%f12
fmuld %f26,%f28,%f30 faddd %f4,%f2,%f6
faddd %f14,%f16,%f18 faddd %f8,%f10,%f12
fmuld %f4,%f2,%f6 faddd %f4,%f2,%f6
faddd %f8,%f10,%f12 faddd %f8,%f10,%f12

...

331.6 Mflops 166.1 Mflops

fdivd %f4,%f2,%f6 fdivd %f4,%f2,%f6
faddd %f8,%f10,%f12 fdivd %f8,%f10,%f12
fdivd %f4,%f2,%f6 fdivd %f4,%f2,%f6
faddd %f8,%f10,%f12 fdivd %f8,%f10,%f12

...

15.1 Mflops 7.5 Mflops

Addition and multiplication are pipelined. Division is not pipelined

(so divides do not overlap) and takes 22 cycles for double

precision.
167 · 106s−1

22
≈ 7.6 · 106/s

So, the answer is sometimes

• provided we have a suitable instruction mix and that

• we do not access memory too often

69

Memory is the problem - caches

1980 1985 1990 1995 2000 2005 2010
10

0

10
1

10
2

10
3

10
4

year

p
er

fo
rm

an
ce

Performance of CPU and memory (Patterson & Hennessy)

CPU

Memory

CPU: increase 1.35 improvement/year until 1986,

and a 1.55 improvement/year thereafter.

DRAM (dynamic random access memory), slow and cheap,

1.07 improvement/year.

Use SRAM (static random access memory) fast & expensive for

cache.

70

Direct mapped cache

Memory devices
I/O

CPU

C
ache

The cache is a small and fast memory used for storing both

instructions and data.

This is the simplest form of cache-construction.

variable, e.g. 4 bytes������������������

������������������������������������

���������	�	

Main memoryCache

these lines
occupy the
the same place
in the cache

cache line

bytes are needed

even if only a few

copy the whole line

71

There are more general cache constructions.

This is a two-way set associative cache:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���������������
���������������
���������������

��������
��������
��������
���������������
���������������
�������������������������

Set

Data

A direct mapped cache is one-way set associative.

In a fully associative cache data can be placed anywhere.

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
������������������� �����������

����������������������
�����������
����������������������
 � � � � � !�!�!�!�!�!"�"�"�"�"�"#�#�#�#�#�#
$�$�$�$�$�$
$�$�$�$�$�$
%�%�%�%�%�%
%�%�%�%�%�% Data

72

To use a cache efficiently locality is important.

• instructions: small loops, for example

• data: use part of a matrix (blocking)

Instructions

Data

Good
locality

Main memory

Not necessarily good locality together.

Make separate caches for data and instructions.

Can read instructions and data in parallel.

73

L1 and L2 caches

Faster

Larger

L1 caches

Instruction

Data

DisksL2 cache memory
Main

CPU

O(10) kbyte O(1) Mbyte O(1) GbyteO(10) bytes O(100) Gbyte

Memory hierarchy.

Newer machines even have an L3 cache.

74

The AMD64 (student machines)

(Some) Intel and AMD-CPUs have an instruction, cpuid, that

gives details about the CPU, such as model, SSE-features, L1-

and L2-cache properties. These values can be hard to find just

reading manuals. Some parameters are available in /proc/cpuinfo
.

Unfortunately one has to code in assembler to access this

information. gcc supports inlining of assembly code using the

asm-function. asm makes it possible to “connect” registers with

C-variables. It may look like this (note that I have broken the

string):

...
unsigned long before, after;

/* Does the CPU support the cpuid-instruction? */
asm("pushfl; popl %%eax; movl %%eax, %0;

xorl $0x40000, %%eax; pushl %%eax; popfl; pushfl;
popl %%eax; movl %%eax, %1; pushl %0; popfl "
: "=r" (before), "=r" (after) /* output */
: /* input */
: "eax" /* changed registers */

);
if (before != after) {

... /* Support. Test more */
}

...

One can call cpuid with a set of different “arguments”, and

cpuid then returns bit patterns in four registers. Reading the

AMD-manual “CPUID Specification” one can interpret the bits.

Bits 31-24 in the ECX-register contain the size of L1-data cache

in kbyte, for example.

75

This is some of the facts I found out about the caches (I read

some manuals as well):

The L1 data cache is 64 kbyte, 2-way associative and has a cache

line size (length) of 64 bytes. Cache-line replacement is based

on a least-recently-used (LRU) replacement algorithm.

The L2 cache is “on-die” (on-chip), 512 kbyte and 16-way

associative. The cache line size is 64 bytes.

76

A note on reading assembly output

In the lecture and during the labs I said it was sometimes useful

to look at the assembler code produced by the compiler.

Here comes a simple example. Let us look at the the following

function.

double dot(double x[], double y[], int n)
{

double s;
int k;

s = 0.0;
for (k = 0; k < n; k++)

s += x[k] * y[k];

return s;
}

First some typical RISC-code from a Sun ULTRA-Sparc CPU.

I used gcc and compiled the code by:

gcc -S -O3 dot.c

-S produces the assembler output on dot.s.
Here is the loop (code for passing parameters, setting up for the

loop, and returning the result is not included).

.LL5: My translation
ldd [%o0+%g1], %f8 %f8 = x[k]
ldd [%o1+%g1], %f10 %f10 = y[k]
add %g2, 1, %g2 k = k + 1
fmuld %f8, %f10, %f8 %f8 = %f8 * %f10
cmp %o2, %g2 k == n? Set status reg.
faddd %f0, %f8, %f0 %f0 = %f0 + %f8
bne .LL5 if not equal, go to .LL5
add %g1, 8, %g1 increase offset

77

Some comments.

%f8 and %f10 are registers in the FPU. When entering the

function, the addresses of the first elements in the arrays are

stored in registers %o0 and %o1. The addresses of x[k] and

y[k] are given by %o0 + 8k and %o1 + 8k. The reason for the

factor eight is that the memory is byte addressable (each byte

has an address). The offset, 8k, is stored in register %g1.

The offset, 8k, is updated in the last add. It looks a bit strange

that the add comes after the branch, bne. The add-instruction is,

however, placed in the branch delay slot of the branch-instruction,

so it is executed in parallel with the branch.

add is an integer add. faddd is a “floating point add double”. It

updates %f0, which stores the sum. %f0 is set to zero before the

loop. cmp compares k with n (the last index) by subtracting the

numbers. The result of the compare updates the Z-bit (Z for

zero) in the integer condition code register. The branch instruc-

tion looks at the Z-bit to see if the branch should be taken or not.

We can make an interesting comparison with code produced on

the AMD64. The AMD (Intel-like) has both CISC- and RISC-

characteristics. It has fewer registers than the Sparc and it does

not use load/store in the same way. The x87 (the FPU) uses

a stack with eight registers. In the code below, eax etc. are

names of 32-bit CPU-registers. (in the assembly language a % is

added).

.L5:
fldl (%ebx,%eax,8)
fmull (%ecx,%eax,8)
faddp %st, %st(1)
incl %eax
cmpl %eax, %edx
jne .L5

78

When the loop is entered %ebx and %ecx contain the addresses

of the first elements of the arrays. Zero has been pushed on the

stack as well (corresponds to s = 0.0).

fldl (%ebx,%eax,8) loads a 64 bit floating point number. The

address is given by %ebx + %eax*8. The number is pushed on

the top of the stack, given by the stackpointer %st.

Unlike the Sparc, the AMD can multiply with an operand in

memory (the number does not have to be fetched first). So the

fmull multiplies the top-element on the stack with the number

at address %ecx + %eax*8 and replaces the top-element with

the product.

faddp %st, %st(1) adds the top-elements on the stack

(the product and the sum, s), pops the stack, the p in faddp,
and replaces the top with the new value of s.

incl increases k (stored in %eax) and cmpl compares it to n.
jne stands for jump if not equal.

79

Virtual memory
Use disk to “simulate” a larger memory. The virtual address

space is divided into pages e.g. 4 kbytes. A virtual address is

translated to the corresponding physical address by hardware

and software; address translation.

A

B

C

D

B

C

A

D

Physical memoryVirtual memory

Disk

A page is copied from disk to memory when an attempt is made

to access it and it is not already present (page fault). When the

main memory is full, pages must be stored on disk (e.g. the least

recently used page since the previous page fault). Paging.

(Swapping; moving entire processes between disk and memory.)

Some advantages of virtual memory:

• simplifies relocation (loading programs to memory),

independece of physical addresses;

several programs may reside in memory

• security, can check access to protected pages, e.g. read-only

data; can protect data belonging to other processes

• allows large programs to run on little memory; only used

sections of programs need be present in memory; simplifies

programming (e.g. large data structures where only a part

is used)
80

Virtual memory requires locality (re-use of pages) to work well,

or thrashing may occur.

A few words on address translation

The following lines sketch one common address translating

technique.

A virtual address is made up by two parts, the virtual page

number and the page offset (the address from the top of the

page).

The page number is an index into a page table:

physical page address =
page_table(virtual page number)

The page table is stored in main memory (and is sometimes

paged). To speed up the translation (accessing main memory

takes time) we store part of the table in a cache, a transla-

tion lookaside buffer, TLB which resides in the CPU (O(10) −
O(1000) entries).

Once again we see that locality is important. If we can keep

the references to a few pages, the physical addresses can found

in the TLB and we avoid a reference to main memory. If the

address is not available in the TLB we get a TLB miss (which is

fairly costly, taking tens of clock cycles).

Reading the actual data may require a reference to main

memory, but we hope the data resides in the L1 cache.

Second best is the L2 cache, but we may have to make an

access to main memory, or worse, we get a page fault and

have to make a disk access (taking millions of clock cycles).

81

Code Optimization

• How does one get good performance from a computer

system?

• Focus on systems with one CPU and floating point

performance.

• To get maximum performance from a parallel code it is

important to tune the code running on each CPU.

• Not much about applications from graphics, audio or video.

One example of SSE2 (Streaming SIMD Extensions 2).

• General advice and not specific systems.

• Fortran, some C (hardly any C++).

Some Java in the Springer chapter.

82

Your situation

• A large and old code which has to be optimized. Even a

slight speedup would be of use, since the code may be run

on a daily basis.

• A new project, where language and data structures have to

be chosen.

C ≈ 2 Fortran, C++ ≈ 4 Fortran (for floating point).

Java? Can be slow and use large amounts of memory.

See the article (Springer chapter) for an example.

Should it be parallel?

Test a simplified version of the computational kernel.

Fortran for floating point, C/C++ for the rest.

• Things that are done once. Let the computer work.

Unix-tools, Matlab, Maple, Mathematica ...

83

More about unix-tools:

• shell scripts (sh, csh, tcsh, ksh, bash)
(for, if, | pipes and lots more)

• awk (developed by Alfred Aho, Peter Weinberger, and Brian

Kernighan in 1978)

• sed (stream editor)

• grep (after the qed/ed editor subcommand ”g/re/p”, where

re stands for a regular expression, to Globally search for the

Regular Expression and Print)

• tr (translate characters)

• perl (Larry Wall in 1987; contains the above)

• etc.

Some very simple examples:

Counting the number of lines in a file(s):

% wc file or wc -l file
% wc files or wc -l files

Finding a file containing a certain string

% grep string files e.g.
% grep ’program matrix’ *.f90 or
% grep -i ’program matrix’ *.f90 etc.

The grep-command takes many flags.

84

Example: interchange the two blank-separated columns of

numbers in a file:

% awk ’{print $2, $1}’ file

Example: sum the second columns of a set of datatfiles. Each

row contains: number number text text
The files are named data.01, data.02, ...

foreach? is the prompt.

% foreach f (data.[0-9][0-9])
foreach? echo -n $f’: ’
foreach? awk ’{s += $2} END {print s}’ $f
foreach? end
data.01: 30
data.02: 60
data.03: 77
data.20: 84

Another possibility is:

awk ’{s += $2} END {print FILENAME ": " s}’ $f

85

Just the other day (two years ago) ...

You have ≈ 600 files each consisting of ≈ 24000 lines (a total of

≈ 14 · 106 lines) essentially built up by:

<DOC>
<TEXT>
Many lines of text (containing no DOC or TEXT)
</TEXT>
</DOC>
<DOC>
<TEXT>
Many lines of text
</TEXT>
</DOC>
etc.

There is a mismatch between the number of DOC and TEXT.
Find it!

We can localize the file this way:

% foreach f (*)
foreach? if (‘grep -c "<DOC>" $f‘ != \

‘grep -c "<TEXT>" $f‘) echo $f
foreach? end

Not so efficient; we are reading each file twice.

Takes ≈ 3.5 minutes.

We used binary search to find the place in the file.

86

The optimization process

Basic: Use an efficient algorithm.

Simple things:

• Use (some of) the optimization options of the compiler.

Optimization can give large speedups

(and new bugs, or reveal bugs).

Read the manual page for your compiler.

Even better, read the tuning manual for the system.

• Switch compiler and/or system.

87

The next page lists the compiler options of the Sun Fortran90/95-

compiler. The names are not standardized, but it is common

that -c means “compile only, do not link”.

To produce debug information -g is used.

-O[n] usually denotes optimization on level n. There may be an

option, like -fast, that gives a combination of suitable

optimization options. In Sun’s case -fast is equivalent to:

• -xtarget=native optimize for host system (sets cache sizes

for example).

• -O5 highest optimization level.

• -libmil inline certain math library routines.

• -fsimple=2 aggressive floating-point optimizations. May

cause many programs to produce different numeric results

due to changes in rounding.

• -dalign align data to allow generation of faster double word

load/store instructions.

• -xlibmopt link the optimized math library. May produce

slightly different results; if so, they usually differ in the last

bit.

• -depend optimize DO loops better.

• -fns for possibly faster (but nonstandard) handling of floating-

point arithmetic exceptions and gradual underflow.

• -ftrap=common option to set trapping on common floating-

point exceptions (this is the default for f95).

• -pad=local option to improve use of cache (alignment).

• -xvector=yes enable use of the vectorized math library.

• -xprefetch=yes enable generation of prefetch instructions

on platforms that support it.

88

f95 | f90 [-a] [-aligncommon[=a]] [-ansi]
[-autopar] [-Bx] [-C] [-c] [-cg89] [-cg92]
[-copyargs] [-Dnm[=def]] [-dalign] [-db]
[-dbl_align_all[=yes|no]] [-depend] [-dryrun]
[-d[y|n]] [-e] [-erroff=taglist] [-errtags[=yes|no]]
[-explicitpar] [-ext_names=e] [-F] [-f]
[-fast] [-fixed] [-flags] [-fnonstd]
[-fns=yes|no] [-fpover=yes|no] [-fpp] [-free]
[-fround=r] [-fsimple[=n]] [-ftrap=t] [-G]
[-g] [-hnm] [-help] [-Idir] [-inline=rl]
[-Kpic] [-KPIC] [-Ldir] [-libmil] [-loopinfo]
[-M dir] [-mp=x] [-mt] [-native] [-noautopar]
[-nodepend] [-noexplicitpar] [-nolib] [-nolibmil]
[-noqueue] [-noreduction] [-norunpath] [-O[n]]
[-o nm] [-onetrip] [-openmp] [-p] [-pad[=p]]
[-parallel] [-pg] [-pic] [-PIC] [-Qoption pr ls]
[-qp] [-R list] [-r8const] [-reduction] [-S]
[-s] [-sb] [-sbfast] [-silent] [-stackvar]
[-stop_status=yes|no] [-temp=dir] [-time] [-U]
[-Uname] [-u] [-unroll=n] [-V] [-v] [-vpara]
[-w] [-xa] [-xarch=a] [-xautopar] [-xcache=c]
[-xcg89] [-xcg92] [-xchip=c] [-xcode=v]
[-xcommonchk[=no|yes]] [-xcrossfile=n] [-xdepend]
[-xexplicitpar] [-xF] [-xhasc[=yes|no]] [-xhelp=h]
[-xia[=i]] [-xildoff] [-xildon] [-xinline=rl]
[-xinterval=i] [-xipo[=0|1]] [-xlang=language[,language]]
[-xlibmil] [-xlibmopt] [-xlicinfo]
[-xlic_lib=sunperf] [-Xlist] [-xloopinfo] [-xmaxopt[=n]]
[-xmemalign[=ab]] [-xnolib] [-xnolibmil] [-xnolibmopt]
[-xO[n]] [-xopenmp] [-xpad] [-xparallel] [-xpg]
[-xpp=p] [-xprefetch=a[,a]] [-xprofile=p] [-xrecursive]
[-xreduction] [-xregs=r] [-xs] [-xsafe=mem]
[-xsb] [-xsbfast] [-xspace] [-xtarget=t] [-xtime]
[-xtypemap=spec] [-xunroll=n] [-xvector=yes|no] [-ztext]

source file(s) ... [-lx]

89

If you are willing to work more...

• Decrease number of disk accesses (I/O, virtual memory)

• (LINPACK, EISPACK) → LAPACK

• Use numerical libraries tuned for the specific system, BLAS

Find bottlenecks in the code (profilers).

Attack the subprograms taking most of the time.

Find and tune the important loops.

Tuning loops has several disadvantages:

• The code becomes less readable and it is easy to introduce

bugs.

• Detailed knowledge about the system, such as cache

configuration, is often necessary.

•What is optimal for one system need not be optimal for

another; faster on one machine may actually be slower on

another.

This leads to problems with portability.

• Code tuning is not a very deterministic business.

The combination of tuning and the optimization done by the

compiler may give an unexpected result.

• The computing environment is not static; compilers become

better and there will be faster hardware of a different

construction.

The new system may require different (or no) tuning.

90

What should one do with the critical loops?

The goal of the tuning effort is to keep the FPU(s) busy.

Accomplished by efficient use of

• memory hierarchy

• parallel capabilities

L1 caches

Instruction

Data

DisksL2 cache memory
Main

CPU

Size

Speed

Superscalar: start several instructions per cycle.

Pipelining: work on an instruction in parallel.

Locality of reference, data reuse

Avoid data dependencies and other
constructions that give pipeline stalls

91

What can you hope for?

• Many compilers are good.

May be hard to improve on their job.

We may even slow the code down.

• Depends on code, language, compiler and hardware.

• Could introduce errors.

But: can give significant speedups.

Not very deterministic, in other words.

Do not rewrite all the loops in your code.

92

Choice of language

Fortran, C/C++ dominating languages for high performance

numerical computation.

There are excellent Fortran compilers due to the competition

between manufacturers and the design of the language.

It may be harder to generate fast code from C/C++ and it is

easy to write inefficient programs in C++

void add(const double a[], const double b[],
double c[], double f, int n)

{
int k;

for(k = 0; k < n; k++)
c[k] = a[k] + f * b[k];

}

n, was chosen such that the three vectors would fit in the L1-

cache, all at the same time.

On the two systems tested (in 2005) the Fortran routine was

twice as fast.

From the Fortran 90 standard (section 12.5.2.9):

“Note that if there is a partial or complete overlap be-

tween the actual arguments associated with two different

dummy arguments of the same procedure, the overlapped

portions must not be defined, redefined, or become un-

defined during the execution of the procedure.”

Not so in C. Two pointer-variables with different names may

refer to the same array.

93

A Fortran compiler may produce code that works on several

iterations in parallel.

c(1) = a(1) + f * b(1)
c(2) = a(2) + f * b(2) ! independent

Can use the pipelining in functional units for addition and

multiplication.

The assembly code is often unrolled this way as well.

The corresponding C-code may look like:

/* This code assumes that n is a multiple of four */
for(k = 0; k < n; k += 4) {

c[k] = a[k] + f * b[k];
c[k+1] = a[k+1] + f * b[k+1];
c[k+2] = a[k+2] + f * b[k+2];
c[k+3] = a[k+3] + f * b[k+3];

}

A programmer may write code this way, as well. Unrolling gives:

• fewer branches (tests at the end of the loop)

• more instructions in the loop; a compiler can change the

order of instructions and can use prefetching

If we make the following call in Fortran, (illegal in Fortran, legal

in C), we have introduced a data dependency.

call add(a, c, c(2), f, n-1)
| | |
a b c

c(2) = a(1) + f * c(1) ! b and c overlap
c(3) = a(2) + f * c(2) ! c(3) depends on c(2)
c(4) = a(3) + f * c(3) ! c(4) depends on c(3)

94

If that is the loop you need (in Fortran) write:

do k = 1, n - 1
c(k + 1) = a(k) + f * c(k)

end do

This loop is slower than the first one (slower in C as well).

In C, aliased pointers and arrays are allowed which means that

it may be harder for a C-compiler to produce efficient code.

The C99 restrict type qualifier can be used to inform

the compiler that aliasing does not occur.

void add(double * restrict a, double * restrict b,
double * restrict c, int n)

It is not supported by all compilers and even if it is supported it

may not have any effect (you may need a special compiler flag,

e.g. -std=c99).

An alternative is to use compiler flags, -fno-alias, -xrestrict
etc. supported by some compilers. If you “lie” (or use a Fortran

routine with aliasing) you may get the wrong answer!

The compilers on Lucidor (Itanium 2 at PDC) have improved

since 2005, so restrict or -fno-alias are not needed (for add).
Restricted pointers give a slight improvement on Lenngren

(Intel Xeon, PDC) from 2s to 1.5s (105 calls of add with n =

10000).

So this is not a static situation. Compilers and hardware im-

prove every year, so to see the effects of aliasing one may need

more complicated examples than add. I have kept it because

it is easy to understand. On the next page is a slightly more

complicated example, but still only a few lines of code, i.e. far

from a real code.

95

Here is a polynomial evaluation using Horner’s method:

subroutine horner(px, x, coeff, n)
integer j, n
double precision px(n), x(n), coeff(0:4), xj

do j = 1, n
xj = x(j)
px(j) = coeff(0) + xj*(coeff(1) + xj*(coeff(2) &

+ xj*(coeff(3) + xj*coeff(4))))
end do

end

On Lucidor the Fortran code takes 0.23s and the C-code 22.5s.

(n = 1000 and calling the routine 105 times).

A hundred times slower, so not everything is better this year.

I compiled using icc -O3 Lowering the optimization level

to -O1 helped somewhat, it gave the time 2.6s (a factor of 10).

If -fno-alias is used, C ≈ Fortran.

It is easy to fix the C-code without using -fno-alias

...
double xj, c0, c1, c2, c3, c4;

/* no aliasing with local variables */
c0 = coeff[0]; c1 = coeff[1]; c2 = coeff[2];
c3 = coeff[3]; c4 = coeff[4];

for (j = 0; j < n; j++) {
xj = x[j];
px[j] = c0 + xj*(c1 + xj*(c2 + xj*(c3 + xj*c4)));

}
...

There is no difference between C and Fortran on Lenngren (for

the Horner-benchmark).

96

Now to Horner with complex numbers using Fortran (complex

is built-in) and C++ (using “C-arrays” of complex<double>).
I got the

following times (using Intel’s compilers),

n = 1000 and calling the routine 105 times:

System, compiler ifort -O3 icpc -O2 icpc -O3

Lucidor 0.9 6.3 102.9

Lenngren 1.9 3.7 5.0

Opteron 2.1 28.5 28.5

The Portland group compilers, on Lenngren, took 2.2s (Fortran)

and 14.1s (C++).

Here are some tests of the GNU-compilers on the same code.

System, compiler g95 -O3 gfortran -O3 g++ -O3

Lucidor NA NA 26.0

Lenngren NA NA 1.9

Opteron 2.6 1.9 3.5

The free Sun Studio-compilers for Linux (Opteron) take 1.9s

(Fortran) and 9.9s (C++).

These times may not be representative, my experience is that

the gcc-family of compilers produce slower code than Intel’s.

The tables do show that is important to test different systems,

compilers and compiler-options.

The behaviour in the above codes changes when n becomes very

large. CPU-bound (the CPU limits the performance) versus

Memory bound (the memory system limits the performance).

97

Basic arithmetic and elementary functions

• Common that the FPU can perform + and * in parallel.

• a+b*c can often be performed with one round-off,

multiply-add MADD or FMA.

• Several FMAs in parallel on some machines.

• + and * usually pipelined, so one sum and a product per

clock cycle in the best of cases

(not two sums or two products).

• / not usually pipelined and may require around twenty clock

cycles.

98

Floating point formats

Type min min max bits in

denormalized normalized mantissa

IEEE 32 bit 1.4 · 10−45 1.2 · 10−38 3.4 · 1038 24

IEEE 64 bit 4.9 · 10−324 2.2 · 10−308 1.8 · 10308 53

• Using single- instead of double precision can give better

performance. Fewer bytes must pass through the memory

system.

• The arithmetic may not be done more quickly since several

systems will use double precision for the computation

regardless.

The efficiency of FPUs differ (this on a 2 GHz Opteron).

>> A = rand(1000); B = A;
>> tic; C = A * B; toc
Elapsed time is 0.780702 seconds.

>> A = 1e-320 * A;
>> tic; C = A * B; toc
Elapsed time is 43.227665 seconds.

99

For better performance one can sometimes replace a division by

a multiplication.

vector / scalar vector * (1.0 / scalar)

Integer multiplication and multiply-add are often slower than

their floating point equivalents.

program int_vs_float
integer, parameter :: n = 10000
integer :: k
real, dimension(n) :: arr
real :: s = 0.0

arr = 1
do k = 1, 100000

s = s + product(arr)
end do

print*, s

end program int_vs_float

% time a.out
100000.0

5.36u 0.05s 0:05.58 96.9%

Change to:

integer, dimension(n) :: arr
integer :: s = 0.0

% time a.out
100000

44.15u 0.02s 0:44.33 99.6%

100

Elementary functions

Often coded in C, may reside in the libm-library.

• argument reduction

• approximation

• back transformation

Can take a lot of time.

>> v = 0.1 * ones(1000, 1);
>> tic; for k = 1:1000, s = sin(v); end; toc
elapsed_time =

0.8840

>> v = 1e10 * ones(1000, 1);
>> tic; for k = 1:1000, s = sin(v); end; toc
elapsed_time =

9.2969

101

program ugly
double precision :: x = 2.5d1
integer :: k

do k = 1, 17, 2
print’(1p2e10.2)’, x, sin(x)
x = x * 1.0d2

end do

end program ugly

% a.out
2.50E+01 -1.32E-01
2.50E+03 -6.50E-01
2.50E+05 -9.96E-01
2.50E+07 -4.67E-01
2.50E+09 -9.92E-01
2.50E+11 -1.64E-01
2.50E+13 6.70E-01
2.50E+15 7.45E-01
2.50E+17 4.14E+07 <---

Some compilers are more clever than others, which is shown on

the next page.

You should know that, unless x is an integer, vx is computed

using something like:

vx = elog(vx) = ex log v, 0 < v, x

102

subroutine power(vec, n)
integer :: k, n
double precision, dimension(n) :: vec

do k = 1, n
vec(k) = vec(k)**1.5d0 ! so vec(k)^1.5

end do

end

Times with n = 10000 and called 10000 on a 2 GHz AMD64.

Compiler -O3 power opt. power

Intel 1.2 1.2

g95 8.2 1.6

gfortran 8.1 1.6

Looking at the assembly output from Intel’s compiler:

...
fsqrt <---- NOTE
fmulp %st, %st(1) <---- NOTE

...

g95 and gfortran call pow (uses exp and log).

In “opt. power” I have written the loop this way:

...
do k = 1, n

vec(k) = sqrt(vec(k)) * vec(k)
end do

103

“The Mathematical Acceleration SubSystem” MASS (IBM).

High performance versions of some intrinsic Fortran functions.

Sacrifices a small amount of accuracy (last bit).

There are also vector versions of some of the functions.

Must link with special libraries (scalar-MASS, vector-MASS).

program mass_test
integer, parameter :: n = 10000
double precision, dimension(n) :: v, sinv

...
v = ...
call vsin(sinv, v, n) ! vector-sin

...
end

Performance depends on the type of function, range of

arguments and vector length (when using the vector library).

Two examples (normalised times, n = 5000):

Function default scalar MASS vector MASS

sin 4.9 3.5 1

exp 4.5 2.8 1

104

SSE2, Streaming SIMD Extensions 2
Some CPUs have built-in “vector computers”.

The Pentium 4 SSE2 can do e.g. vector multiplies: a = a .* b
(using Matlab notation) where a and b contain 4 single

precision or 2 double precision numbers.

We need an optimizing compiler that produces code using the

special vector instructions. For example:

% ifc -vec_report3 -O3 -tpp7 -xW files...
(15) vector dependence: assumed FLOW dependence ...

loop was not vectorized
(23) LOOP WAS VECTORIZED.

! A simple benchmark
s = 0.0
do k = 1, 10000

s = s + x(k) * y(k)
OR

s = s + sin(x(k)) * cos(y(k))
end do

Called 100000 times. Times (in s) on a 2.8 GHz Intel Xeon:

single double

No SSE2 SSE2 No SSE2 SSE2 cos/sin

1.9 0.4 1.9 0.8 no

132.1 12.0 132.2 36.9 yes

Why so fast? __libm_sse2_sin (and cos) is used.

Disadvantage: the x87-FPU uses double extended precision, 64

bit mantissa. SSE2 uses 24 bits (single precision) or 53 bits

(double precision). Does not support denormalized numbers.

105

Eliminating constant expressions from loops

pi = 3.14159265358979d0
do k = 1, 1000000

x(k) = (2.0 * pi + 3.0) * y(k) ! eliminated
end do

do k = 1, 1000000
x(k) = exp(2.0) * y(k) ! probably eliminated

end do

do k = 1, 1000000
x(k) = my_func(2.0) * y(k) ! cannot be eliminated

end do

Should use PURE functions, my_func may have side-effects.

106

Virtual memory and paging

• Simulate larger memory using disk.

• Virtual memory is divided into pages, perhaps 4 or 8 kbyte.

• Moving pages between disk and physical memory is known

as paging.

• Avoid excessive use. Disks are slow.

This test-program was run on a machine with only 64 Mbyte

memory, m ∗ n2 is constant, so same number of additions

>> type test % list the program
clear A B C % remove the matrices
tic % start timer
for k = 1:m % repeat m times

A = ones(n); % n x n-matrix of ones
B = ones(n); % all are 64-bit numbers
C = A + B;

end
toc % stop timer

% Run three test cases
>> n = 500; m = 16; test % 5.7 Mbyte for A, B and C
elapsed_time = 1.1287 % roughly ONE SECOND

>> n = 1000; m = 4; test % 22.9 Mbyte
elapsed_time = 1.1234 % roughly the same as above

>> n = 2000; m = 1; test % 91.6 Mbyte
elapsed_time = 187.9 % more than THREE MINUTES

107

% vmstat 1 (edited)
page cpu

pi po us sy id
0 0 0 0 100
0 0 0 0 100

352 128 0 0 100 <-- third test is run
616 304 0 6 94
608 384 0 2 98
712 256 0 2 98 etc. for over 3 minutes

pi = kilobytes paged in / second
po = kilobytes paged out / second

108

Input-output

Need to store 5 · 106 double precision numbers in a file.

A local disk was used for the tests. Intel’s Fortran compiler on

AMD64. Roughly the same times in C.

Test Statement time (s) size (Mbyte)

1 write(10, ’(1pe23.16)’) x(k) 29.4 114.4

2 write(10) x(k) 19.5 76.3

3 write(10) (vec(j), j = 1, 10000) 0.1 38.2

4 write(10) vec(1:10000) 0.1 38.2

5 write(10) vec 0.1 38.2

File sizes:

1 : 5 · 106
︸ ︷︷ ︸

of numbers

· (23 + 1)
︸ ︷︷ ︸

characters + newline

/ 220
︸︷︷︸
Mbyte

≈ 114.4

2 : 5 · 106
︸ ︷︷ ︸

of numbers

· (8 + 4 + 4)
︸ ︷︷ ︸

number + delims

/ 220
︸︷︷︸
Mbyte

≈ 76.3

3− 5 :

 5 · 106
︸ ︷︷ ︸

of numbers

· 8︸︷︷︸
number

+500 · (4 + 4)
︸ ︷︷ ︸

delims

 / 220
︸︷︷︸
Mbyte

≈ 38.2

In 5 vec has 10000 elements and we write the array 500 times.

g95 and gfortran were slower in all cases but case 2, where

g95 took 6s.

109

Portability of binary files?

• Perhaps

• File structure may differ

• Byte order may differ

• Big-endian, most significant byte has the lowest address

(“big-end-first”).

• The Intel processors are little-endian (“little-end-first”).

On a big-endian machine
write(10) -1.0d-300, -1.0d0, 0.0d0, 1.0d0, 1.0d300

Read on a little-endian
2.11238712E+125 3.04497598E-319 0.
3.03865194E-319 -1.35864115E-171

110

Memory locality and caches

1 2 # of columns
---------------- ... -----------------
| | | | | | | | | | | | <-- keys
---------------- ... -----------------
| | | | | | | | | | | |
---------------- ... -----------------
| | | | | | | | | | | |
---------------- ... -----------------
| | | | | | | | | | | |
---------------- ... -----------------

Search -->

200 400 600 800 1000 1200 1400 1600 1800 2000
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

table size

re
la

tiv
e

tim
e/

ta
bl

e
si

ze

L1 cache miss every time

L1 cache full

111

Analysis

• Fortran stores matrices by columns

• (C stores matrices by rows)

• L1 data cache is two-way set-associative, two sets with 512

lines each (MIPS R10000, SGI)

• Replacement policy is LRU (Least Recently Used)

• One column per L1 cache line

•When ≤ 1024 columns only cache misses in the first search

Suppose we have two sets of four cache lines, instead.

Assume we have nine columns.

sets
|1| |5| |9| |5| |5| |1| |5| |9|
!2| |6| |2| |6| |2| |6| |2| |6|
|3| |7| |3| |7| |3| |7| |3| |7|
|4| |8| |4| |8| |4| |8| |4| |8|

after 8 after 9 after 8 after 9
cols cols next search

Assume we have twelve columns.

first search next search
|1| |5| | 9| |5| | 9| |1| |5| |1| |5| | 9|
!2| |6| |10| |6| |10| |2| |6| |2| |6| |10|
|3| |7| |11| |7| |11| |3| |7| |3| |7| |11|
|4| |8| |12| |8| |12| |4| |8| |4| |8| |12|

after 8 after 12 after 4 after 8 after 12

112

L2-cache, two sets of 4096 lines, each with a length of 132 bytes.

1 2 3 4 5 6

x 10
4

1

2

3

4

5

6

7

8

9

10

table size

re
la

tiv
e

tim
e/

ta
bl

e
si

ze

L1 cache miss every time

L2 cache miss every time

way prediction

Notice that the fastest and slowest case differ by a factor of 9.5.

Change algorithm and data structure. If not: blocking.

Blocking is an efficient technique for data re-use and is used

in many matrix algorithms.

113

More data re-use; loop fusion

Blocking is one method for data re-use.

v_min = v(1)
do k = 2, n

if (v(k) < v_min) v_min = v(k) ! fetch v(k)
end do

v_max = v(1)
do k = 2, n

if (v(k) > v_max) v_max = v(k) ! fetch v(k) again
end do

Merge loops data re-use, less loop overhead.

v_min = v(1)
v_max = v(1)
do k = 2, n

if (v(k) < v_min) then ! v(k) is fetched here
v_min = v(k)

elseif (v(k) > v_max) then ! and re-used here
v_max = v(k)

end if
end do

On some systems the following loop body is faster

vk = v(k) ! optional
if(v_min < vk) v_min = vk ! can use v(k) instead
if(v_max > vk) v_max = vk

or

vk = v(k)
v_min = min(v_min, vk)
v_max = max(v_max, vk)

114

When dealing with large, but unrelated, data sets it may be

faster to split the loop in order to use the caches better. Here

is a contrived example:

integer, parameter :: n = 5000
double precision, dimension(n, n) :: A, B, C, D
...
sum_ab = 0.0
sum_cd = 0.0
do col = 1, n

do row = 1, n ! the two sums are independent
sum_ab = sum_ab + A(row, col) * B(col, row)
sum_cd = sum_cd + C(row, col) * D(col, row)

end do
end do

!
! Split the computation
!

sum_ab = 0.0
do col = 1, n

do row = 1, n
sum_ab = sum_ab + A(row, col) * B(col, row)

end do
end do

sum_cd = 0.0
do col = 1, n

do row = 1, n
sum_cd = sum_cd + C(row, col) * D(col, row)

end do
end do

When n = 5000 the first loop requires 4.9 s and the second two

0.84 s (together) on a 2.4 GHz, 4 Gbyte, Opteron.

115

The importance of small strides

If no data re-use, try to have locality of reference.

Small strides.

v(1), v(2), v(3),..., stride one

v(1), v(3), v(5),..., stride two

slower faster
s = 0.0 s = 0.0
do row = 1, n do col = 1, n

do col = 1, n do row = 1, n
s = s + A(row, col) s = s + A(row, col)

end do end do
end do end do

A(1, 1)
A(2, 1)

... first column
A(n, 1)

A(1, 2)
A(2, 2)

... second column
A(n, 2)

....

A(1, n)
A(2, n)

... n:th column
A(n, n)

Some compilers can switch loop order (loop interchange).

In C the leftmost alternative will be the faster.

116

Performance on three different systems.

Full optimization on the compilers.

System 1 System 2 System 3

C Fortran C Fortran C Fortran

By row 0.12 s 0.093 s 0.36 s 0.31 s 0.87 s 2.9 s

By column 1.32 s 0.093 s 1.08 s 0.31 s 3.69 s 0.68 s

The first two Fortran compilers can switch loop order, the third

cannot. Notice the difference between Fortran and C.

117

Blocking and large strides

Sometimes loop interchange is of no use.

s = 0.0
do row = 1, n

do col = 1, n
s = s + A(row, col) * B(col, row)

end do
end do

Blocking is good for data re-use, and when we have large strides.

Partition A and B in square sub-matrices each having the same

order, the block size.

Treat pairs of blocks, one in A and one in B such that we can use

the data which has been fetched to the L1 data cache.

Looking at two blocks:

cache line

block size

block (k, j) inblock (j, k) in A B

The block size must not be too large. Must be able to hold all

the grey elements in A in cache (until they have been used).

118

This code works even if n is not divisible by the block size).

! first_row = the first row in a block etc.

do first_row = 1, n, block_size
last_row = min(first_row + block_size - 1, n)
do first_col = 1, n, block_size

last_col = min(first_col + block_size - 1, n)
do row = first_row, last_row ! sum one block

do col = first_col, last_col
s = s + A(row, col) * B(col, row)

end do
end do

end do
end do

0 50 100 150 200
1

1.5

2

2.5

3

3.5

4

4.5

Block size

S
ca

le
d

tim
e

No blocking

Blocking

0 100 200 300 400
1

2

3

4

5

6

7

Block size

S
ca

le
d

tim
e

No blocking

Blocking

n = 2000.

Note the speedups (4.5 and 7.2).

119

More on the BLAS
(the Basic Linear Algebra Subprograms).

BLAS1: y := a*x + y one would use daxpy

BLAS2: dgemv can compute y := a*A*x + b*y

BLAS3: dgemm forms C := a*A*B + b*C

daxpy: O(n) data, O(n) operations

dgemv: O(n2) data, O(n2) operations

dgemm: O(n2) data, O(n3) operations, data re-use

Matrix multiplication: “row times column”, slow.

Blocking is necessary.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

Matrix dimension n

M
flo

p/
s

dgemm

matmul

basic

375 MHz machine, start two FMAs per clock cycle, top speed is

750 million FMAs per second.

LAPACK. Tuned libraries.

120

Indirect addressing, pointers

Sparse matrices, PDE-meshes...

Bad memory locality, poor cache performance.

do k = 1, n
j = ix(k)
y(j) = y(j) + a * x(j)

end do

system random ix ordered ix no ix
1 39 16 9

2 56 2.7 2.4

3 83 14 10

121

If-statements

If-statements in a loop may stall the pipeline. Modern CPUs

and compilers are rather good at handling branches, so there

may not be a large delay.

Original version Optimized version

do k = 1, n take care of k = 1
if (k == 1) then do k = 2, n

statements statements for k = 2 to n
else end do

statements
end if

end do

if (most probable) then
...

else if (second most probable) then
...

else if (third most probable) then
...

if (a(k) .and. b(k)) then, least likely first

if (a(k) .or. b(k)) then, most likely first

122

Inlining and overloading of operators

Inlining: moving the body of a short procedure to the calling

routine. Here comes a slightly contrived example:

module types
type Point3D

double precision :: x, y, z
end type Point3D

end module types

function norm(point) result(res)
use types
type(Point3D) :: point
double precision :: res

res = sqrt(point%x**2 + point%y**2 + point%z**2)

end

program main
... code

! points is an array of type(Point3D)
do k = 1, MANY_TIMES

s = s + norm(points(k)) ! or something
end do ! more realistic
... code

end

Changing norm(points(k)) in the main program to

sqrt(points(k)%x**2 + points(k)%y**2 + points(k)%z**2),
will give faster code.

Inlining, this way, by hand is error-prone, so a compiler can

usually do it for you. Some compilers are not doing a very good

job of it, though. It can make a difference if routines are stored

in different files.

123

Alignment

integer*1 work(100001)
...
! work(some_index) in a more general setting
call do_work(work(2), 12500) ! pass address of work(2)
...
end

subroutine do_work(work, n)
integer n
double precision work(n)

work(1) = 123
...

May produce “Bus error”.

Alignment problems.

It is usually required that double precision variables are stored

at an address which is a multiple of eight bytes (multiple of four

bytes for a single precision variable).

The slowdown caused by misalignment may easily be a factor

of 10 or 100.

124

Closing notes

Two basic tuning principles:

• Improve the memory access pattern

– Locality of reference

– Data re-use

Stride minimization, blocking, proper alignment and the

avoidance of indirect addressing.

• Use parallel capabilities of the CPU

– Avoid data dependencies

– Loop unrolling

– Inlining

– Elimination of if-statements

Choosing a good algorithm and a fast language, handling files

in an efficient manner, getting to know ones compiler and using

tuned libraries are other very important points.

125

Low level profiling

valgrind and PAPI are two tools for counting cache misses.

http://valgrind.org/, man valgrind, and

/usr/share/doc/valgrind-3.1.1/html/index.html .

From 22nd stanza in “Gŕımnismál” (poetic Edda). In old Ice-

landic and Swedish:

Valgrind heitir, Valgrind den heter,

er stendr velli á som varsnas p̊a slätten,

heilög fyr helgum dyrum; helig framför helig dörrg̊ang;

forn er sú grind, forn̊aldrig är grinden,

en at fáir vitu, och f̊a veta,

hve hon er ı́ lás lokin. hur hon i l̊as är lyckt.

and a reasonable (I believe) English translation:

Valgrind is the lattice called,

in the plain that stands,

holy before the holy gates:

ancient is that lattice,

but few only know

how it is closed with lock.

The main gate of Valhall (Eng. Valhalla), hall of the heroes slain

in battle.

From the manual:

“valgrind is a flexible program for debugging and profiling Linux

executables. It consists of a core, which provides a synthetic

CPU in software, and a series of ”tools”, each of which is a de-

bugging or profiling tool.”

The memcheck tool performs a range of memory-checking func-

tions, including detecting accesses to uninitialized memory, mis-

use of allocated memory (double frees, access after free, etc.)

and

detecting memory leaks.
126

We will use the cachegrind tool:

cachegrind is a cache simulator. It can be used to annotate every

line of your program with the number of instructions executed

and cache misses incurred.

valgrind --tool=toolname program args

Call the following routine

void sub0(double A[1000][1000], double *s)
{

int j, k, n = 1000;

*s = 0;

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

*s += A[k][j];
}

Compile with -g:

% gcc -g main.c sub.c

I have edited the following printout:

% valgrind --tool=cachegrind a.out

==5796== Cachegrind, an I1/D1/L2 cache profiler.
==5796== Copyright (C) 2002-2005, and GNU GPL’d,

by Nicholas Nethercote et al.
==5796== For more details, rerun with: -v
9.990000e+08 6.938910e-01

127

I refs: 46,146,658
I1 misses: 756
L2i misses: 748
I1 miss rate: 0.00%
L2i miss rate: 0.00%

D refs: 21,073,437 (18,053,809 rd+3,019,628 wr)
D1 misses: 255,683 (130,426 rd+ 125,257 wr)
L2d misses: 251,778 (126,525 rd+ 125,253 wr)
D1 miss rate: 1.2% (0.7% + 4.1%)
L2d miss rate: 1.1% (0.7% + 4.1%)

L2 refs: 256,439 (131,182 rd+ 125,257 wr)
L2 misses: 252,526 (127,273 rd+ 125,253 wr)
L2 miss rate: 0.3% (0.1% + 4.1%)

valgrind produced the file, cachegrind.out.5796
(5796 is a pid). To see what source lines are responsible for the

cache misses we use cg_annotate -pid source-file. I have

edited the listing and removed the columns dealing with the

instruction caches (the lines are too long otherwise).

% cg_annotate --5796 sub.c
Dr D1mr D2mr Dw D1mw D2mw
. void sub0(double A[1000][1000], double *s)
0 0 0 2 0 0 {
0 0 0 1 0 0 int j, k, n = 1000;
1 0 0 2 0 0 *s = 0;

3,002 0 0 1 0 0 for (j = 0; j < n; j++)
3,002,000 0 0 1,000 0 0 for (k = 0; k < n; k++)
7,000,000 129,326 125,698 1,000,000 0 0 *s += A[k][j];

3 0 0 0 0 0 }

Dr: data cache reads (ie. memory reads), D1mr: L1 data cache

read misses D2mr: L2 cache data read misses Dw: D cache writes

(ie. memory writes) D1mw: L1 data cache write misses D2mw: L2

cache data write misses

128

To decrease the number of Dw:s we use a local summation variable

(no aliasing) and optimze, -O3.

double local_s = 0;
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
local_s += A[k][j];

*s = local_s;

We can also interchange the loops. Here is the counts for the

summation line:

Dr D1mr D2mr
7,000,000 129,326 125,698 *s += A[k][j]; previous
1,000,000 125,995 125,696 local_s, -O3
1,000,000 125,000 125,000 above + loop interchange

Dw = D1mw = D2mw = 0.

valgrind cannot count TLB-misses, so switch to PAPI, which

can.

PAPI = Performance Application Programming Interface

http://icl.cs.utk.edu/papi/index.html .

PAPI requires root privileges to install, so I have tested the code

at PDC.

PAPI uses hardware performance registers, in the CPU, to count

different kinds of events, such as L1 data cache misses and TLB-

misses. Here is (a shortened example):

% icc main.c sub.c
% papiex -m -e PAPI_L2_TCM -e PAPI_L1_TCM

-e PAPI_TLB_DM -- ./a.out
Processor: Itanium 2
Clockrate: 900.000000
Real usecs: 52713
Real cycles: 47434686
Proc usecs: 52704
Proc cycles: 47433600

129

PAPI_L1_TCM: 814
PAPI_L2_TCM: 53345
PAPI_TLB_DM: 435949
Event descriptions:
Event: PAPI_L1_TCM: L1 cache misses
Event: PAPI_L2_TCM: L2 cache misses
Event: PAPI_TLB_DM: Data TLB misses

The values change a bit between runs, but the order of magni-

tude stays the same. Here are a few tests. I call the function

50 times in a row. time in seconds. cycl = 109 process cycles.

L1, L2 and TLB in kilo-misses. local using a local summation

variable.

icc -O0 icc -O3 icc -O3 icc -O3
local loop interc

time: 4.8 0.9 0.08 0.3
cycl: 4.4 0.8 0.08 0.3 Giga
L1: 47 12 0.6 2.7 kilo
L2: 3883 3852 1697 3051 kilo
TLB: 24339 24559 22 23 kilo

time and cycl are almost the same, since the clockrate is 0.9

GHz. Note that the local summation variable, in column three,

makes a dramatic difference. This is the case for loop inter

change as well (column four) where we do not have a local sum-

mation variable (adding one gives essentially column three).

Here the same runs on a 3.3GHz, Intel Pentium 4 Model 3.

We measure mega-misses (not kilo).

icc -O0 icc -O3 icc -O3 icc -O3
local loop interc

time: 0.8 0.6 0.6 0.15
cycl: 2.8 2.0 2.1 0.5 Giga
L1: 50 48 49 41 Mega
L2: 2.8 3.2 3.3 2.7 Mega
TLB: 52 49 49 0.1 Mega

130

Note the drastic reduction of TLB-misses for the loop inter-

change. A local variable makes the code slightly faster.

131

Here comes PAPI on the blocking example,

s = s + A(i, k) * B(k, j), with ifort -O3.
n = 3000 and ten calls.

On the Itanium:

bs: NO BL 16 32 64
time: 2.6 1.3 1.1 1.9
L1: 49 88 74 62 kilo
L2: 93792 22584 20491 21027 kilo
TLB: 91410 15365 9343 59165 kilo

On the Pentium with n = 5000 and ten calls:

bs: NO BL 16 32 64 128
time: 10.2 3.4 2.5 2.2 3.1
L1: 309 160 211 177 252 Mega
L2: 295 68 47 34 26 Mega
TLB: 1066 102 64 103 262 Mega

Note the drop in TLB-misses.

132

