
Profiling on a higher level

Most unix systems have prof and gprof which can be used to

find the most time consuming routines. gcov (Linux) (tcov Sun)

can find the loops (statements), in a routine, that are executed

most frequently.

man prof, man gprof, man gcov for details.

This is how you use gprof on the student system.

The flags are not standardised, so you have to read the

documentation, as usual.

ifort -O3 -qp prog.f90 sub.f90
icc -O3 -qp prog.c sub.f90

gfortran -O3 -pg prog.f90 sub.f90
g95 -O3 -pg prog.f90 sub.f90
gcc -O3 -pg prog.c sub.c
g++ -O3 -pg prog.cc sub.c

./a.out produces gmon.out
gprof

One can use other options, of course, and have more than two

files. One should link with the profiling options as well since it

may

include profiled libraries.

Profiling disturbs the run; it takes more time.

The Intel compilers have support for “Profile-guided Optimiza-

tion”, i.e. the information from the profiled run can be used by

the

compiler (the second time you compile) to generate more

efficient code.

133

A few words about gcov. This command tells us:

• how often each line of code executes

• what lines of code are actually executed

Compile without optimization. It works only with gcc. So it

should work with g95 and gfortran as well. There may, how-

ever, be problems with different versions of gcc and the gcc-
libraries. See the web-page for the assignment for the latest

details.

To use gcov on the student system (not Intel in this case) one

should be able to type:

g95 -fprofile-arcs -ftest-coverage prog.f90 sub.f90
./a.out

gcov prog.f90 creates prog.f90.gcov
gcov sub.f90 creates sub.f90.gcov

less prog.f90.gcov etc.

and for C

gcc -fprofile-arcs -ftest-coverage prog.c sub.c

similarly for gfortran and g++.

134

Example: Arpack, a package for solving large and sparse eigen-

value problems, Ax = λx and Ax = λBx. I fetched a com-

pressed tar-file, unpacked, read the README-file, edited the

configuration file, and compiled using make. After having cor-

rected a few Makefiles everything worked. I then recompiled

using the compiler options for gprof and tcov (on a Sun; I have

not run this one the AMD-system).

I used the f90-compiler even though Arpack is written in For-

tran77. (There is also Arpack++, a collection of classes that

offers C++ programmers an interface to Arpack.)

First gprof:

% gprof | less (1662 lines, less is a pager)
or
% gprof | more (or m with alias m more)

(I have alias m less)
or
% gprof > file_name (emacs file_name, for example)
etc.

The first part of the output is the flat profile, such a profile can

be produced by prof as well. Part of it, in compressed form,

comes on the next page. The flat profile may give a sufficient

amount of information.

135

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
79.10 8.10 8.10 322 0.03 0.03 dgemv_
8.50 8.97 0.87 60 0.01 0.01 dger_
4.10 9.39 0.42 58 0.01 0.01 dgttrs_
3.22 9.72 0.33 519 0.00 0.00 dcopy_
2.25 9.95 0.23 215 0.00 0.00 dnrm2_
0.49 10.00 0.05 562 0.00 0.00 __open

... lots of lines deleted ...
0.00 10.24 0.00 1 0.00 10.14 main

... lots of lines deleted ...
0.00 10.24 0.00 1 0.00 0.00 strchr

name is the name of the routine (not the source file). The Sun-

compiler converts the routine name to lower case and adds _ .

___open is a system (compiler?) routine.

The columns are:

% time the percentage of the total running time of the program

used by this function. Not the one it calls, look at main.

cumulative seconds a running sum of the number of seconds

accounted for by this function and those listed above it.

self seconds the number of seconds accounted for by this func-

tion alone. This is the major sort for this listing.

calls the number of times this function was invoked, if this

function is profiled, else blank.

self ms/call the average number of milliseconds spent in this

function per call, if this function is profiled, else blank.

total ms/call the average number of milliseconds spent in this

function and its descendents per call, if this function is profiled,

else blank. Note main.

136

dgemv is a BLAS routine, double general matrix vector multiply:

dgemv - perform one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A’*x + beta*y

I have compiled the Fortran code instead of using a faster

performance library so we can look at the source code.

Let us run tcov on dgemv.

Part of the output (compressed):
...

168 -> DO 60, J = 1, N
4782 -> IF(X(JX).NE.ZERO)THEN
4740 -> TEMP = ALPHA*X(JX)

DO 50, I = 1, M
77660160 -> Y(I) = Y(I) + TEMP*A(I, J)

50 CONTINUE
END IF

4782 -> JX = JX + INCX
60 CONTINUE

Top 10 Blocks

Line Count

211 77660160
238 50519992
177 871645

...

Note that this code is very poor. Never use the simple Fortran

BLAS- or Lapack routines supplied with some packages. One

lab deals with this issue.

137

More about gprof
gprof produces a call graph as well. It shows, for each function,

which functions called it, which other functions it called, and

how many times. There is also an estimate of how much time

was spent in the subroutines called by each function. This list

is edited.

index %time self children called name
... rm lines

--
0.01 10.13 1/1 main [1]

[3] 99.0 0.01 10.13 1 MAIN_ [3]
0.00 7.19 59/59 dsaupd_ [5]
0.00 2.45 1/1 dseupd_ [8]
0.42 0.00 58/58 dgttrs_ [14]

... lines deleted

0.83 0.00 33/322 dsapps_ [11]
1.48 0.00 59/322 dlarf_ [9]
5.79 0.00 230/322 dsaitr_ [7]

[4] 79.1 8.10 0.00 322 dgemv_ [4]
0.00 0.00 1120/3179 lsame_ [50]

Each routine has an index (see table at the end) and is presented

between ---lines. 8.10s was spent in dgemv itself, 79.1% of

total (including calls from dgemv). dsapps, dlarf, dsaitr
(parents) called dgemv which in turn called lsame, a child. dsapps
made 33 out of 322 calls and dgemv took 0.83s for the calls.

dgemv called lsame 1120 of 3179 times, which took no

measurable time (self).

children: For dgemv it is the total amount of time spent in

all its children (lsame). For a parent it is the amount of that

time that was propagated, from the function’s children (lsame),
into this parent. For a child it is the amount of time that was

propagated from the child’s children to dgemv.

138

Profiling in Matlab

Matlab has a built-in profiling tool. help profile for more

details. Start Matlab (must use the GUI).

>> profile on
>> run % The assignment
Elapsed time is 1.337707 seconds.
Elapsed time is 13.534952 seconds.
>> profile report % in mozilla or netscape
>> profile off

You can start the profiler using the GUI as well

(click in “Profiler” using “Desktop” under the main meny). The

output comes in a new window and contains what looks like the

flat profile from gprof.

One can see the details in individual routines by clicking on

the routine under Function Name. This produces a gcov-type

of listing. It contains the number of times a line was executed

and the time it took.

139

Using Lapack from Fortran and C

Use Lapack to solve a problem like:

1 −1 −2 −3 −4

1 1 −1 −2 −3

2 1 1 −1 −2

3 2 1 1 −1

4 3 2 1 1

x =

−9

−4

1

6

11

The solution is the vector of ones. We use the Lapack-routine

dgesv from Lapack. Here is a man-page:

NAME
DGESV - compute the solution to a real system of

linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
INTEGER INFO, LDA, LDB, N, NRHS
INTEGER IPIV(*)
DOUBLE PRECISION A(LDA, *), B(LDB, *)

PURPOSE
DGESV computes the solution to a real system of linear
equations A * X = B, where A is an N-by-N matrix and X
and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row
interchanges is used to factor A as A = P * L * U,
where P is a permutation matrix, L is unit lower
triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations
A * X = B.

ARGUMENTS
N (input) INTEGER

The number of linear equations, i.e., the order
of the matrix A. N >= 0.

140

NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.

A (input/output) DOUBLE PRECISION array, dimension
(LDA,N) On entry, the N-by-N coefficient matrix
A. On exit, the factors L and U from the
factorization A = P*L*U; the unit diagonal
elements of L are not stored.

LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,N).

IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation
matrix P; row i of the matrix was interchanged
with row IPIV(i).

B (input/output) DOUBLE PRECISION array, dimension
(LDB,NRHS) On entry, the N-by-NRHS matrix of
right hand side matrix B. On exit, if INFO = 0,
the N-by-NRHS solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B.
LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an

illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The

factorization has been completed, but the
factor U is exactly singular, so the
solution could not be computed.

141

In Fortran90, but using the F77 interface, and F77-type

declarations (to get shorter lines) this may look like:

program main
integer, parameter :: n = 10, lda = n, &

ldb = n, nrhs = 1
integer :: info, row, col, ipiv(n)
double precision :: A(lda, n), b(ldb)

do col = 1, n
do row = 1, n

A(row, col) = row - col
end do
A(col, col) = 1.0d0
b(col) = 1 + (n * (2 * col - n - 1)) / 2

end do

call dgesv (n, nrhs, A, lda, ipiv, b, ldb, info)

if (info == 0) then
print*, "Maximum error = ", maxval(abs(b - 1.0d0))

else
print*, "Error in dgesv: info = ", info

end if

end program main

% Compile and link, somehow, to Lapack
% a.out
Maximum error = 4.218847493575595E-15

Where can we find dgesv? There are several options. Fetching

the Fortran-code from Netlib, using a compiled (optimized)

library etc. One of the assignments, Lapack (Uniprocessor

optimization), deals with these questions.

142

The following optimized libraries contain Lapack and BLAS (and

perhaps routines for fft, sparse linear algebra, etc. as well).

• AMD: ACML (AMD Core Math Library).

• Intel: MKL (Intel Math Kernel library).

• SGI: complib.sgimath (Scientific and Mathematical Library).

• IBM: ESSL (Engineering and Scientific Subroutine Library).

• Sun: Sunperf (Sun Performance Library).

There may be parallel versions.

Now for C and C++

Fairly portable (do not use local extensions of the compiler).

Think about: In C/C++

• matrices are stored by row (not by column as in Fortran)

• matrices are indexed from zero

• call by reference for arrays, call by value for scalars

• the Fortran compiler MAY add an underline to the name

• you may have to link with Fortran libraries

(mixing C and Fortran I/O may cause problems, for example)

• C++ requires an extern-declaration, in C you do not have

to supply it (but do)

• make sure that C and Fortran types are compatible (number

of bytes)

• some systems have C-versions of Lapack

In the example below I have linked with the Fortran-version since

not all systems have C-interfaces. Make sure not to call dgesv
from C on the Sun, if you want the Fortran-version (dgesv gives

you the C-version).

143

#include <math.h>
#include <stdio.h>
#define _N 10

#ifdef __cplusplus
extern "C" void /* For C++ */
#else
extern void /* For C */
#endif

dgesv_(int *, int *, double *, int *, int[],
double[], int *, int *);

/*
* int [] or int *. double [][] is NOT OK but
* double [][10] is, provided we
* call dgesv_ with A and not &A[0][0].
*/

int main()
{

int n = _N, lda = _N, ldb = _N, nrhs = 1,
info, row, col, ipiv[_N];

double A[_N][_N], b[_N], s, max_err;

/* Make sure you have the correct mix of types. */
printf("sizeof(int) = %d\n", sizeof(int));

/* Indexing from zero. */
for (col = 0; col < n; col++) {

for (row = 0; row < n; row++)
A[col][row] = row - col; /* Note TRANSPOSE */

b[col] = 1 + (n * (1 + 2 * col - n)) / 2;
A[col][col] = 1;

}

144

/* Note underline and & for the scalar types.
* &A[0][0] not to get a
* conflict with the prototype.
*/

dgesv_(&n, &nrhs, &A[0][0], &lda, ipiv, b,
&ldb, &info);

if (info) {
printf("Error in dgesv: info = %d\n", info);
return 1;

} else {
max_err = 0.0;
for (row = 0; row < n; row++) {

s = fabs(b[row] - 1.0);
if (s > max_err)

max_err = s;
}
printf("Maximum error = %e\n", max_err);
return 0;

}
}

On a Sun. See the lab for AMD.

% cc -fast extern.c -xlic_lib=sunperf
% a.out
sizeof(int) = 4
Maximum error = 4.218847e-15

% CC -fast extern.c -xlic_lib=sunperf
% a.out
sizeof(int) = 4
Maximum error = 4.218847e-15

% a.out If you call dgesv and not dgesv_
sizeof(int) = 4
** On entry to DGESV , parameter number 1 has an

illegal value. Error in dgesv: info = -1
145

Java

It is possible to mix Java with other languages using JNI, the

Java Native Interface. Wikipedia is a good starting point (look

for jni).

Here are a few words on Java.

% cat test.java
public class test {

public static void main (String[] args) {
int n = 10;
double[] a = new double[n];

for(int j = 0; j < n; j++)
a[j] = j;

System.out.println("a[n-1] = " + a[n-1]);
}

}

% javac test.java Produces test.class
% java test Execute (can optimize, later...)
a[n-1] = 9.0

javac produces the file test.class containing the bytecode.

java is the Java interpreter that reads and executes test.class.
We can study the bytecode (instructions) using javap, the Java

class file disassembler. The interpreter uses a stack and has local

variables; I have called them var_1 etc. To make the bytecode

easier to read I have used our variable names. Half of the listing

(mostly dealing with the print, has been deleted). I have not

printed all the pops from the stack.

See Wikipedia (java bytecode) for more details.

146

% javap -verbose test

...
public static void main(java.lang.String[]);
Code:

0: bipush 10 10 -> stack
2: istore_1 stack -> var_1
3: iload_1 var_1 -> stack
4: newarray double create double a[10], &a[0]->stack
6: astore_2 &a[0] -> var_2
7: iconst_0 0 -> stack
8: istore_3 0 -> var_3 (corresponds to j)

9: iload_3 j -> stack
10: iload_1 n -> stack
11: if_icmpge 25 if (j >= n) goto line 11+25
14: aload_2 &a[0] -> stack
15: iload_3 j -> stack
16: iload_3 j -> stack (used as index)
17: i2d double(j) -> stack
18: dastore a[j] = double(j), "index reg"
19: iinc3, 1 j++
22: goto9 goto line 9:

...
54:return

}

To speed things up the bytecode interpreter (java) often uses

a JIT (Just In Time) technique. A JIT compiler converts all of

the bytecode into native machine code just as a Java program

is run. This results in run-time speed improvements over code

that is interpreted by a Java virtual machine.

java -client test or

java -server test (usually much faster; default).

147

One can profile Java programs. from man java:

-Xprof
Profiles the running program, and sends profiling
data to standard output. This option is provided
as a utility that is useful in program development
and is not intended to be be used in production
systems.

-Xrunhprof[:help][:suboption=value,...]
Enables cpu, heap, or monitor profiling. This
option is typically followed by a list of
comma-separated suboption=value pairs. Run the
command java -Xrunhprof:help to obtain a
list of suboptions and their default values.

148

Interfacing Matlab with C

It is not uncommon that we have a program written in C (or

Fortran) and need to communicate between the program and

Matlab.

The simplest (but not the most efficient) way the fix the commu-

nication is to use ordinary text files. This is portable and cannot

go wrong (in any major way). The drawback is that it may be a

bit slow and that we have to convert between the internal binary

format and text format. We can execute programs by using the

unix-command (or ! or system).

One can do more, however:

• Reading and writing binary MAT-files from C

• Calling Matlab as a function (Matlab engine)

• Calling a C- or Fortran-function from Matlab (using MEX-

files, compiled and dynamically linked C- or Fortran-routines)

In the next few pages comes a short example on how to use

MEX-files.

MEX-files

Let us write a C-program that can be called as a Matlab-function.

The MEX-routine will call a band solver, written in Fortran,

from Lapack for solving an Ax=b-problem. The routine uses a

Cholesky decomposition, where A is a banded, symmetric and

positive definite matrix.

b contains the right hand side(s) and x the solution(s).

I fetched the routines from www.netlib.org.

Matlab has support for solving unsymmetric banded systems,

but has no special routines for the positive definite case.

149

We would call the function by typing:

>> [x, info] = bandsolve(A, b);

where A stores the matrix in compact form. info returns some

status information (A not positive definite, for example).

bandsolve can be an m-file, calling a MEX-file. Another alter-

native is to let bandsolve be the MEX-file. The first alternative

is suitable when we need to prepare the call to the MEX-file or

clean up after the call.

The first alternative may look like this:

function [x, info] = bandsolve(A, b)
A_tmp = A; % copy A
b_tmp = b; % copy b
% Call the MEX-routine
[x, info] = bandsolve_mex(A_tmp, b_tmp);

I have chosen to make copies of A and b. The reason is that

the Lapack-routine replaces A with the Cholesky factorization

and b by the solution. This is not what we expect when we

program in Matlab. If we have really big matrices, and if we do

not need A and b afterwards we can skip the copy (although the

Matlab-documentation says that it “may produce undesired side

effects”).

I will show the code for the second case where we call the MEX-

file directly. Note that we use the file name, bandsolve, when

invoking the function. There should always be a mexFunction in

the file, which is the entry point. This is similar to a C-program,

there is always a main-routine.

It is possible to write MEX-files in Fortran, but is more nat-

ural to use C.

150

First some details about how to store the matrix (for the band

solver). Here an example where we store the lower triangle. The

dimension is six and the number of sub- (and super-) diagonals

is two.

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *

Array elements marked * are not used by the routine.

The Fortran-routine, dpbsv, is called the following way:

call dpbsv(uplo, n, kd, nB, A, lda, B, ldb, info)

where

uplo = ’U’: Upper triangle of A is stored
’L’: Lower triangle of A is stored

We will assume that uplo = ’L’ from now on

n = the dimension of A
kd = number of sub-diagonals
nB = number of right hand sides (in B)
A = packed form of A
lda = leading dimension of A
B = contains the right hand side(s)
ldb = leading dimension of B
info = 0, successful exit

< 0, if info = -i, the i-th argument had
an illegal value

> 0, if info = i, the leading minor of order i
of A is not positive definite, so the
factorization could not be completed,
and the solution has not been computed.

Here comes bandsolve.c (I am using C++-style comments):

151

#include <math.h>
// For Matlab
#include "mex.h"

void dpbsv_(char *, int *, int *, int *, double *,
int *, double *, int *, int *);

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
double *px, *pA, *pb, *pA_tmp;
mxArray *A_tmp;
char uplo = ’L’;
int k, A_rows, A_cols, b_rows, b_cols, kd, info;

// Check for proper number of arguments
if (nrhs != 2) {

mexErrMsgTxt("Two input arguments required.");
} else if (nlhs > 2) {

mexErrMsgTxt("Too many output arguments.");
}

A_rows = mxGetM(prhs[0]);
kd = A_rows - 1; // # of subdiags
A_cols = mxGetN(prhs[0]); // = n

b_rows = mxGetM(prhs[1]);
b_cols = mxGetN(prhs[1]);

if (b_rows != A_cols || b_cols <= 0)
mexErrMsgTxt("Illegal dimension of b.");

152

// Create a matrix for the return argument
// and for A. dpbsv destroys A and b).
// Should check the return status.
plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL);
plhs[1]=mxCreateDoubleMatrix(1, 1, mxREAL);
A_tmp =mxCreateDoubleMatrix(A_rows, A_cols, mxREAL);

px = mxGetPr(plhs[0]); // Solution x
pA = mxGetPr(prhs[0]); // A
pA_tmp = mxGetPr(A_tmp); // temp for A
pb = mxGetPr(prhs[1]); // b

for (k = 0; k < b_rows * b_cols; k++) // b -> x
*(px + k) = *(pb + k);

for (k = 0; k < A_rows * A_cols; k++) // A -> A_tmp
*(pA_tmp + k) = *(pA + k);

dpbsv_(&uplo, &A_cols, &kd, &b_cols, pA_tmp,
&A_rows, px, &b_rows, &info);

*mxGetPr(plhs[1]) = info; // () higher prec. than *
if (info)

mexWarnMsgTxt("Non zero info from dpbsv.");

// Should NOT destroy plhs[0] or plhs[1]
mxDestroyArray(A_tmp);

}

153

Some comments:

nrhs is the number of input arguments to the MEX-routine.

prhs is an array of pointers to input arguments. prhs[0] points

to a so-called, mxArray, a C-struct containing size-information

and pointers to the matrix-elements.

prhs[0] corresponds to the first input variable, A etc.

Since one should not access the member-variables in the struct

directly, there are routines to extract size and elements.

A_rows = mxGetM(prhs[0]); extracts the number of rows and

A_cols = mxGetN(prhs[0]); extracts the number of columns.

The lines

plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL);
plhs[1]=mxCreateDoubleMatrix(1, 1, mxREAL);

allocate storage for the results (of type mxREAL, i.e. ordinary

double).

A_tmp = mxCreateDoubleMatrix(A_rows, A_cols, mxREAL);
allocates storage for a copy of A, since the Lapack-routine de-

stroys the matrix.

px = mxGetPr(plhs[0]); extracts a pointer to the (real-part)

of the matrix elements and stores it in the pointer variable, px.

The first for-loop copies b to x (which will be overwritten by the

solution). The second loop copies the matrix to the temporary

storage, pointed to by A_tmp. This storage is later deallocated

using mxDestroyArray.

Note that neither the input- nor the output-arguments should

be deallocated.

154

It is now time to compile and link. This is done using the

Bourne-shell script mex. We must also make a symbolic link.

Since we would like to change some parameters when compiling,

we will copy and edit an options file, mexopts.sh.

% which matlab
/chalmers/sw/sup/matlab-2007b/bin/matlab
(ls -ld /chalmers/sw/sup/matlab* to see the versions)

Make the link:

% ln -s /usr/lib/libstdc++.so.6.0.3 libstdc++.so

Copy mexopts.sh:

% cp /chalmers/sw/sup/matlab-2007b/bin/mexopts.sh .

and edit the file (after glnx86):

change CC=’gcc’ to CC=’gcc4’

if you are using the latest Matlab-version. In the CFLAGS-line,

change -ansi to -Wall, to use C++-style comments and to get

more warnings.

Add -L. to CLIBS, and add linker-info. to get Goto-blas:

CLIBS="$RPATH $MLIBS -lm -L. -lstdc++
-L/chalmers/sw/unsup/libgoto/lib
-lgoto_opt32-r0.96" NOTE: in one long line

change -O to -O3 in FOPTIMFLAGS

Make sure your LD_LIBRARY_PATH contains the name of the

directory where Goto-blas resides.

I have fetched the lapack-routines from Netlib:

% ls lapack
dpbsv.f dpbtf2.f dpbtrf.f dpbtrs.f dpotf2.f
ieeeck.f ilaenv.f lsame.f xerbla.f

155

Now it is time to compile:

% mex -f ./mexopts.sh bandsolve.c lapack/*.f

which creates bandsolve.mexglx.

Now we can test a simple example in Matlab:

>> A = [2 * ones(1, 5); ones(1, 5)]
A =

2 2 2 2 2
1 1 1 1 1

>> [x, info] = bandsolve(A, [3 4 4 4 3]’)
x =

1.0000
1.0000
1.0000
1.0000
1.0000

info =
0

Here a case when A is not positive definite:

>> A(1, 1) = -2; % Not positive definite
>> [x, info] = bandsolve(A, [3 4 4 4 3]’)
Warning: Non zero info from dpbsv.
x = % Since b is copied to x

3
4
4
4
3

info =
1

156

Note that the first call of bandsolve may take much more time,

since the mex-file has to be loaded. Here a small test when

n=10000, kd=10:

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.147128 seconds.

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.034625 seconds.

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.034950 seconds.

Now to some larger problems:

With n=100000 and kd=10, dpbsv takes 0.25 s and sparse

backslash 0.41 s on a student AMD-computer.

kd=20 gives the times 0.48 s and 0.77 s respectively.

On an Opteron with more memory:

with n=1000000, kd=10 the times are 2.9 s, 4.7 s.

Increasing kd to 50, the times are 15.4 s and 27.6 s.

157

Libraries, ar, ld

Numerical (and other software) is often available in libraries. To

use a subroutine from a library one has to use the linker to

include the routine. Advantages:

• Fewer routines to keep track of.

• There is no need to have source code for the library routines

that a program calls.

• Only the needed modules are loaded.

These pages deal with how one can make libraries and use the

linker, link-editor, ld.

% cat sub1.f90
subroutine sub1

print*, ’in sub1’
end

% cat sub2.f90
subroutine sub2

print*, ’in sub2’
end

% cat sub3.f90
subroutine sub3

print*, ’in sub3’
call sub2

end

% cat main.f90
program main

call sub3
end

156

% ls sub*.f90
sub1.f90 sub2.f90 sub3.f90

% g95 -c sub*.f90
sub1.f90:
sub2.f90:
sub3.f90:

% ls sub*
sub1.f90 sub1.o sub2.f90 sub2.o sub3.f90 sub3.o

% ar -r libsubs.a sub*.o

% ar -t libsubs.a
sub1.o
sub2.o
sub3.o

% g95 main.f90 -L. -lsubs
% a.out
in sub3
in sub2

g95 calls the link-editor, ld, to combine main.o and the object

files in the library to produce the executable a.out-file. Note

that the library routines become part of the executable.

If you write -lname the link-editor looks for a library file with

name libname.a (or libname.so).

On some systems you may have to give the location of the

library using the flag -L (ld does not look everywhere). . means

current working directory, but you could have a longer path, of

course. You can have several -L flags.

157

From man ar:

ar creates an index to the symbols defined in relocatable

object modules in the archive when you specify the modifier s.

...

An archive with such an index speeds up linking to the library,

and allows routines in the library to call each other without

regard to their placement in the archive.

ar seems to do this even with ar -r ... as well.

If your library does not have this index:

% g95 main.f90 -L. -lsubs
./libsubs.a: could not read symbols:
Archive has no index; run ranlib to add one

% ranlib libsubs.a
% g95 main.f90 -L. -lsubs

The order of libraries is important:

% g95 -c sub4.f90 sub5.f90
sub4.f90:
sub5.f90:

% ar -r libsub45.a sub[45].o

% ar -t libsub45.a
sub4.o
sub5.o

158

% cat sub4.f90
subroutine sub4

print*, ’in sub4’
call sub2

end

% cat main.f90
program main ! A NEW main

call sub4
end

% g95 main.f90 -L. -lsubs -lsub45
./libsub45.a(sub4.o)(.text+0x6f): In function ‘sub4_’:
: undefined reference to ‘sub2_’

ld does not go back in the list of libraries.

% g95 main.f90 -L. -lsub45 -lsubs
% a.out
in sub4
in sub2

The compiler uses several system libraries, try g95 -v
One such library is the C math-library, /usr/lib/libm.a.

% ar -t /usr/lib/libm.a | grep expm1 | head -1
s_expm1.o

% man expm1
NAME expm1, expm1f, expm1l - exponential minus 1

#include <math.h>
double expm1(double x);

...

159

% cat main.c
#include <math.h>
#include <stdio.h>

int main()
{

double x = 1.0e-15;

printf("expm1(x) = %e\n", expm1(x));
printf("exp(x) - 1 = %e\n", exp(x) - 1.0);

return 0;
}

% gcc main.c
/tmp/cc40PH1o.o(.text+0x2b): In function ‘main’:
: undefined reference to ‘expm1’
/tmp/cc40PH1o.o(.text+0x53): In function ‘main’:
: undefined reference to ‘exp’

% gcc main.c -lm
% a.out
expm1(x) = 1.000000e-15
exp(x) - 1 = 1.110223e-15

160

Shared libraries

More about libm. The following output has been shortened.

% ls -l /usr/lib/libm.*
/usr/lib/libm.a
/usr/lib/libm.so -> ../../lib/libm.so.6

% ls -l /lib/libm.*
/lib/libm.so.6 -> libm-2.3.4.so

% ls -l /lib/libm-2.3.4.so
-rwxr-xr-x 1 root root 176195 Aug 20 03:21

/lib/libm-2.3.4.so

What is this last file?

% ar -t /lib/libm-2.3.4.so
ar: /lib/libm-2.3.4.so: File format not recognized

Look for symbols (names of functions etc.):
% objdump -t /lib/libm-2.3.4.so | grep expm1
...

00009420 w F .text 0000005c expm1
...

so means shared object. It is a library where routines are loaded

to memory during runtime. This is done by the dynamic link-

er/loader ld.so. The a.out-file is not complete in this case, so

it will be smaller.

One problem with these libraries is that they are needed at

runtime which may be years after the executable was created.

Libraries may be deleted, moved, renamed etc.

One advantage is shared libraries can be shared by every process

that uses the library (provided the library is constructed in that

way).

161

It is easier to handle new versions, applications do not have to

be relinked.

If you link with -lname, the first choice is libname.so and the

second libname.a.

/usr/lib/libm.so -> ../../lib/libm.so.6 is a soft link

(an “alias”).

% ln -s full_path alias

The order is not important when using shared libraries (the

linker has access to all the symbols at the same time).

A shared library is created using ld (not ar) or the compiler,

the ld-flags are passed on to the linker.

% g95 -o libsubs.so -shared -fpic sub*.f90
% g95 main.f90 -L. -lsubs
% ./a.out
in sub4
in sub2

From man gcc (edited):

-shared
Produce a shared object which can then be linked with
other objects to form an executable. Not all systems
support this option. For predictable results, you must
also specify the same set of options that were used
to generate code (-fpic, -fPIC, or model suboptions)
when you specify this option.[1]

-fpic
Generate position-independent code (PIC) suitable for
use in a shared library, if supported for the target
machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic
loader resolves the GOT entries when the program

162

starts (the dynamic loader is not part of GCC; it is
part of the operating system). ...

Since the subroutines in the library are loaded when we run the

program (they are not available in a.out) the dynamic linker

must know where it can find the library.

% cd ..
% Examples/a.out
Examples/a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file: No such
file or directory

% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:Examples
% Examples/a.out
in sub4
in sub2

LD_LIBRARY_PATH contains a colon separated list of paths where

ld.so will look for libraries. You would probably use a full path

and not Examples.

$LD_LIBRARY_PATH is the old value (you do not want to do

setenv LD_LIBRARY_PATH Examples unless LD_LIBRARY_PATH
is empty to begin with.

The backslash is needed in [t]csh (since colon has a special

meaning in the shell). In sh (Bourbe shell) you may do some-

thing like:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:Example
$ export LD_LIBRARY_PATH (or on one line)

Some form of LD_LIBRARY_PATH is usually available (but the

name may be different). The SGI uses the same name for the

path but the linker is called rld. Under HPUX 10.20, for

example, the dynamic loader is called dld.sl and the path

SHLIB_PATH.

163

It is possible to store the location of the library when creating

a.out.

% unsetenv LD_LIBRARY_PATH
% g95 -o libsubs.so -shared -fpic sub*.f90
% g95 main.f90 -L. -lsubs
% a.out
a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file:
No such file or directory

Add the directory in to the runtime library search path (stored

in a.out):

-Wl, means pass -rpath ‘pwd‘ to ld

% g95 -Wl,-rpath ‘pwd‘ main.f90 -L. -lsubs

% cd .. or cd to any directory
% Examples/a.out
in sub4
in sub2

A useful command is ldd (print shared library dependencies):

% ldd a.out
libsubs.so => ./libsubs.so (0x00800000)
libm.so.6 => /lib/tls/libm.so.6 (0x009e2000)
libc.so.6 => /lib/tls/libc.so.6 (0x008b6000)
/lib/ld-linux.so.2 (0x00899000)

Used on our a.out-file it will, in the first case, give:

% ldd Examples/a.out
libsubs.so => not found

In the second case, using rpath, ldd will print the full path.

164

And now to something related:

Large software packages are often spread over many directories.

When distributing software it is customary to pack all the di-

rectories into one file. This can be done with the tar-command

(tape archive). Some examples:

% ls -FR My_package
bin/ doc/ install* lib/ README
configure* include/ INSTALL Makefile src/

My_package/bin: binaries

My_package/doc: documentation
userguide.ps or in pdf, html etc.

My_package/include: header files
params.h sparse.h

My_package/lib: libraries

My_package/src: source
main.f sub.f

Other common directories are man (for manual pages), examples,
util (for utilities).

README usually contains general information, INSTALL contains

details about compiling, installation etc. There may be an install-
script and there is usually a Makefile (probably several).

If the package is using X11 graphics there may be an Imakefile.
The tool xmkmf (using imake) can generate a Makefile using lo-

cal definitions and the Imakefile.

In a Linux environment binary packages (such as the Intel com-

pilers) may come in RPM-format. See http://www.rpm.org/
or type man rpm, for details.

165

Let us now create a tar-file for our package.

% tar cvf My_package.tar My_package
My_package/
My_package/src/
My_package/src/main.f
My_package/src/sub.f
My_package/doc/
...

My_package/Makefile

One would usually compress it:

% gzip My_package.tar (or using bzip2)

This command produces the file My_package.tar.gz .

.tgz is a common suffix as well (tar.bz2 or .tbz2 for bzip2).

To unpack such a file we can do (using gnu tar) (z for gunzip,
or zcat, x for extract, v for verbose and f for file):

% tar zxvf My_package.tar.gz
My_package
My_package/src/
...

Using tar-commands that do not understand z:

% zcat My_package.tar.gz | tar vxf - or
% gunzip -c My_package.tar.gz | tar vxf - or
% gunzip < My_package.tar.gz | tar vxf - or
% gunzip My_package.tar.gz followed by
% tar xvf My_package.tar

I recommend that you first try:

% tar ztf My_package.tar.gz
My_package/ ...

To see that files are placed in a new directory (and that are no

name conflicts).

Under GNOME there is an Archive Manager (File Roller) with

a GUI. Look under Applications/System Tools

166

