
An Overview of Parallel Computing

Flynn’s Taxonomy (1966). Classification of computers according

to number of instruction and data streams.

• SISD: Single Instruction Single Data, the standard

uniprocessor computer (workstation).

• MIMD: Multiple Instruction Multiple Data, collection of

autonomous processors working on their own data; the most

general case.

• SIMD: Single Instruction Multiple Data; several CPUs

performing the same instructions on different data.

The CPUs are synchronized.

Massively parallel computers.

Works well on regular problems. PDE-grids,

image processing.

Often special languages and hardware. Not portable.

Typical example, the Connection Machines from Thinking

Machines (bankruptcy 1994).

The CM-2 had up to 65536 (simple processors).

PDC had a 16384 proc. CM200.

Often called “data parallel”.

Two other important terms:

• fine-grain parallelism - small tasks in terms of code size and

execution time

• coarse-grain parallelism - the opposite

We talk about granularity.

167

MIMD Systems

Asynchronous (the processes work independently).

• Shared-memory systems. The programmer sees one big

memory. The physical memory can be distributed.

• Distributed-memory systems.

Each processor has its own memory. The programmer has to

partition the data.

The terminology is slightly confusing. A shared memory

system usually has distributed memory (distributed shared

memory). Hardware & OS handle the administration of memory.

Shared memory

Bus-based architecture

CPU CPU CPU CPU

Memory Memory

Interconnection network

• Limited bandwidth (the amount of data that can be sent

through a given communications circuit per second).

• Do not scale to a large number of processors. 30-40 CPUs

common.

168

To work well each CPU has a cache (a local memory) for

temporary storage.

CPU CPU CPU CPU

Memory Memory

Interconnection network

C C C C

I have denoted the caches by C. Cache coherence.

Common to use a switch to increase the bandwidth. Crossbar:

CPU

CPU

CPU

CPU

Mem Mem Mem Mem

switch

169

• Any processor can access any memory module. Any other

processor can simultaneously access any other memory

module.

• Expensive.

• Common with a memory hierarchy. Several crossbars may

be connected by a cheaper network. NonUniform Memory

Access (NUMA).

Example of a NUMA architecture: SGI Origin 2000, R10000

CPUS connected by a fast network.

L2 L2

Hub

CPUCPU

Main
Memory

Directory

Node board

Hub

R
outer

The hub manages each processor’s access to memory

(both local and remote) and I/O. Local memory accesses can be

done independently of each other. Accessing remote memory is

more complicated and takes more time.

170

More than two nodes are connected via a router. A router has

six ports. Hypercube configuration. When the system grows,

add communication hardware for scalability.

171

Two important parameters of a network:

Latency is the startup time (the time it takes to send a small

amount of data, e.g. one byte).

Bandwidth is the other important parameter.

How many bytes can we transfer per second (once the

communication has started)?

A simple model for communication:

time to transfer n bytes = latency + n / bandwidth

172

Distributed memory

In a distributed memory system, each processor has its own

private memory. A simple distributed memory system can be

constructed by a number of workstations and a local network.

Some examples:

A linear array and a ring (each circle is a CPU with memory).

Hypercubes of dimensions 0, 1, 2 and 3.

173

A 4-dimensional hypercube. Generally, a hypercube of dimen-

sion d+1 is constructed by connecting corresponding processors

in two hypercubes of dimension d.

If d is the dimension we have 2d CPUs, and the shortest path

between any two nodes is at most d steps (passing d wires). This

is much better than in a linear array or a ring. We can try to

partition data so that the most frequent communication takes

place between neighbours.

A high degree of connectivity is good because it makes it possible

for several CPUs to communicate simultaneously (less competi-

tion for bandwidth). It is more expensive though.

If the available connectivity (for a specific machine) is

sufficient depends on the problem and the data layout.

174

This is a mesh:

We can have meshes of higher dimension.

If we connect the outer nodes in a mesh we get a torus:

175

A Note on Cluster Computing

Many modern parallel computers are built by off-the-shelf

components, using personal computer hardware, Intel CPUs and

Linux. Some years ago the computers were connected by an

Ethernet network but faster (and more expensive) technologies

are available. To run programs in parallel, explicit message pass-

ing is used (MPI, PVM).

The first systems were called Beowulf computers named after

the hero in an Old English poem from around year 1000. They

are also called Linux clusters and one talks about cluster com-

puting.

In the poem, Beowulf, a hero of a tribe, from southern Sweden,

called the Geats, travels to Denmark to help defeat Grendel (a

monster), Grendel’s mother and a dragon.

The first few lines (of about 3000) first in Old English and then

in modern English:

wæs on burgum

Beowulf Scyldinga,

leof leodcyning, longe þrage

folcum gefræge (fæder ellor hwearf,

aldor of earde), o æt him eft onwoc

heah Healfdene; heold þenden lifde,

gamol ond gu reouw, glæde Scyldingas.

Now Beowulf bode in the burg of the Scyldings,

leader beloved, and long he ruled

in fame with all folk, since his father had gone

away from the world, till awoke an heir,

haughty Healfdene, who held through life,

sage and sturdy, the Scyldings glad.

176

A look at the Lenngren cluster at PDC

PDC (Parallell-Dator-Centrum) is the Center for Parallel

Computers, Royal Institute of Technology in Stockholm.

Lenngren (after the Swedish poet Anna Maria Lenngren, 1754-

1817) is a distributed memory computer from Dell consisting of

442 nodes. Each node has two 3.4GHz EMT64-Xeon processors

(EM64T stands for Extended Memory x 64-bit Technology) and

8GB of main memory. The peak performance of the system is

6Tflop/s. The nodes are connected with gigabit ethernet for

login and filesystem traffic. A high performance Infiniband net-

work from Mellanox is used for the MPI traffic.

A word on Infiniband. First a quote from

http://www.infinibandta.org/:
“InfiniBand is a high performance, switched fabric interconnect

standard for servers. ... Founded in 1999, the InfiniBand Trade

Association (IBTA) is comprised of leading enterprise IT vendors

including Agilent, Dell, Hewlett-Packard, IBM, SilverStorm, In-

tel, Mellanox, Network Appliance, Oracle, Sun, Topspin and

Voltaire. The organization completed its first specification in

October 2000.”

Another useful reference is http://en.wikipedia.org.

InfiniBand uses a bidirectional serial bus, 2.5 Gbit/s in each

direction. It also supports double and quad data rates for 5

Gbit/s or 10 Gbit/s respectively. For electrical signal reasons

8-bit

symbols are sent using 10-bits (8B/10B encoding), so the actual

data rate is 4/5ths of the raw rate.

Thus the single, double and quad data rates carry 2, 4 or 8

Gbit/s respectively.

Links can be aggregated in units of 4 or 12, called 4X or 12X.

A quad-rate 12X link therefore carries 120 Gbit/s raw, or 96

Gbit/s of user data.
177

InfiniBand uses a switched fabric topology so several devices can

share the network at the same time (as opposed to a bus topol-

ogy). Data is transmitted in packets of up to 4 kB. All trans-

missions begin or end with a channel adapter. Each processor

contains a host channel adapter (HCA) and each peripheral has

a target channel adapter (TCA). It may look something like this:

CPU

MEM HCA

CPU CPU

MEM HCA

CPU

CPU

MEM HCA

CPU

TCA TCA

TCA

Switch

Switch

Switch

Switches forward packets between two of their ports based on an

established routing table and the addressing information stored

on the packets. A subnet, like the one above, can be connected

to another subnet by a router.

Each channel adapter may have one or more ports. A channel

adapter with more than one port, may be connected to multiple

switch ports. This allows for multiple paths between a source

and a destination, resulting in performance and reliability ben-

efits.

178

A simple example

Consider the following algorithm (the power method). A is a

square matrix of order n (n rows and columns) and x(k), k =

1, 2, 3, . . . a sequence of column vectors, each with n elements.

x(1) = random vector

for k = 1, 2, 3, . . .

x(k+1) = Ax(k)

end

If A has a dominant eigenvalue λ (|λ| is strictly greater than

all the other eigenvalues) with eigenvector x, then x(k) will be

a good approximation of an eigenvector for sufficiently large k

(provided x(1) has a nonzero component of x).

An Example:

>> A=[-10 3 6;0 5 2;0 0 1] % it is not necessary
A = % that A is triangular

-10 3 6
0 5 2
0 0 1

>> x = randn(3, 1);
>> for k = 1:8, x(:, k+1) = A * x(:, k); end
>> x(:,1:4)
ans =

-6.8078e-01 5.0786e+00 -5.0010e+01 5.1340e+02
4.7055e-01 1.3058e+00 5.4821e+00 2.6364e+01

-5.2347e-01 -5.2347e-01 -5.2347e-01 -5.2347e-01

>> x(:,5:8)
ans =

-5.0581e+03 5.0970e+04 -5.0774e+05 5.0872e+06
1.3077e+02 6.5281e+02 3.2630e+03 1.6314e+04

-5.2347e-01 -5.2347e-01 -5.2347e-01 -5.2347e-01

Note that x(k) does not “converge” in the ordinary sense.

We may have problems with over/underflow.
179

Revised algorithm, where we scale x(k) and keep only one copy.

x = random vector

x = x (1/ max(|x|)) Divide by the largest element

for k = 1, 2, 3, . . .

t = Ax

x = t (1/ max(|t|))
end

λ can be computed in several ways, e.g. xTAx/xTx (and we

already have t = Ax). In practice we need to terminate the

iteration as well. Let us skip those details.

How can we make this algorithm parallel on a distributed

memory MIMD-machine (given A)? One obvious way is to com-

pute t = Ax in parallel. In order to do so we must know the

topology of the network and how to partition the data.

+2+1=2

1

3

+ +

1

2

3

1

=2

3

all

tx

th
e p

ro
d

u
ct

th
e p

ro
d

u
ct

32 31 =

180

Suppose that we have a ring with #p processors and that #p

divides n. We partition A in blocks of β = n/#p (β for block

size) rows (or columns) each, so that processor 1 would store

rows 1 through β, processor 2 rows 1+β through 2β etc. Let us

denote these blocks of rows by A1, A2, . . . , A#p. If we partition

t in the same way t1 contains the first β elements, t2 the next β

etc, t can be computed as:

t1

t2
...

t#p

= Ax =

A1x

A2x
...

A#px

← on proc. 1

← on proc. 2
...

← on proc. #p

In order to perform the next iteration processor one needs t2, . . . , t#p,

processor two needs t1, t3, . . . , t#p etc.

The processors must communicate, in other words.

Another problem is how each processor should get its part, Aj,

of the matrix A. This could be solved in different ways:

• one CPU gets the task to read A and distributes the parts

to the other processors

• perhaps each CPU can construct its Aj by computation

• perhaps each CPU can read its part from a file (or from files)

Let us assume that the Aj have been distributed and look at the

matrix-vector multiply.

181

Processor number p would do the following (I have changed the

logic slightly):

p = which processor am i() (1, 2, . . . , #p)

for k = 0, 1, 2, . . . do

if (k == 0) then not so nice (but short)

xp = random vector of length β

else

tp = Apx

µ = 1/ max(µ1, µ2, . . . , µ#p)

xp = µ tp

end if

µp = max(|xp|)

seg = p

for j = 1 to #p− 1 do

send xseg, µseg to the next processor

compute seg

receive xseg, µseg from the previous processor

end do

end do

An alternative to computing seg is to send a message containing

seg; “send seg, xseg, µseg”. The program looks very much like a

SIMD-program.

182

Here is an image showing (part of) the algorithm, when #p = 4.

White boxes show not yet received parts of the vector. The brick

pattern shows the latest part of the vector and the boxes with

diagonal lines show old pieces.

���������������
������������������������������
���������������

���������������
������������������������������
���������������	�	�		�	�		�	�	

�
�

�
�

�
�

���������������
���������������

������
���������������

�����
�����
�����
�����
���������������
���������������

���������������
���������������

�����
�����
�����
�����

�����
�����
�����
�����

���������������
��������������� ���������������

���������������

���������������
���������������
�����
�����
 � �
 � �

!�!�!
!�!�!
"�"�"
"�"�"

#�#�#
#�#�#
$�$�$
$�$�$

%�%�%
%�%�%
&�&�&
&�&�&

'�'�''�'�''�'�'
(�(�((�(�((�(�(

Step 2Step 1

Step 3

3 4

2 1

)�)�))�)�))�)�)
��**�*�**�*�*+�+�++�+�++�+�+
,�,�,,�,�,,�,�,

-�-�--�-�--�-�-
.�.�..�.�..�.�.

/�/�/
/�/�/
0�0�0
0�0�0

1�1�1
1�1�1
2�2�2
2�2�2

3�3�3
3�3�3
4�4�4
4�4�45�5�5

5�5�5
6�6�6
6�6�6
7�7�77�7�77�7�7
8�8�88�8�88�8�89�9�99�9�99�9�9

:�:�::�:�::�:�:

;�;�;
;�;�;
;�;�;

<�<�<
<�<�<
<�<�<

=�=�==�=�==�=�=
>�>�>>�>�>>�>�>?�?�??�?�??�?�?
@�@�@@�@�@@�@�@

A�A�A
A�A�A
B�B�B
B�B�B

C�C�C
C�C�C
D�D�D
D�D�D

E�E�E
E�E�E
F�F�F
F�F�F

G�G�G
G�G�G
H�H�H
H�H�H

I�I�II�I�II�I�I
J�J�JJ�J�JJ�J�JK�K�KK�K�KK�K�K

L�L�LL�L�LL�L�L

M�M�MM�M�MM�M�M
N�N�NN�N�NN�N�N O�O�OO�O�OO�O�O

P�P�PP�P�PP�P�P

183

Some important terminology:

Let wct (wallclock time) be the time we have to wait for the

run to finish (i.e. not the total cputime). wct is a function of

#p, wct(#p) (although it may not be so realistic to change #p

in a ring.

This is a simple model of this function (for one iteration):

wct(#p) =
2n2

#p
Tflop + (#p− 1)

[

Tlat +
n

#p
Tbandw

]

where Tflop is the time for one flop, Tlat is the latency for the

communication and Tbandw is time it takes to transfer one double

precision number.

It is often the case that (roughly):

wct(#p) = seq. part of comp. +
parallel part of comp.

#p
+

#p (communication)

wct has a minimum with respect to #p (it is not optimal with

#p = ∞). The computational time decreases with #p but the

communication increases.

The speedup is defined as the ratio:

speedup(#p) =
wct(1)

wct(#p)

What we hope for is linear speedup, i.e. speedup(#p) = #p.

184

If you have a problem to solve (rather than an algorithm to

study) a more interesting definition may be:

speedup(#p) =
time for best implementation on one processor

wct(#p)

It is possible to have super linear speedup, speedup(#p) > #p;

this is usually due to better cache locality or decreased paging.

If our algorithm contains a section that is sequential (cannot

be parallelized), it will limit the speedup. This is known as

Amdahl’s law. Let us denote the sequential part with with s,

0 ≤ s ≤ 1 (part wrt time), so the part that can be parallelized

is 1− s. Hence,

speedup(#p) =
1

s + (1− s)/#p
≤ 1

s

regardless of the number of processors.

If you have to pay for the computer time (or if you share

resources) the efficiency is interesting. The efficiency measures

the fraction of time that a typical processor is usefully employed.

efficiency(#p) =
speedup(#p)

#p

We would like to have efficiency(#p) = 1.

The proportion of unused time per processor is:

wct(#p)− wct(1)
#p

wct(#p)
= 1− wct(1)

wct(#p)#p
= 1− efficiency(#p)

185

Instead of studying how the speedup depends on #p we can

fix #p and see what happens when we change the size of the

problem n. Does the speedup scale well with n? In our case:

speedup(n) =
2n2Tflop

2n2Tflop

#p
+ (#p− 1)

[

Tlat + nTbandw
#p

]

=
#p

1 + (#p− 1)
[

#pTlat
2n2Tflop

+ Tbandw
2nTflop

]

So

lim
n→∞

speedup(n) = #p

This is very nice! The computation is O(n2) and the

communication is O(n). This is not always the case.

Exercise: partition A by columns instead.

What happens if the processors differ in speed and amount of

memory? We have a load balancing problem.

Static load balancing: find a partitioning β1, β2, . . . , β#p such

that processor p stores βp rows and so that wct is minimized

over this partitioning. We must make sure that a block fits in

the available memory on node p. This leads to the optimization

problem:

min
β1,β2,...,β#p

wct(β1, β2, . . . , β#p),

subject to the equality constraint
∑#p

p=1 βp = n and the

p inequality constraints 8nβp ≤ Mp, if Mp is the amount of

memory (bytes) available on node p.

186

If

• the amount of work varies with time

• we share the processors with other users

• processors crash (#p changes)

we may have to rebalance; dynamic load balancing.

Even if the processors are identical (and with equal amount of

memory) we may have to compute a more complicated parti-

tioning. Suppose that A is upper triangular (zeros below the

diagonal). (We would not use an iterative method to compute

an eigenvector in this case.) The triangular matrix is easy to

partition, it is worse if A is a general sparse matrix (many ele-

ments are zero).

Some matrices require a change of algorithm as well. Suppose

that A is symmetric, A = AT and that we store A in a compact

way (only one triangle).

Say, A = UT + D + U (UpperT+ Diagonal + Upper).

If we store U and D by rows it is easy to compute Ux + Dx

using our row-oriented algorithm. To compute U Tx requires a

column-oriented approach (if U is partitioned by rows, U T will

be partitioned by columns, and a column-oriented algorithm

seems reasonable). So the program is a combination of a row

and a column algorithm.

187

A few words about communication

In our program we had the loop:

for j = 1 to #p− 1

send xseg, µseg to the next processor

compute seg

receive xseg, µseg from the previous processor

end

Suppose #p = 2 and that we can transfer data from memory

(from x1 on processor one to x1 on processor two, from x2 on

processor two to x2 on processor one).

x

CPU 1 CPU 2

x

NODE 1 NODE 2

Memory Memory

There are several problems with this type of communication,

e.g.:

• if CPU 1 has been delayed it may be using x2 when CPU 2

is writing in it

• several CPUs may try to write to the same memory location

(in a more general setting)

• CPU 1 may try to use data before CPU 2 has written it

188

So, a few things we would like to able to do:

• wait for a message until we are ready to take care of it

• do other work while waiting (to check now and then)

• find out which processor has sent the message

• have identities of messages (one CPU could send several; how

do we distinguish between them)

• see how large the message is before unpacking it

• send to a group of CPUs (broadcast)

An obvious way to solve the first problem is to use synchronisa-

tion. Suppose CPU 1 is delayed. CPU 2 will send a “ready to

send”-message to CPU 1 but it will not start sending data until

CPU 1 has sent a “ready to receive”-message.

This can cause problems. Suppose we have a program where

both CPUs make a send and then a receive. If the two CPUs

make sends to each other the CPUs will “hang”. Each CPU is

waiting for the other CPU to give a “ready to receive”-message.

We have what is known as a deadlock.

One way to avoid this situation is to use a buffer. When CPU

1 calls the send routine the system copies the array to a tem-

porary location, a buffer. CPU 1 can continue executing and

CPU 2 can read from the buffer (using the receive call) when it

is ready. The drawback is that we need extra memory and an

extra copy

operation.

Suppose now that CPU 1 lies ahead and calls receive before

CPU 2 has sent. We could then use a blocking receive that

waits until the messages is available (this could involve synchro-

nised or buffered communication). An alternative is to use a

nonblocking receive. So the receive asks: is there a message? If

not, the CPU could continue working and ask again later.

189

Process control under unix
Processes are created using the fork-system call. System call:

the mechanism used by an application program to request ser-

vice from the operating system (from the unix-kernel). man -s2
intro, man -s2 syscalls . printf (for example) is not a sys-

tem call but a library function. man -s3 intro for details.

#include <sys/wait.h> /* for wait */
#include <sys/types.h> /* for wait and fork */
#include <unistd.h> /* for fork and getppid */
#include <stdio.h>

int main()
{

int var, exit_stat;
pid_t pid;

var = 10;
printf("Before fork\n");

if ((pid = fork()) < 0) { /* note () */
printf("fork error\n");
return 1;

} else if (pid == 0) { /* I am a child */
var++;
printf("child\n");
sleep(60); /* do some work */

} else { /* I am a parent */
printf("parent\n");
wait(&exit_stat); /* wait for (one) */

} /* child to exit; not */
/* necessary to wait */

printf("ppid = %6ld, pid = %6ld, var = %d\n",
getppid(), pid, var); /* get parent proc id */

return 0;
}

190

% a.out
Before fork
child
parent
ppid = 6843, pid = 0, var = 11 child
ppid = 27174, pid = 6844, var = 10 parent

fork creates the child process (from the parent process) by mak-

ing a copy of the parent (so the child gets copies of the heap and

stack for example). The child and parent continue executing

with the instruction that follows the call to fork. So fork is

called from the parent and returns both to the parent and the

child.

Every process is identified by a number, the process id. or pid.

We can list the pids (and some other properties) of all the pro-

cesses running in the computer (this list has been shortened).

The ps-commando takes a huge number of options.

% ps -fel | grep thomas
UID PID PPID CMD
thomas 5442 27174 xterm
thomas 5446 5442 -csh

thomas 6843 27174 a.out <-- parent
thomas 6844 6843 a.out <-- child

thomas 6851 5446 ps -fel
thomas 6852 5446 grep thomas

thomas 27174 27171 -tcsh
thomas 27171 27152 sshd: thomas@pts/62
root 27152 3203 sshd: thomas [priv]
root 3203 1 /usr/sbin/sshd
root 1 0 init [5]
...

191

A process that hangs (not uncommon in parallel programming)

can be terminated using the kill-command which sends a signal

to a process. There are different signals and they can be used

for communication between processes. Signal number 9, sigkill,

cannot be caught.

% kill -l
HUP INT QUIT ILL TRAP ABRT BUS FPE KILL USR1 SEGV USR2
...

% ps U thomas
PID TTY STAT TIME COMMAND

8604 pts/62 S+ 0:00 a.out <-- kill this one
...
% kill -9 8604 (or kill -KILL 8604)

A process can choose to catch the signal using a a signal handler

routine. It can also ignore (some) signals:

#include <signal.h>
#include <stdio.h>
int main()
{

/* SIGINT is defined /usr/include/bits/signum.h */
if (sigignore(SIGINT) == -1)

printf("*** Error when calling sigignore.\n");

while(1) /* loop forever */
;

return 0;
}

% gcc signal.c
% a.out
^C^C^C^C^C^C^C^C^C^\Quit

% /bin/stty -a
intr = ^C; quit = ^\; erase = ^H; etc....

192

To start a child process that differs from the parent we use the

exec system call (there are several forms). exec replaces the

child (the process which it is called from) with a new program.

#include <sys/wait.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{

int exit_stat;
pid_t pid;

if ((pid = fork()) < 0) {
printf("fork error\n");
return 1;

} else if (pid == 0) { /* I am a child */
/* replace this process by another */
/* execlp(file, name_shown_by_ps,

arg1, ..., argn, NULL) */

/* (char *) 0 is a null pointer. (char *)
is a type cast. See the C FAQ for details. */

/* new is a compiled C-program */
if(execlp("new", "new_name", (char *) 0) < 0) {

printf("*** execlp error\n");
return 1;

}

} else /* I am a parent. Wait */
wait(&exit_stat); /* or do something else */

return 0;
}

Very common usage in command& .

193

Interprocess communication

Most parallel computing tasks require communication between

processes. This can be accomplished in several different ways on

a unix system. The pipe, |, is a standard example:

% ps aux | grep a.out

The ps and grep processes are running in parallel and are com-

municating using a pipe. Data flows in one direction and the

processes must have a common ancestor. The pipe handles syn-

chronisation of data (grep must wait for data from ps and ps
may not deliver data faster than grep can handle, for example).

The communication is usually local to one system, but using

rsh (remote shell) or ssh (secure shell) it may be possible to

communicate between different computers:

% ps aux | ssh other_computer "grep a.out > /tmp/junk"

/tmp/junk is created on other_computer. (There are other

remote commands such as rcp/scp, remote copy).

FIFOs (or named pipes) can be used to communicate between

two unrelated processes. A general way to communicate between

computers over a network is to use so called sockets.

194

When a (parallel) computer has shared memory it is possible

to communicate via the memory. Two (or more processes) can

share a portion of the memory. Here comes a master (parent)

program.

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main()
{

int exit_stat, shmid, info, k;
pid_t pid;
struct shmid_ds buf;
double *shmaddr;
char s_shmid[10];
/*
* Create new shared memory segment and then
* attach it to the address space of the process.
*/

shmid=shmget(IPC_PRIVATE, (size_t) 512, SHM_R|SHM_W);
shmaddr = shmat(shmid, (void *) 0, 0);

/* Store some values */
for (k = 0; k < 512 / 8; k++)

*(shmaddr + k) = k;

/* Create new proces */
if ((pid = fork()) < 0) {

printf("fork error\n");
return 1;

} else if (pid == 0) { /* I am a child */

195

/* convert int to string */
sprintf(s_shmid, "%d", shmid);

if (execlp("./child", "child_name", s_shmid,
(char *) 0) < 0) {

printf("*** In main: execlp error.\n");
return 1;

}
} else {

wait(&exit_stat);
/* Remove the segment. */
info = shmctl(shmid, IPC_RMID, &buf);

}
return 0;

}

Here comes a slave (child) program.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(int argc, char *argv[])
{ int k, shmid;

double *shmaddr;

printf("In child\n"); printf("argc = %d\n", argc);
printf("argv[0] = %s\nargv[1] = %s\n",argv[0],argv[1]);

shmid = atoi(argv[1]); /* convert to int */
printf("shmid = %d\n", shmid);
shmaddr = shmat(shmid, (void *) 0, SHM_RDONLY);

for (k = 0; k < 5; k++) /* "Fetch" and print values.*/
printf("*(shmaddr+%d) = %f\n", k, *(shmaddr + k));

return 0;
}

196

% gcc -o master master.c
% gcc -o child child.c
% master
In child
argc = 2
argv[0] = child_name
argv[1] = 22183946
shmid = 22183946
*(shmaddr+0) = 0.000000
*(shmaddr+1) = 1.000000
*(shmaddr+2) = 2.000000
*(shmaddr+3) = 3.000000
*(shmaddr+4) = 4.000000

In general some kind of synchronisation must be used when ac-

cessing the memory. There are such tools (e.g. semaphores) but

since we will look at a similar construction in the next section

we drop the subject for now.

Using the command ipcs we can get a list of segments. It may

look like:

% ipcs
------ Shared Memory Segments --------
key shmid owner perms bytes nattch
status
0x00000000 22249482 thomas 600 512 0

... more stuff

In case of problems we can remove segments, e.g.

ipcrm -m 22249482.

197

POSIX Threads (pthreads)

(POSIX: Portable Operating System Interface, A set of IEEE

standards designed to provide application portability between

Unix variants. IEEE: Institute of Electrical and Electronics En-

gineers, Inc. The world’s largest technical professional society,

based in the USA.)

Unix process creation (and context switching) is rather slow and

different processes do not share much (if any) information (i.e.

they may take up a lot of space).

A thread is like a “small” process. It originates from a pro-

cess and is a part of that process. All the threads share global

variables, files, code, PID etc. but they have their individual

stacks and program counters.

When the process has started, one thread, the master thread, is

running. Using routines from the pthreads library we can start

more threads.

If we we have a shared memory parallel computer each thread

may run on its own processor, but threads are a convenient pro-

gramming tool on a uniprocessor as well.

In the example below a dot product,
∑n

i=1 aibi, will be computed

in parallel. Each thread will compute part of the sum. We could,

however, have heterogeneous tasks (the threads do not have do

do the same thing).

We compile by:

gcc prog.c -lpthread

198

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/* global shared variables */
#define VEC_LEN 400
#define N_THREADS 4
double a[VEC_LEN], b[VEC_LEN], sum;
pthread_mutex_t mutexsum;

void *dotprod(void *arg) /* the slave */
{

int i, start, end, i_am, len;
double mysum;

i_am = (int) arg;

/* assume that N_THREADS divides VEC_LEN */
len = VEC_LEN / N_THREADS;
start = i_am * len;
end = start + len;

mysum = 0.0; /* local sum */
for (i = start; i < end; i++)

mysum += a[i] * b[i];

/* update global sum with local sum */
pthread_mutex_lock(&mutexsum);

sum += mysum; /* critical section */
pthread_mutex_unlock(&mutexsum);

/* terminate the thread, NULL is the null-pointer */
pthread_exit(NULL); /* not really needed */
return NULL; /* to silence lint */

}

199

int main()
{

pthread_t thread_id[N_THREADS];
int i, ret;

for (i = 0; i < VEC_LEN; i++) {
a[i] = 1.0; /* initialize */
b[i] = a[i];

}
sum = 0.0; /* global sum, NOTE declared global */

/* Initialize the mutex (mutual exclusion lock). */
pthread_mutex_init(&mutexsum, NULL);

/* Create threads to perform the dotproduct
NUll implies default properties. */

for(i = 0; i < N_THREADS; i++)
if(ret = pthread_create(&thread_id[i], NULL,

dotprod, (void *) i)){
printf ("Error in thread create\n");
exit(1);

}

/* Wait for the other threads. If the main thread
exits all the slave threads will exit as well. */

for(i = 0; i < N_THREADS; i++)
if(ret = pthread_join(thread_id[i], NULL)) {

printf ("Error in thread join %d \n", ret);
exit(1);

}

printf ("sum = %f\n", sum);
pthread_mutex_destroy(&mutexsum);
return 0;

}
200

This is what the run looks like. Since the threads have the same

PID we must give a special option to the ps-command to see

them.

% a.out
sum = 400.000000

...

% ps -felL | grep thomas | grep a.out (edited)
UID PID PPID LWP NLWP CMD
thomas 15483 27174 15483 5 a.out <-- master
thomas 15483 27174 15484 5 a.out
thomas 15483 27174 15485 5 a.out
thomas 15483 27174 15486 5 a.out
thomas 15483 27174 15487 5 a.out

LWP id. of light weight process (thread).

NLWP number of lwps in the process.

Note that the PID is the same.

201

Race conditions, deadlock etc.

When writing parallel programs it is important not to make

any assumptions about the order of execution of threads or pro-

cesses (e.g that a certain thread is the first to initialize a global

variable). If one makes such assumptions the program may fail

occasionally (if another thread would come first). When threads

compete for resources (e.g. shared memory) in this way we have

a race condition. It could even happen that threads deadlock

(deadlock is a situation where two or more processes are unable

to proceed because each is waiting for one of the others to do

something).

From the web: I’ve noticed that under LinuxThreads (a kernel-

level POSIX threads package for Linux) it’s possible for thread

B to be starved in a bit of code like the fragment at the end

of this message (not included). I interpreted this as a bug in

the mutex code, fixed it, and sent a patch to the author. He

replied by saying that the behavior I observed was correct, it

is perfectly OK for a thread to be starved by another thread

of equal priority, and that POSIX makes no guarantees about

mutex lock ordering. ... I wonder (1) if the behavior I observed

is within the standard and (2) if it is, what the f%ˆ& were the

POSIX people thinking? ...

Sorry, I’m just a bit aggravated by this.

Any info appreciated,

Bill Gribble

According to one answer it is within the standard.

When I taught the course 2002, Solaris pthreads behaved this

way, but this has changed in Solaris 9. Under Linux (2005) there

are no problems, so I will not say more about this subject.

202

Message Passing Software

Several packages available. The two most common are PVM

(Parallel Virtual Machine) and MPI (Message Passing

Interface).

The basic idea in these two packages is to start several processes

and let these processes communicate through explicit message

passing. This is done using a subroutine library (Fortran & C).

The subroutine library usually uses unix sockets (on a low level).

It is possible to run the packages on a shared memory machine in

which case the packages can communicate via the shared mem-

ory. This makes it possible to run the code on many different

systems.

call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, n, 1, 1, info)
call pvmfpack(REAL8, x, n, 1, info)
call pvmfsend(tid, msgtag, info)

bufid = pvm_initsend(PvmDataDefault);
info = pvm_pkint(&n, 1, 1);
info = pvm_pkdouble(x, n, 1);
info = pvm_send(tid, msgtag);

call MPI_Send(x, n, MPI_DOUBLE_PRECISION, dest, &
tag, MPI_COMM_WORLD, err)

err = MPI_Send(x, n, MPI_DOUBLE, dest,
tag, MPI_COMM_WORLD);

In MPI one has to work a bit more to send a message consisting

of several variables. In PVM it is possible to start processes

dynamically, and to run several different a.out-files. In MPI

the processes must be started using a special unix-script and

only one a.out is allowed (at least in MPI version 1).

203

PVM is available in one distribution, pvm3.4.4, (see the home

page). (Al Geist, Adam Beguelin, Jack Dongarra, Weicheng

Jiang, Robert Manchek, Vaidy Sunderam.) Free book available

on the net (PostScript & HTML).

Some of the systems PVM runs on (this is an old list; systems

have been added):

AFX8, Alliant FX/8, ALPHA, DEC Alpha/OSF-1, ALPHAMP, DEC Alpha/OSF-1 /

using shared memory, APOLLO, HP 300 running Domain/OS, ATT, AT&T/NCR 3600

running SysVR4, BAL, Sequent Balance, BFLY, BBN Butterfly TC2000, BSD386,

80[345]86 running BSDI or BSD386, CM2, Thinking Machines CM-2 Sun front-end,

CM5, Thinking Machines CM-5, CNVX, Convex using IEEE floating-point, CNVXN,

Convex using native f.p., CRAY, Cray, CRAY2, Cray-2, CRAYSMP, Cray S-MP,

CSPP, Convex Exemplar, DGAV, Data General Aviion, E88K, Encore 88000, FREEBSD,

80[345]86 running FreeBSD, HP300, HP 9000 68000 cpu, HPPA, HP 9000 PA-Risc,

HPPAMP, HP 9000 PA-Risc / shared memory transport, KSR1, Kendall Square,

I860, Intel RX Hypercube, IPSC2, Intel IPSC/2, LINUX, 80[345]86 running Linux,

M88K, Motorola M88100 running Real/IX, MASPAR, Maspar, MIPS, Mips, NETB-

SDAMIGA, Amiga running NetBSD, NETBSDHP300, HP 300 running NetBSD,

NETBSDI386, 80[345]86 running NetBSD, NETBSDMAC68K, Macintosh running

NetBSD, NETBSDPMAX, DEC Pmax running NetBSD, NETBSDSPARC, Sparc run-

ning NetBSD, NETBSDSUN3, SUN 3 running NetBSD, NEXT, NeXT, PGON, Intel

Paragon, PMAX, DEC/Mips arch (3100, 5000, etc.), RS6K, IBM/RS6000, RS6KMP,

IBM SMP / shared memory transport, RT, IBM/RT, SCO, 80[345]86 running SCO

Unix, SGI, Silicon Graphics IRIS, SGI5, Silicon Graphics IRIS running OS ≥ 5.0,

SGI64, Silicon Graphics IRIS running OS ≥ 6.0, SGIMP, Silicon Graphics IRIS / OS

5.x / using shared memory, SGIMP64, Silicon Graphics IRIS / OS 6.x / using shared

memory, SP2MPI, IBM SP-2 / using MPI, SUN3, Sun 3, SUN4, Sun 4, 4c, sparc,

etc., SUN4SOL2, Sun 4 running Solaris 2.x, SUNMP, Sun 4 / using shared memory

/ Solaris 2.x, SX3, NEC SX-3, SYMM, Sequent Symmetry, TITN, Stardent Titan,

U370, IBM 3090 running AIX, UTS2, Amdahl running UTS, UVAX, DEC/Microvax,

UXPM, Fujitsu running UXP/M, VCM2, Thinking Machines CM-2 Vax front-end,

X86SOL2, 80[345]86 running Solaris 2.x.

204

PVM can be run in several different ways. Here we add machines

to the virtual machine by using the PVM-console:

pvm> conf
1 host, 1 data format

HOST DTID ARCH SPEED
ries.math.chalmers.se 40000 SUN4SOL2 1000

pvm> add fibonacci
1 successful

HOST DTID
fibonacci 80000

pvm> add fourier
1 successful

HOST DTID
fourier c0000

pvm> add pom.unicc
1 successful

HOST DTID
pom.unicc 100000

pvm> conf
4 hosts, 1 data format

HOST DTID ARCH SPEED
ries.math.chalmers.se 40000 SUN4SOL2 1000

fibonacci 80000 SUN4SOL2 1000
fourier c0000 SUN4SOL2 1000

pom.unicc 100000 SUNMP 1000
pvm> help
help - Print helpful information about a command
Syntax: help [command]
Commands are:

add - Add hosts to virtual machine
alias - Define/list command aliases
conf - List virtual machine configuration
delete - Delete hosts from virtual machine
etc.

pvm> halt

205

It is possible to add machines that are far away and of different

architectures. The add command start a pvmd on each machine

(pvmd pvm-daemon). The pvmds relay messages between hosts.

The PVM-versions that are supplied by the vendors are based

on the public domain (pd) version.

Common to write master/slave-programs (two separate main-

programs). Here is the beginning of a master:

program master
#include "fpvm3.h"

...
call pvmfmytid (mytid) ! Enroll program in pvm
print*, ’How many slaves’
read*, nslaves

name_of_slave = ’slave’ ! pvmd looks in a spec. dir.
arch = ’*’ ! any will do
call pvmfspawn (name_of_slave, PVMDEFAULT, arch,

+ nslaves, tids, numt)

The beginning of the slave may look like:

program slave
#include "fpvm3.h"

...
call pvmfmytid (mytid) ! Enroll program in pvm
call pvmfparent (master) ! Get the master’s task id.

* Receive data from master.
call pvmfrecv (master, MATCH_ANYTHING, info)
call pvmfunpack (INTEGER4, command, 1, 1, info)

There are several pd-versions of MPI. The Sun-implementation

is based on mpich (Argonne National Lab.).

Here comes a simple MPI-program.

206

#include <stdio.h>
#include "mpi.h" /* Important */

int main(int argc, char *argv[])
{

int message, length, source, dest, tag;
int n_procs; /* number of processes */
int my_rank; /* 0, ..., n_procs-1 */
MPI_Status status;

MPI_Init(&argc, &argv); /* Start up MPI */

/* Find out the number of processes and my rank */
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

tag = 1;
length = 1; /* Length of message */

if (my_rank == 0) { /* I’m the master process */
printf("Number of processes = %d\n", n_procs);
dest = 1; /* Send to the other process */
message = 1; /* Just send one int */

/* Send message to slave */
MPI_Send(&message, length, MPI_INT, dest,

tag, MPI_COMM_WORLD);
printf("After MPI_Send\n");

source = 1;
/* Receive message from slave. length is how much

room we have and NOT the length of the message */
MPI_Recv(&message, length, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);

printf("After MPI_Recv, message = %d\n", message);

207

} else { /* I’m the slave process */

source = 0;
/* Receive message from master */
MPI_Recv(&message, length, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);

dest = 0; /* Send to the other process */
message++; /* Increase message */

/* Send message to master */
MPI_Send(&message, length, MPI_INT, dest,

tag, MPI_COMM_WORLD);
}

MPI_Finalize(); /* Shut down MPI */
return 0;

}

To run: read the MPI-assignment. Something like:

% lamboot bhost
...

% mpicc simple.c
% mpirun c0-1 a.out
Number of processes = 2
After MPI_Send
After MPI_Recv, message = 2
% lamhalt when we are finished for the day

One can print in the slave as well, but it may not work in all

MPI-implementations and the order of the output is not

deterministic. It may be interleaved or buffered.

We may not be able to start processes from inside the program

(permitted in MPI 2.0 but may not be implemented).

208

Let us look at each call in some detail: Almost all the MPI-

routines in C are integer functions returning a status value. I

have ignored these values in the example program. In Fortran

there are subroutines instead. The status value is returned as

an extra integer parameter (the last one).

Start and stop MPI (it is possible to do non-MPI stuff before

Init and after Finalize). These routines must be called:

MPI_Init(&argc, &argv);
...

MPI_Finalize();

MPI_COMM_WORLD is a communicator, a group of processes.

The program can find out the number of processes by calling

MPI_Comm_size (note that & is necessary since we require a

return value).

MPI_Comm_size(MPI_COMM_WORLD, &n_procs);

Each process is numbered from 0 to n_procs-1. To find the

number (rank) we can use MPI_Comm_rank.

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

We need the rank when sending messages and to decide how the

work should be shared:

if (my_rank == 0) {
I’m the master

} elseif (my_rank == 1) {
...

209

The two most basic communication routines (there are many)

are:

MPI_Send(&message, length, MPI_INT, dest, tag,
MPI_COMM_WORLD);

MPI_Recv(&message, length, MPI_INT, source, tag,
MPI_COMM_WORLD, &status);

If the message is an array there should be no &.

Some other datatypes are MPI_FLOAT and MPI_DOUBLE.

The Fortran names are MPI_INTEGER, MPI_REAL and

MPI_DOUBLE_PRECISION.

Note that length is the number of elements of the specific type

(not the number of bytes).

length in MPI_Send is the number of elements we are

sending (the message-array may be longer). length in MPI_Recv
is amount of storage available to store the message.

If this value is less than the length of the message we get:

After MPI_SendMPI_Recv: message truncated
(rank 1, MPI_COMM_WORLD)

One of the processes started by mpirun has exited with
a nonzero exit code. ...

dest is the rank of the receiving process. tag is a number of the

message that the programmer can use to keep track of messages

(0 ≤ tag ≤ at least 32767).

210

The same holds for MPI_Recv, with the difference that source
is the rank of the sender.

If we will accept a message from any sender we can use the

constant (from the header file) MPI_ANY_SOURCE.

If we accept any tag we can use MPI_ANY_TAG.
So, we can use tag and source to pick a specific message from

a queue of messages.

status is a so called structure (a record) consisting of at

least three members (MPI_SOURCE, MPI_TAG and MPI_ERROR
(some systems may have additional members).

We can do the following:

printf("status.MPI_SOURCE = %d\n", status.MPI_SOURCE);
printf("status.MPI_TAG = %d\n", status.MPI_TAG);
printf("status.MPI_ERROR = %d\n", status.MPI_ERROR);

To find out the actual length of the message we can do:

MPI_Get_count(&status, MPI_INT, &size);
printf("size = %d\n", size);

Here comes the simple program in Fortran.

211

program simple
implicit none
include "mpif.h"
integer message, length, source, dest, tag
integer my_rank, err
integer n_procs ! number of processes
integer status(MPI_STATUS_SIZE)

call MPI_Init(err) ! Start up MPI

! Find out the number of n_processes and my rank
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

tag = 1
length = 1 ! Length of message

if (my_rank == 0) then ! I’m the master process
print*, "Number of processes = ", n_procs
dest = 1 ! Send to the other process
message = 1 ! Just send one integer

! Send message to slave
call MPI_Send(message, length, MPI_INTEGER, dest, &

tag, MPI_COMM_WORLD, err)
print*, "After MPI_Send"

source = 1
! Receive message from slave

call MPI_Recv(message, length, MPI_INTEGER, source,&
tag, MPI_COMM_WORLD, status, err)

print*, "After MPI_Recv, message = ", message

212

else ! I’m the slave process
source = 0

! Receive message from master
call MPI_Recv(message, length, MPI_INTEGER, source,&

tag, MPI_COMM_WORLD, status, err)

dest = 0 ! Send to the other process
message = message + 1 ! Increase message

! Send message to master
call MPI_Send(message, length, MPI_INTEGER, dest, &

tag, MPI_COMM_WORLD, err)
end if

call MPI_Finalize(err) ! Shut down MPI

end program simple

Note that the Fortran-routines are subroutines (not functions)

and that they have an extra parameter, err.

One problem in Fortran77 is that status, in MPI_Recv, is a

structure. The solution is: status(MPI_SOURCE), status(MPI_TAG)
and status(MPI_ERROR) contain, respectively, the source, tag

and error code of the received message.

To compile and run (one can add -O3 etc.):

mpif77 simple.f90 I have not made any mpif90
mpirun c0-1 a.out

^C usually kills all the processes.

213

There are blocking and nonblocking point-to-point Send/Receive-

routines in MPI. The communication can be done in different

modes (buffered, synchronised, and a few more). The Send/Re-

ceive we have used are blocking, but we do not really know if

they are buffered or not (the standard leaves this open). This is

a very important question. Consider the following code:

...
integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 10000
integer, dimension(N_MAX) :: vec = 1

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

msg_len = N_MAX; buf_len = N_MAX

if (my_rank == MASTER) then
send_to = SLAVE; tag = 1
call MPI_Send(vec, msg_len, MPI_INTEGER, &

send_to, tag, MPI_COMM_WORLD, err)

recv_from = SLAVE; tag = 2
call MPI_Recv(vec, buf_len, MPI_INTEGER, &

recv_from, tag, &
MPI_COMM_WORLD, status, err)

else
send_to = MASTER; tag = 2
call MPI_Send(vec, msg_len, MPI_INTEGER, &

send_to, tag, MPI_COMM_WORLD, err)

recv_from = MASTER; tag = 1
call MPI_Recv(vec, buf_len, MPI_INTEGER, &

recv_from, tag, &
MPI_COMM_WORLD, status, err)

end if
...

214

This code works (under LAM) when N_MAX = 1000, but it hangs,

it deadlocks, when N_MAX = 10000. One can suspect that

buffering is used for short messages but not for long ones. This

is usually the case in all MPI-implementations. Since the buffer

size is not standardized we cannot rely on buffering though.

There are several ways to fix the problem. One is to let the

master node do a Send followed by the Receive. The slave does

the opposite, a Receive followed by the Send.

master slave
call MPI_Send(...) call MPI_Recv(...)
call MPI_Recv(...) call MPI_Send(...)

Another way is to use the deadlock-free MPI_Sendrecv-routine.

As it says in the LAM man-page: “This function is guaranteed

not to deadlock in situations where pairs of blocking sends and

receives may deadlock.”

The code in the example can then be written:

program dead_lock
include "mpif.h"

integer :: rec_from, snd_to, snd_tag, rec_tag, &
my_rank, err, n_procs, snd_len, buf_len

integer, dimension(MPI_STATUS_SIZE) :: status

integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 100
integer, dimension(N_MAX) :: snd_buf, rec_buf

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

snd_len = N_MAX; buf_len = N_MAX

215

if (my_rank == MASTER) then
snd_buf = 10 ! init the array
snd_to = SLAVE; snd_tag = 1
rec_from = SLAVE; rec_tag = 2
call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &

snd_to, snd_tag, rec_buf, buf_len, &
MPI_INTEGER, rec_from, rec_tag, &
MPI_COMM_WORLD, status, err)

print*, ’master, rec_buf(1:5) = ’, rec_buf(1:5)
else

snd_buf = 20 ! init the array
snd_to = MASTER; snd_tag = 2
rec_from = MASTER; rec_tag = 1

call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &
snd_to, snd_tag, rec_buf, buf_len, &
MPI_INTEGER, rec_from, rec_tag, &
MPI_COMM_WORLD, status, err)

print*, ’slave, rec_buf(1:5) = ’, rec_buf(1:5)
end if

call MPI_Finalize(err)

end program dead_lock
% mpirun c0-1 ./a.out
master, rec_buf(1:5) = 20 20 20 20 20
slave, rec_buf(1:5) = 10 10 10 10 10

Another situation where we get a deadlock is when a send is

missing:

master slave
... call MPI_Recv(...)

A blocking receive will wait forever (until we kill the processes).

216

Sending messages to many processes
There are broadcast operations in MPI, where one process can

send to all the others.

#include <stdio.h>
#include "mpi.h"
int main(int argc, char *argv[])
{

int message[10], length, root, my_rank;
int n_procs, j;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

length = 10;
root = 2; /* Note: the same for all. */

/* Need not be 2, of course. */
if (my_rank == 2) {

for (j = 0; j < length; j++)
message[j] = j;

/* Here is the broadcast. Note, no tag. */
MPI_Bcast(message, length, MPI_INT, root,

MPI_COMM_WORLD);
} else {

/* The slaves have exactly the same call */
MPI_Bcast(message, length, MPI_INT, root,

MPI_COMM_WORLD);

printf("%d: message[0..2] = %d %d %d\n",
my_rank, message[0], message[1],
message[2]);

}
MPI_Finalize();
return 0;

}
217

% mpirun c0-3 a.out
0: message[0..2] = 0 1 2
1: message[0..2] = 0 1 2
3: message[0..2] = 0 1 2

Why should we use a broadcast instead of several MPI_Send?
The answer is that it may be possible to implement the broadcast

in a more efficient manner:

timestep 0: 0 -> 1 (-> means send to)

timestep 1: 0 -> 2, 1 -> 3

timestep 2: 0 -> 4, 1 -> 5, 2 -> 6, 3 -> 7

etc.

So, provided we have a network topology that supports parallel

sends we can decrease the number of send-steps significantly. In

lam this is used if n_procs is greater than four. Otherwise a

linear algorithm is used.

218

There are other global communication routines.

Let us compute an integral by dividing the interval in #p pieces:
∫ b

a

f(x)dx =

∫ a+h

a

f(x)dx+

∫ a+2h

a+h

f(x)dx+· · ·+
∫ b

a+(#p−1)h

f(x)dx

where h = b−a
#p

.

Each process computes its own part, and the master has to add

all the parts together. Adding parts together this way is called

a reduction.

We will use the trapezoidal method (we would not use that in a

real application).

#include <stdio.h>
#include <math.h>
#include "mpi.h"

/* Note */
#define MASTER 0

/* Prototypes */
double trapez(double, double, int);
double f(double);

int main(int argc, char *argv[])
{

int n_procs, my_rank, msg_len;
double a, b, interval, I, my_int, message[2];

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

219

if (my_rank == MASTER) {
a = 0.0; b = 4.0; /* or read some values */

/* compute the length of the subinterval */
interval = (b - a) / n_procs;
message[0] = a; /* left endpoint */
message[1] = interval;

msg_len = 2;
MPI_Bcast(message, msg_len, MPI_DOUBLE, MASTER,

MPI_COMM_WORLD);

/* compute my part of the integral */
my_int = trapez(a, a + interval, 100);
/* my_int is the MASTER’s part of the integral.

All parts are accumulated in I, but only in
the master process.

*/

msg_len = 1;
MPI_Reduce(&my_int, &I, msg_len, MPI_DOUBLE,

MPI_SUM, MASTER, MPI_COMM_WORLD);

printf("The integral = %e\n", I);
} else { /* I’m a slave */

msg_len = 2;
MPI_Bcast(message, msg_len, MPI_DOUBLE, MASTER,

MPI_COMM_WORLD);

/* unpack the message */
a = message[0];
interval = message[1];

/* compute my endpoints */
a = a + my_rank * interval;
b = a + interval;

220

/* approximate the integral */
my_int = trapez(a, b, 100);

msg_len = 1;
MPI_Reduce(&my_int, &I, msg_len, MPI_DOUBLE,

MPI_SUM, MASTER, MPI_COMM_WORLD);
}

MPI_Finalize();
return 0;

}
double f(double x) /* The integrand */
{

return exp(-x * cos(x));
}

/* An extremely primitive quadrature method.
Approximate integral from a to b of f(x) dx.
We integrate over [a, b] which is different
from the [a, b] in the main program.

*/

double trapez(double a, double b, int n)
{

int k;
double I, h;

h = (b - a) / n;

I = 0.5 * (f(a) + f(b));
for(k = 1; k < n; k++) {

a += h;
I += f(a);

}

return h * I;
}

221

To get good speedup the function should require a huge amount

of cputime to evaluate.

There are several operators (not only MPI_SUM) that can be used

together with MPI_Reduce.

MPI_MAX return the maximum

MPI_MIN return the minimum

MPI_SUM return the sum

MPI_PROD return the product

MPI_LAND return the logical and

MPI_BAND return the bitwise and

MPI_LOR return the logical or

MPI_BOR return the bitwise of

MPI_LXOR return the logical exclusive or

MPI_BXOR return the bitwise exclusive or

MPI_MINLOC return the minimum and the location (actually, the

value of the second element of the structure where

the minimum of the first is found)

MPI_MAXLOC return the maximum and the location

If all the processes need the result (I) we could do a broadcast

afterwards, but there is a more efficient routine, MPI_Allreduce.
See the web for details (under Documentation, MPI-routines).

The MPI_Allreduce may be performed in an efficient way.

Suppose we have eight processes, 0, ..., 7. | denotes a split.

0 1 2 3 | 4 5 6 7 0<->4, 1<->5 etc
0 1 | 2 3 4 5 | 6 7 0<->2 etc

0 | 1 2 | 3 4 | 5 6 | 7 0<->1 etc

Each process accumulates its own sum (and sends it on):

s0 = x[0] + x[4], s2 = x[2] + x[6], ...
s0 = s0 + s2 = (x[0] + x[4] + x[2] + x[6])
s0 = s0 + s1 = x[0] + ... + x[7]

222

A common operation is to gather, MPI_Gather (bring to one

process) sets of data. MPI_Scatter is the reverse of gather, it

distributes pieces of a vector. See the manual for both of these.

1

Root process

0

2

3

Root process

0

1

2

3

MPI_GatherMPI_Scatter

There is also an MPI_Allgather that gathers pieces to a long

vector (as gather) but where each process gets a copy of the long

vector. Another “All”-routine is MPI_Allreduce as we just saw.

223

Nonblocking communication - a small
example

Suppose we have a pool of tasks where the amount of time to

complete a task is unpredictable and varies between tasks.

We want to write an MPI-program, where each process will ask

the master-process for a task, complete it, and then go back

and ask for more work. Let us also assume that the tasks can

be finished in any order, and that the task can be defined by a

single integer and the result is an integer as well (to simplify the

coding).

The master will perform other work, interfacing with the user,

doing some computation etc. while waiting for the tasks to be

finished.

We could divide all the tasks between the processes at the be-

ginning, but that may lead to load inbalance.

An alternative to the solution, on the next page, is to create two

threads in the master process. One thread handles the commu-

nication with the slaves and the other thread takes care of the

user interface.

One has to very careful when mixing threads and MPI, since the

MPI-system may not be thread safe, or not completely thread

safe. The MPI-2.0 standard defines the following four levels:

• MPI_THREAD_SINGLE: Only one thread will execute.

• MPI_THREAD_FUNNELED: The process may be multi-threaded,

but only the main thread will make MPI calls (all MPI calls

are “funneled” to the main thread).

• MPI_THREAD_SERIALIZED: The process may be multi-threaded,

and multiple threads may make MPI calls, but only one at a

time: MPI calls are not made concurrently from two distinct

threads (all MPI calls are “serialized”).

• MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with

no restrictions.

See the standard for more details.

224

The master does the following:

set_of_tasks = { task_id:s }

Send a task_id to each slave and remove
these task_id:s from set_of_tasks

while (not all results have been received) {
while (no slave has reported a result) // NB

do some, but not too much, work

if (tasks remaining) {
pick a task_id from the set_of_tasks and
remove it from the set_of_tasks
send task_id to the slave
(i.e. to the slave that reported the result)

} else
send task_id = QUIT to slave

}

Here is the slave code:

dont_stop = 1 /* continue is a keyword in C */
while (dont_stop) {

wait for task_id from master
dont_stop = task_id != QUIT

if (dont_stop) {
work on the task
send result to master

}
}

The nonblocking communication is used in the while-loop marked

NB. If the master is doing too much work in the loop, in may

delay the slaves.

225

Details about nonblocking communication

A nonblocking send start call initiates the send operation, but

does not complete it. The send start call will return before the

message was copied out of the send buffer. A separate send

complete call is needed to complete the communication, i.e., to

verify that the data has been copied out of the send buffer.

Similarly, a nonblocking receive start call initiates the receive

operation, but does not complete it. The call will return before

a message is stored into the receive buffer. A separate receive

complete call is needed to complete the receive operation and

verify that the data has been received into the receive buffer.

This is where the master can do some work in parallel with

the wait. Using a blocking receive the master could not work in

parallel.

If the send mode is standard then the send-complete call may

return before a matching receive occurred, if the message is

buffered. On the other hand, the send-complete may not com-

plete until a matching receive occurred, and the message was

copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and

vice-versa.

Here is comes a nonblocking send:

MPI_Request request;

MPI_Isend(&message, msg_len, MPI_INT, rank, tag,
MPI_COMM_WORLD, &request);

It looks very much like a blocking send, the only differences are

the name MPI_Isend (I stands for an almost immediate return),

and the extra parameter, request. The variable is a handle to

a so-called opaque object.

226

Think of ths communication object as being a C-structure with

variables keeping track of the tag and destination etc. request
is used to identify communication operations and match the

operation that initiates the communication with the operation

that terminates it. We are not supposed to access the informa-

tion in the object, and its contents is not standardised.

A nonblocking receive may look like:

MPI_Request request;

MPI_Irecv(&message, msg_len, MPI_INT, rank,
tag, MPI_COMM_WORLD, &request);

Here are some functions for completing a call:

MPI_Request request, requests[count];
MPI_Status status;

MPI_Wait(&request, &status);
MPI_Test(&request, &flag, &status);
MPI_Testany(count, requests, &index, &flag, &status);

and here is a simplified description. request is a handle to a

communication object, referred to as object.

MPI_Wait returns when the operation identified by request is

complete. So it is like a blocking wait. If the object was created

by a nonblocking send or receive call, then the object is

deallocated and request is set to MPI_REQUEST_NULL.

MPI_Test returns flag = true if the operation identified by

request is complete. In such a case, status contains

information on the completed operation; if the object was

created by a nonblocking send or receive, then it is deallocated

and request is set to MPI_REQUEST_NULL.
The call returns flag = false, otherwise. In this case, the

value of status is undefined.

227

Finally MPI_Testany. If the array of requests contains active

handles then the execution of MPI_Testany has the same effect

as the execution of

MPI_Test(&requests[i], flag, status),
for i=0, 1 ,..., count-1,

in some arbitrary order, until one call returns flag = true, or

all fail. In the former case, index is set to the last value of i,
and in the latter case, it is set to MPI_UNDEFINED.

If request (or requests) does not correspond to an ongoing

operation, the routines return immediately.

Now it is time for the example. We have n_slaves numbered

from 0 up to n_procs - 2. The master has rank n_procs - 1.
The number of tasks are n_tasks and we assume that the num-

ber of slaves is not greater than the number of tasks. task_ids
is an array containing a non-negative integer identifying the task.

A task id of QUIT = -1 tells the slave to finish.

The computed results (integers) are returned in the array results.

next_task points to the next task in task_ids and n_received
keeps track of how many tasks have been finished by the slaves.

Here comes the code. First the master-routine.

228

void master_proc(int n_procs, int n_slaves, int n_tasks,
int task_ids[], int results[])

{
const int max_slaves = 10, tag = 1, msg_len = 1;
int hit, message, n_received, slave, next_task, flag;
double d;
MPI_Request requests[max_slaves];
MPI_Status status;

next_task = n_received = 0;

/* Initial distribution of tasks */
for (slave = 0; slave < n_slaves; slave++) {

MPI_Send(&task_ids[next_task], msg_len, MPI_INT,
slave, tag, MPI_COMM_WORLD);

/* Start a nonblocking receive */
MPI_Irecv(&results[next_task], msg_len, MPI_INT,

MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &requests[slave]);

next_task++;
}

/* Wait for all results to come in ... */
while (n_received < n_tasks) {

flag = 0;
while (!flag) {

/* Complete the receive */
MPI_Testany(n_slaves, requests, &hit, &flag,

&status);
d = master_work(); /* Do some work */

}

229

n_received++; /* Got one result */
slave = status.MPI_SOURCE; /* from where? */

/* Hand out a new task to the slave,
unless we are done

*/
if (next_task < n_tasks) {

MPI_Send(&task_ids[next_task], msg_len, MPI_INT,
slave, tag, MPI_COMM_WORLD);

MPI_Irecv(&results[next_task], msg_len, MPI_INT,
MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &requests[hit]);

next_task++;
} else { /* No more tasks */

message = QUIT;
MPI_Send(&message, msg_len, MPI_INT, slave, tag,

MPI_COMM_WORLD);
}

}
}

230

and then the code for the slaves

void slave_proc(int my_rank, int master)
{

const int msg_len = 1, tag = 1;
int message, result, dont_stop;
MPI_Status status;

dont_stop = 1;
while (dont_stop) {

MPI_Recv(&message, msg_len, MPI_INT, master,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);

dont_stop = message != QUIT;
if (dont_stop) {

/* Simulate work */
result = 100 * message + my_rank;
sleep(message);

MPI_Send(&result, msg_len, MPI_INT, master,
tag, MPI_COMM_WORLD);

}
}

}

231

Suppose we are using three slaves and have ten tasks, the

task_ids-array takes indices from zero to nine.

The work is simulated by using the sleep-function and the ten

tasks correspond to sleeping 1, 2, 3, 1, 2, 3, 1, 2, 3, 1 seconds.

The work done by the master, in master_work, takes 0.12 s per

call.

The table below shows the results from one run.

When a number is repeated two times the slave worked with this

task for two seconds (similarly for a repetition of three).

slaves task number sleep time
0 1 2 0 1

time 1 2
1 0 1 2 2 3
2 3 1 2 3 1
4 5 4 2 4 2
4 5 4 6 5 3
5 5 7 8 6 1
6 9 7 8 7 2
7 8 8 3

9 1

So had it been optimal, the run should have taken 7 s wallclock

time (the sum of the times is 19, so it must take more than 6

s wallclock time, as 3 · 6 < 19. The optimal time must be an

integer, and the next is 7). The time needed was 7.5 s and the

master was essentially working all this time as well.

Using two slaves the optimal time is 10 s, and the run took

10.8 s.

232

A page about distributed Gaussian
elimination

In standard GE we take linear combinations of rows to zero ele-

ments in the pivot columns. We end up with a triangular matrix.

How should we distribute the matrix if we are using MPI?

The obvious way is to partition the rows exactly as in our power

method (a row distribution). This leads to poor load balancing,

since as soon as the first block has been triangularized processor

0 will be idle.

After two elimination steps we have the picture (x is nonzero

and the block size is 2):

x x x x x x x x proc 0
0 x x x x x x x proc 0
0 0 x x x x x x proc 1
0 0 x x x x x x proc 1
0 0 x x x x x x proc 2
0 0 x x x x x x proc 2
0 0 x x x x x x proc 3
0 0 x x x x x x proc 3

Another alternative is to use a cyclic row distribution. Suppose

we have four processors, then processor 0 stores rows 1, 5, 9, 13,

... Processor 2 stores rows 2, 6, 10 etc. This leads to a good

balance, but makes it impossible to use BLAS2 and 3 routines

(since it is vector oriented).

There are a few other distributions to consider, but we skip

the details since they require a more thorough knowledge about

algorithms for GE.

233

One word about Scalapack

ScaLAPACK (Scalable Linear Algebra PACKage) is a distributed

and parallel version of Lapack. ScaLAPACK uses BLAS on one

processor and distributed-memory forms of BLAS on several

(PBLAS, Parallel BLAS and BLACS, C for Communication).

BLACS uses PVM or MPI.

Scalapack uses a block cyclic distribution of (dense) matrices.

Suppose we have processors numbered 0, 1, 2 and 3 and a block

size of 32. This figure shows a matrix of order 8 · 32.
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

It turns out that this layout gives a good opportunity for par-

allelism, good load balancing and the possibility to use BLAS2

and BLAS3.

Doing a Cholesky factorization on the Sun using MPI:

n = 4000
block size = 32

#CPUs = 4
time = 27.5
rate = 765 Mflops

The uniprocessor Lapack routine takes 145s.

234

Some other things MPI can do

• Suppose you would like to send an int, a double array, and

int array etc. in the same message. One way is to pack

things into the message yourself. Another way is to use

MPI_Pack/MPI_Unpack or (more complicated) to create a

new MPI datatype (almost like a C-structure).

• It is possible to divide the processes into subgroups and make

a broadcast (for example) in this group.

• You can create virtual topologies in MPI, e.g. you can map

the processors to a rectangular grid, and then address the

processors with row- and column-indices.

• There is some support for measuring performance.

• It is possible to control how a message is passed from one

process to another. Do the processes synchronise or is a

buffer used, for example.

• There are more routines for collective communication.

In MPI-2.0 there are several new features, some of these are:

• Dynamic process creation.

• One-sided communication, a process can directly access mem-

ory of another process (similar to shared memory model).

• Parallel I/O, allows several processes to access a file in a

co-ordinated way.

235

Matlab and parallel computing

Two major options.

1. Threads & shared memory by using the parallel capabilities

of the underlying numerical libraries.

2. Message passing by using the “Distributed Computing Tool-

box” (a large toolbox, the User’s Guide is 529 pages).

Threads can be switched on in two ways. From the GUI: Prefer-

ences/General/Multithreading or by using maxNumCompThreads.
Here is a small example:

T = [];
for thr = 1:4

maxNumCompThreads(thr); % set #threads
j = 1;
for n = [100 200 400 800 1600 3200]

A = randn(n);
B = randn(n);
t = clock;

C = A * B;
T(thr, j) = etime(clock, t);
j = j + 1;

end
end

The speedup depends on the library. This is how yo can find

out:

% setenv LAPACK_VERBOSITY 1
cpu_id: x86 Family 15 Model 1 Stepping 0, AuthenticAMD

etc.
libmwblas: loading acml.so
libmwblas: resolved caxpy_ in 0x524c10
libmwblas: resolved ccopy_ in 0x524c10
etc.

So ACML is used. Another, slower alternative is using MKL

(see the gui-help for BLAS_VERSION).
236

We tested solving linear systems and computing eigenvalues as

well. Here are the times using one to four threads:

C = A * B
100 200 400 800 1600 3200

1.2e-02 4.9e-03 3.7e-02 2.8e-01 2.1e+00 1.7e+01
2.4e-02 2.8e-03 2.1e-02 1.5e-01 1.1e+00 8.5e+00
1.2e-02 2.0e-03 1.6e-02 1.1e-01 8.2e-01 6.0e+00
1.3e-02 2.8e-03 2.1e-02 8.7e-02 6.1e-01 4.6e+00

x = A \ b, b a vector
100 200 400 800 1600 3200

2.7e-03 4.1e-03 3.5e-02 1.9e-01 1.1e+00 7.9e+00
1.4e-03 4.1e-03 2.8e-02 1.4e-01 7.4e-01 4.8e+00
2.9e-03 9.8e-03 2.4e-02 1.2e-01 6.0e-01 4.0e+00
1.8e-03 5.6e-03 2.6e-02 1.1e-01 5.4e-01 3.5e+00

l = eig(A)
100 200 400 800 1600 3200

1.5e-02 8.6e-02 4.7e-01 3.3e+00 2.0e+01 1.2e+02
1.5e-02 9.3e-02 4.2e-01 2.5e+00 1.3e+01 8.7e+01
1.5e-02 9.4e-02 4.1e-01 2.4e+00 1.2e+01 8.1e+01
2.0e-02 9.4e-02 3.9e-01 2.3e+00 1.2e+01 8.0e+01

So, using several threads can be an option if we have a large

problem. We get a better speedup for the multiplication,

than for eig, which seems reasonable.

This method can be used to speed up the computation of

elementary functions as well.

Now to a simple example using the Toolbox.

The programs computes the eigenvalues of T + ρE where T is a

tridiagonal matrix, E = eneT
n and ρ is a real parameter.

237

j = 1;
T = [];
m = 100;
params = linspace(0, 1);
for n = [500 1000 2000 4000]

T = spdiags(ones(n, 3), -1:1, n, n); % create data
E = sparse(n, n, 1);
eigs_p = zeros(n, m); % preallocate

t1 = clock;
matlabpool open 4 % 4 new Matlabs
t2 = clock;

parfor(k = 1:m) % parallel loop
eigs_p(:, k) = eig(T + params(k) * E);

end

t2 = etime(clock, t2);
matlabpool close % close

t1 = etime(clock, t1);

% The same computation one one CPU
eigs_s = zeros(n, m);
t3 = clock;

for k = 1:m
eigs_s(:, k) = eig(T + params(k) * E);

end
t3 = etime(clock, t3);

times(j, :) = [t1, t2, t3] % save times
j = j + 1;

end

238

Here are the times:

n t1 t2 t3
500 10.58 1.63 1.00

1000 18.84 2.40 3.89
2000 16.77 5.38 15.07
4000 39.18 16.49 58.11

t1 - t2 gives the overhead for starting the processes.

For large problems this can be useful. The toolbox can han-

dle more complex problems, see the User’s Guide for details.

239

OpenMP - shared memory parallelism

OpenMP is a specification for a set of compiler directives, library

routines, and environment variables that can be used to spec-

ify shared memory parallelism in Fortran and C/C++ programs.

Fortran version 1.0, Oct 1997, ver. 2.0 Nov. 2000.

C/C++ ver. 1.0 Oct. 1998, ver. 2.0 Mar. 2002.

Version 2.5 May 2005, combines the Fortran and C/C++

specifications into a single one and fixes inconsistencies.

Specifications (in PDF): www.openmp.org
Good readability to be standards.

From www: The public discussion period for the draft OpenMP

3.0 specifications closed in January. The draft is now under final

review by the Architecture Review Board (ARB), with a final

vote due in a few weeks. Stay tuned. Posted on April 29, 2008

Books:

Parallel Programming in OpenMP,

R Chandra, D Kohr, R Menon, L Dagum, D Maydan,

J McDonald.

Morgan Kaufmann, 2000. 231 pages.

Parallel Programming in C with MPI and OpenMP,

M J Quinn.

McGraw-Hill Education, 2003. 544 pages.

Patterns for Parallel Programming,

T Mattson, B Sanders, B Massingill.

Addison Wesley Professional, 2004, 384 pages.

240

Basic idea - fork-join programming model

program test

... serial code ...

!$OMP end parallel do

... code run i parallel ...

!$OMP parallel do shared(b) private(x)

master thread

... serial code ...

join

fork

fork

join

... serial code ...

... code run i parallel ...

!$OMP end parallel

!$OMP parallel shared(A, n)

241

• when reaching a parallel part the master thread (original

process) creates a team of threads and it becomes the master

of the team

• the team execute concurrently on different parts of the loop

(parallel construct)

• upon completion of the parallel construct, the threads in the

team synchronise at an implicit barrier, and only the master

thread continues execution

• the number of threads in the team is controlled by

environment variables and/or library calls, e.g.

setenv OMP_NUM_THREADS 7
call omp_set_num_threads(5)

• the code executed by a thread must not depend on the result

produced by a different thread

So what is a thread?

A thread originates from a process and is a part of that

process. The threads (belonging to the particular process)

share global variables, files, code, PID etc. but they have

their individual stacks and program counters.

Note that we have several processes in MPI.

Since all the threads can access the shared data (a matrix say) it

is easy to write code so that threads can work on different parts

of the matrix in parallel.

It is possible to use threads directly but we will use the OpenMP-

directives. The directives are analysed by a compiler or

preprocessor which produces the threaded code.

242

MPI versus OpenMP

Parallelising using distributed memory (MPI):

• Requires large grain parallelism to be efficient (process based).

• Large rewrites of the code often necessary

difficult with “dusty decks”.

May end up with parallel and non-parallel versions.

• Domain decomposition; indexing relative to the blocks.

• Requires global understanding of the code.

• Hard to debug.

• Runs on most types of computers.

Using shared memory (OpenMP)

• Can utilise parallelism on loop level (thread based).

Harder on subroutine level, resembles MPI-programming.

• Minor changes to the code necessary. A detailed knowledge

of the code not necessary. Only one version.

Can parallelise using simple directives in the code.

• No partitioning of the data.

• Less hard to debug.

• Not so portable; requires a shared memory computer.

• Less control over the “hidden” message passing and memory

allocation.

243

A simple example

Not all compilers support the full 2.5-standard and compiler flags

may differ. In order for of program of this type to be efficient n

must be fairly large.

1 program example
2 use omp_lib ! or include "omp_lib.h"
3 ! or something non-standard
4 implicit none
5 integer :: i, i_am
6 integer, parameter :: n = 10000
7 double precision, dimension(n) :: a, b, c
8
9 c = 1.242d0 ! can be used inside the loop

10 !$omp parallel do private(i), shared(a, b, c)
11 do i = 1, n
12 b(i) = 0.5d0 * i
13 a(i) = 1.23d0 * b(i) + 3.45d0 * c(i)
14 end do
15 !$omp end parallel do ! not necessary
16
17 print*, a(1), a(n) ! only the master
18
19 !$omp parallel private(i_am) ! a parallel region
20 i_am = omp_get_thread_num() ! 0, ..., #threads - 1
21 print*, ’i_am = ’, i_am
22
23 !$omp master
24 print*, ’num threads = ’, omp_get_num_threads()
25 print*, ’max threads = ’, omp_get_max_threads()
26 print*, ’max cpus = ’, omp_get_num_procs()
27 !$omp end master
28
29 !$omp end parallel
30
31 end program example

244

10: A parallel do-loop. !$omp or !$OMP. See the standard for

Fortran77.

Use shared when:

• a variable is not modified in the loop or

• when it is an array in which each iteration of the loop accesses

a different element

All variables except the loop-iteration variable are shared
by default. To turn off the default, use default(none).

Suppose we are using four threads. The first thread may work

on the first 2500 iterations (n = 10000), the next thread on the

next group of 2500 iterations etc.

15: Not necessary, the end do on line 14 is sufficient. When

the threads join at the end do they synchronise, there is an

implicit barrier.

19-29: A parallel region. The code in the region is run in parallel.

20: i_am will be the number of the current thread. Threads

are numbered from zero to the number of threads minus one.

21: All threads will print. Output from several threads may

be interleaved (you may need a special compiler).

23-27: To avoid multiple prints we ask the master thread (thread

zero) to print. Number of executing threads, maximum num-

ber of threads that can be created (can be changed by setting

OMP_NUM_THREADS or by calling omp_set_num_threads) and

available number of processors (cpus).

245

% f90 -mp omp1.f90 -lmp May need special library
% setenv OMP_NUM_THREADS 1
% a.out
3.8801893470010604, 6153.2651893470011
i_am = 0
num threads = 1
max threads = 1
max cpus = 8

% setenv OMP_NUM_THREADS 4
% a.out
3.8801893470010604, 6153.2651893470011
i_am = 0
i_am = 2
num threads = 4
i_am = 3
max threads = 4
i_am = 1
max cpus = 8

% setenv OMP_NUM_THREADS 9
% a.out
Warning: MP_SET_NUMTHREADS greater than available cpus
(set to 9; cpus = 8)
3.8801893470010604, 6153.2651893470011
i_am = 2
num threads = 9
i_am = 8
max threads = 9
...

Make no assumptions about the order of execution between

threads. Output from several threads may be interleaved (you

may need a special compiler).

On Itanium: ifort -openmp
New this year: gcc -fopenmp ..., gfortran -fopenmp ...

246

The same program in C

#include <stdio.h>
#include <omp.h>
#define _N 10000

int main()
{

int i, i_am;
const int n = _N;
double a[_N], b[_N], c[_N];

for (i = 0; i < n; i++)
c[i] = 1.242;

/* pragma omp instead of !$omp */
#pragma omp parallel for private(i) shared(a, b, c)

for (i = 0; i < n; i++) {
b[i] = 0.5 * (i + 1);
a[i] = 1.23 * b[i] + 3.45 * c[i];

}
printf("%f, %f\n", a[0], a[n - 1]);

#pragma omp parallel private(i_am)
{

i_am = omp_get_thread_num();
printf("i_am = %d\n", i_am);

#pragma omp master
{
printf("num threads = %d\n",omp_get_num_threads());
printf("max threads = %d\n",omp_get_max_threads());
printf("max cpus = %d\n",omp_get_num_procs());

} /* Pairs of { } instead of end */
}
return 0;

}
247

Problems

Do not do like this:

program ex2
!$omp parallel do private(i), shared(a)

do i = 1, 1000
a = i

end do

print*, a

end program ex2

Will give you different values 1000., 875. etc.

program ex3
integer :: i
integer, dimension(12) :: a, b

a = 1 ! a vector of ones
b = 2

!$omp parallel do private(i) shared(a, b)
do i = 1, 11

a(i + 1) = a(i) + b(i)
end do

print*, a

end program ex3

A few runs:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 one thread
1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 9, 11 four
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 3, 5 four
1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 3, 5 four

248

Why?

thread computation
0 a(2) = a(1) + b(1)
0 a(3) = a(2) + b(2)
0 a(4) = a(3) + b(3) <--|

| Problem
1 a(5) = a(4) + b(4) <--|
1 a(6) = a(5) + b(5)
1 a(7) = a(6) + b(6) <--|

| Problem
2 a(8) = a(7) + b(7) <--|
2 a(9) = a(8) + b(8)
2 a(10) = a(9) + b(9) <--|

| Problem
3 a(11) = a(10) + b(10) <--|
3 a(12) = a(11) + b(11)

We have a data dependency between iterations, causing

a so-called race condition.

Can “fix” the problem:

! You need ordered in both places

!$omp parallel do private(i) shared(a, b) ordered
do i = 1, 11

!$omp ordered
a(i + 1) = a(i) + b(i)

!$omp end ordered
end do

but in this case the threads do not run in parallel.

249

Load balancing

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(static, 4) ! 4 = chunk

do k = 1, n
...

end do

1 2
k : 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
thread 0: x x x x x x x x
thread 1: x x x x x x x x
thread 2: x x x x

Default chunk, roughly = n / number_of_threads

Low overhead, good if the same amount of work in each itera-

tion. chunk can be used to access array elements in groups (may

be me more efficient, e.g. using cache memories in better way).

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(dynamic, 8)
...

Threads compete for chunk-sized assignments. Useful if the

amount of work varies between iterations.

There is also schedule(guided, chunk) assigning pieces of work

(≥ chunk) proportional to the number of remaining iterations

divided by the number of threads. It requires fewer synchroni-

sations than dynamic.

250

Suppose we parallelize m iterations over P processors.

No default scheduling is defined in the OpenMP-standard,

but schedule(static, m / P) is a common choice

(assuming that P divides m).

Here comes an example where this strategy works badly.

So do not always use the standard choice.

We have nested loops, where the number of iterations in the

inner loop depends on the loop index in the outer loop.

!$omp ...
do j = 1, m ! parallelize this loop

do k = j + 1, m ! NOTE: k = j + 1
call work(...) ! each call takes the same time

end do
end do

Suppose m is large and let Tser be the total run time on one

thread. If there is no overhead, the time, Tt, for thread number

t is approximately:

Tt ≈
2Tser

P

(

1− t + 1/2

P

)

, t = 0, . . . , P − 1

So thread zero has much more work to do compared to the last

thread:
T0

TP−1

≈ 2P − 1

a very poor balance. The speedup is bounded by T0:

speedup =
Tser

T0

≈ P

2

and not the optimal P .

We will come back to this example when we look at some case

studies.

251

The reduction clause

Reducing a vector expression to a scalar is called a reduction.

program ex8
integer :: i
integer, parameter :: n = 10000
double precision, dimension(n) :: x = 1, y = 2
double precision :: s

s = 0.0d0
!$omp parallel do private(i) shared(x, y) &
!$omp reduction(+: s)

do i = 1, n
s = s + x(i) * y(i)

end do

print*, s

end program ex8

In general:

reduction(operator or intrinsic: variable list)

Valid operators are: +, -, *, .and., .or., .eqv., .neqv.
and intrinsics: max, min, iand, ior, ieor (the iand is bit-

wise and, etc.)

The operator/intrinsic must be used in one of the following ways:

• x = x operator expression

• x = expression operator x (except for subtraction)

• x = intrinsic(x, expression)

• x = intrinsic(expression, x)

where expression does not involve x.

252

This is what happens in our example above:

• each thread gets its local sum-variable, s#thread say

• s#thread = 0 before the loop (the thread private variables are

initialised in different ways depending on the operation, zero

for + and -, one for *). See the standard for the other cases.

• each thread computes its sum in s#thread

• after the loop all the s#thread are added to s in a safe way

We can implement our summation example without using

reduction-variables. The problem is to update the shared sum

in a safe way. This can be done using critical sections.

253

...

double precision :: private_s, shared_s

shared_s = 0.0d0
!
! This is a more general parallel construct.
! Not only the do-loop is done in parallel.
!
!$omp parallel private(private_s) &
!$omp shared(x, y, shared_s, n)

private_s = 0.0d0

!$omp do private(i) ! Here comes the loop:
do i = 1, n

private_s = private_s + x(i) * y(i)
end do

!$omp end do
!
! Here we specify a critical section.
! Only one thread at a time may pass through.
!
!$omp critical

shared_s = shared_s + private_s
!$omp end critical

!$omp end parallel

print*, shared_s

...

254

Nested loops, matrix-vector multiply

a = 0.0
do j = 1, n

do i = 1, m
a(i) = a(i) + C(i, j) * b(j)

end do
end do

Can be parallelised with respect to i but not with respect to j
(since different threads will write to the same a(i)).

May be inefficient since parallel execution is initiated n times

(procedure calls). OK if n small and m large.

Switch loops.

a = 0.0
do i = 1, m

do j = 1, n
a(i) = a(i) + C(i, j) * b(j)

end do
end do

The do i can be parallelised. Bad cache locality for C.

Test on KALLSUP2 (Power3), using -O3 (implies blocking).

Times in seconds for one to four threads. dgemv takes 0.18s.

m n first loop second loop

1 2 3 4 1 2 3 4

4000 4000 0.3 0.2 0.2 0.2 5.9 3.1 2.1 1.6

40000 400 0.3 0.2 0.1 0.1 3.5 1.8 1.2 0.9

400 40000 0.3 1.0 1.0 1.2 11.4 6.7 4.9 4.1

• Cache locality is important.

• If second loop necessary, OpenMP gives speedup.

• Large n gives slowdown in first loop.

255

Some other OpenMP directives

...
!$omp parallel shared(a, n) ! a parallel region

... code run in parallel

!$omp single ! only ONE thread will execute the code
... code

!$omp end single

!$omp barrier ! wait for all the other threads
... code

!$omp do private(k)
do ...
end do

!$omp end do nowait ! don’t wait (to wait is default)

do ... ! NOTE: all iterations run by all threads
end do

!$omp sections
... code executed by one thread

!$omp section
... code executed by another thread

!$omp section
... code executed by yet another thread

!$omp end sections ! implicit barrier

!$ Fortran statements ... Included if we use OpenMP,
!$ but not otherwise (conditional compilation)

!$omp end parallel ! end of the parallel section
...

256

Some, but not all, compilers support parallelization of Fortran90

array operations, e.g.

... code
! a, b and c are arrays

!$omp parallel shared(a, b, c)
!$omp workshare

a = 2.0 * cos(a) + 3.0 * sin(c)
!$omp end workshare
!$omp end parallel

... code

or shorter

... code
!$omp parallel workshare

a = 2.0 * cos(a) + 3.0 * sin(c)
!$omp end parallel workshare

... code

Here comes a first example of where we call a subroutine from

a parallel region.

257

program example
use omp_lib
implicit none
integer, dimension(0:3) :: a = 99
integer :: i_am

!$omp parallel private(i_am) shared(a)
i_am = omp_get_thread_num()
call work(a, i_am)

!$omp single
print*, ’a = ’, a

!$omp end single

!$omp end parallel

end program example

subroutine work(a, i_am)
! Dummy arguments inherit the data-sharing
! attributes of the associated actual arguments.
!

integer, dimension(0:3) :: a ! becomes shared
integer :: i_am ! becomes private

print*, ’work’, i_am
a(i_am) = i_am

end subroutine work

% a.out
work 1
work 3
a = 99, 1, 99, 3
work 2
work 0

258

Print after !$omp end parallel (or add a barrier):

!$omp barrier
!$omp single

print*, ’a = ’, a
!$omp end single

% a.out
work 0
work 1
work 3
work 2
a = 0, 1, 2, 3

There are more things in the standard (directives, locking

routines).

OpenMP makes no guarantee that input or output to the same

file is synchronous when executed in parallel. You may need to

link with a special thread safe I/O-library.

259

More on OpenMP and subprograms

A few examples:

• Calling a subroutine, containing OpenMP-directives, from a

serial part of the program. Essentially what we have done so far.

• Suppose now that we have the following situation:

!$omp parallel ...
... code

call a parallel subroutine
... code

!$omp end parallel ...

i.e. we are calling a subroutine, containing OpenMP-directives,

from a parallel part of the program.

To understand what happens we have to read (part of) the

following sections (ver. 2.0, integrated in the new version) in

the OpenMP standard:

• “Data Environment Rules”, details about data scope, what

becomes private, shared.

• “Directive Binding”: Rules with respect to the dynamic bind-

ing of directives. What happens if we put a loop in a sub-

routine called from a parallel region?

• “Directive Nesting”. What happens if we put a parallel

region inside a parallel region, for example?

We need to have heard the term “Orphaned Directives” as well.

260

...
!$omp parallel shared(s) private(p) ---
!$omp do |

do j = 1, m | lexical extent
... | of the

end do | parallel region
| (dynamic as

call sub(s, p) | well)
!$omp end parallel ---

...

end
! ----------------------------
subroutine sub(s, p)

integer :: s ! shared
integer :: p ! private
integer :: local_var ! private
...

!$omp do ... ---
do k = 1, n | dynamic extent of the

... |
end do | parallel region

!$omp end do ---
...

end subroutine sub

The !$omp do in sub is an orphaned directive (it appears in

the dynamic extent of the parallel region but not in the lexi-

cal extent). This do binds to the dynamically enclosing parallel

directive and so the iterations in the do will be done in par-

allel (they will be divided between threads). Lexical/dynamic

terminology from ver. 2.0 but easier to understand.

261

Suppose now that sub contains the following three loops and

that we have three threads:

character (len = *), parameter :: f = ’(a, 3i5)’
...
i_am = omp_get_thread_num()

!$omp do private(k)
do k = 1, 6 ! LOOP 1

print f, ’1:’, i_am, omp_get_thread_num(), k
end do

!$omp end do

do k = 1, 6 ! LOOP 2
print f, ’2:’, i_am, omp_get_thread_num(), k

end do

!$omp parallel do private(k)
do k = 1, 6 ! LOOP 3

print f, ’3:’, i_am, omp_get_thread_num(), k
end do

!$omp end parallel do

In LOOP 1 thread 0 will do the first two iterations, thread 1

performs the following two and thread 2 takes the last two.

In LOOP 2 all threads will do the full six iterations.

In the third case we have:

A PARALLEL directive dynamically inside another PARALLEL
directive logically establishes a new team, which is

composed of only the current thread, unless nested

parallelism is established.

We say that the loops is serialized. All threads perform six

iterations each.

262

If we want the iterations to be shared between new threads we

can set an environment variable, setenv OMP_NESTED TRUE, or

call omp_set_nested(.true.) .

If we enable nested parallelism we get three teams consisting of

three threads each, in this example.

This is what the (edited) printout from the different loops may

look like. omp() is the value reurned by omp_get_thread_num().
The output from the loops may be interlaced though.

i_am omp() k i_am omp() k
1: 1 1 3 3: 1 0 1
1: 1 1 4 3: 1 0 2
1: 2 2 5 3: 1 2 5
1: 2 2 6 3: 1 2 6
1: 0 0 1 3: 1 1 3
1: 0 0 2 3: 1 1 4

3: 2 0 1
2: 0 0 1 3: 2 0 2
2: 1 1 1 3: 2 1 3
2: 1 1 2 3: 2 1 4
2: 2 2 1 3: 2 2 5
2: 0 0 2 3: 2 2 6
2: 0 0 3 3: 0 0 1
2: 1 1 3 3: 0 0 2
2: 1 1 4 3: 0 1 3
2: 1 1 5 3: 0 1 4
2: 1 1 6 3: 0 2 5
2: 2 2 2 3: 0 2 6
2: 2 2 3
2: 2 2 4
2: 2 2 5
2: 2 2 6
2: 0 0 4
2: 0 0 5
2: 0 0 6

263

Case study I: solving a large and stiff IVP

y′(t) = f(t, y(t)), y(0) = y0, y, y0 ∈ <n, f : <× <n → <n

where f(t, y) is expensive to evaluate.

LSODE (Livermore Solver for ODE, Alan Hindmarsh) from netlib.

BDF routines; Backward Differentiation Formulas.

Implicit method: tk present time, y(k) approximation of y(tk).

Backward Euler (simplest BDF-method). Find y(k+1) such that:

y(k+1) = y(k) + hf(tk+1, y(k+1))

LSODE is adaptive (can change both h and the order).

Use Newton’s method to solve for z ≡ y(k+1):

z − y(k) − hf(tk+1, z) = 0

One step of Newton’s method reads:

z(i+1) = z(i) −
[

I − h
∂f

∂y
(tk+1, z(i))

]−1

(z(i) − y(k) − hf(tk+1, z(i)))

The Jacobian ∂f
∂y

is approximated by finite differences one

column at a time. Each Jacobian requires n evaluations of f .

∂f

∂y
ej ≈

[

f(tk+1, z(i) + ejδj)− f(tk+1, z(i))
]

/δj

ej is column j in the identity matrix I.

264

Parallelise the computation of the Jacobian, by computing columns

in parallel. Embarrassingly parallel.

Major costs in LSODE:

1. Computing the Jacobian, J, (provided f takes time).

2. LU-factorization of the Jacobian (once for each time step).

3. Solving the linear systems, given L and U.

What speedup can we expect?

Disregarding communication, the wall clock time for p threads,

looks something like (if we compute J in parallel):

wct(p) = time(LU) + time(solve) +
time(computing J)

p

If the parallel part, “computing J”, dominates we expect good

speedup at least for small p. Speedup may be close to linear,

wct(p) = wct(1)/p.

For large p the serial (non-parallel) part will start to dominate.

How should we speed up the serial part?

1. Switch from Linpack, used in LSODE, to Lapack.

2. Try to use a parallel library like complib.sgimath_mp (SGI).

This is an old test of solving using dposv to solve a full, positive

definite, and symmetric Ax = b-problem, n = 2500:

> f90 -O3 main.f -lcomplib.sgimath_mp -lmp

p time command p time command
1 22.58 5 8.61
2 13.75 6 8.06
3 10.80 7 7.58
4 9.42 8 7.35

265

After having searched LSODE (Fortran 66):

c if miter = 2, make n calls to f to approximate j.
...

j1 = 2
do 230 j = 1,n

yj = y(j)
r = dmax1(srur*dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call f (neq, tn, y, ftem)
do 220 i = 1,n

220 wm(i+j1) = (ftem(i) - savf(i))*fac
y(j) = yj
j1 = j1 + n

230 continue
...

c add identity matrix.
...

c do lu decomposition on p.
call dgefa (wm(3), n, n, iwm(21), ier)

...
100 call dgesl (wm(3), n, n, iwm(21), x, 0)

We see that

r = δj

fac = −h/δj

tn = tk+1

ftem = f(tk+1, z(i) + ejδj)

wm(2...) is the approximation to the Jacobian.

From reading the code: neq is an array but neq(1) = n.

266

The parallel version

• j, i, yj, r, fac, ftem are private

ftem is the output (y′) from the subroutine

• j1 = 2 offset in the Jacobian; use wm(i+2+(j-1)*n)
no index conflicts

• srur, r0, ewt, hl0, wm, savf, n, tn are shared

• y is a problem since it is modified. shared does not work.

private(y) will not work either; we get an uninitialised

copy.

In the revision of the OpenMP-standard there is firstprivate
which makes a private and initialised copy.

c$omp parallel do private(j, yj, r, fac, ftem, first)
c$omp+ shared(f, srur, r0, ewt, hl0, wm, savf,n,neq,tn)
c$omp+ firstprivate(y)

do j = 1,n
yj = y(j)
r = dmax1(srur*dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call f (neq, tn, y, ftem)
do i = 1,n

wm(i+2+(j-1)*n) = (ftem(i) - savf(i))*fac
end do
y(j) = yj

end do

Did not converge! After reading of the code:

dimension neq(1), y(1), yh(nyh,1), ewt(1), ftem(1)
change to
dimension neq(1), y(n), yh(nyh,1), ewt(1), ftem(n)

267

Case study II: sparse matrix multiplication

Task: given a matrix A which is large, sparse and symmetric we

want to:

• compute a few of its smallest eigenvalues OR

• solve the linear system Ax = b

n is the dimension of A and nz is the number of nonzeros.

Some background, which you may read after the lecture:

We will study iterative algorithms based on forming the Krylov

subspace: {v, Av, A2v, . . . , Aj−1v}. v is a random-vector. So,

Paige-style Lanczos for the eigenvalue problem and the

conjugate-gradient method for the linear system, for example.

When solving Ax = b we probably have a preconditioner as

well, but let us skip that part.

The vectors in the Krylov subspace tend to become almost

linearly dependent so we compute an orthonormal basis of the

subspace using Gram-Schmidt. Store the basis-vectors as columns

in the n× j-matrix Vj.

Project the problem onto the subspace, forming Tj = V T
j AVj

(tridiagonal) and solve the appropriate smaller problem, then

transform back.

Tj and the basis-vectors can be formed as we iterate on j. In

exact arithmetic it is sufficient to store the three latest v-vectors

in each iteration.

268

p is the maximum number of iterations.

A Lanczos-algorithm may look something like:

operations

v = randn(n, 1) O(n)

v = v/||v||2 O(n)

for j = 1 to p do

t = Av O(nz)

if j > 1 then t = t− βj−1w endif O(n)

αj = tTv O(n)

t = t− αjv O(n)

βj = ||t||2 O(n)

w = v O(n)

v = t/βj O(n)

Solve the projected problem and O(j)

and check for convergence

end for

The diagonal of Tj is α1, . . . , αj and the sub- and super-diagonals

contain β1, . . . , βj−1.

How can we parallelise this algorithm?

• The j-iterations and the statements in each iteration must

be done in order. Not possible to parallelise.

• It is easy to parallelise each of the simple vector operations

(the ones that cost O(n)). May not give any speedup though.

• The expensive operation in an iteration is usually Av.

• Solving the projected problem is rather fast and not so easy

to parallelise (let us forget it).

We will not look at graph-based pre-ordering algorithms.

A block diagonal matrix would be convenient, for example.

269

Vectors must not be too short if we are going to succeed.

The figures show how boye (SGI) computes daxpy for different

n and number of threads.

10
2

10
3

10
4

10
5

10
6

5e−9

1e−8

5e−8

1

2

3

4
5

6
7

8

9
10

n

T
im

e
/ f

lo
p

Time / flop. Fixed # of threads for each curve.

2 3 4 5 6 7
2

4

6

8

10

2

4

6

8

10

log
10

(n)

Speedup as a function of n and # threads

threads

sp
ee

du
p

270

The tricky part, parallelising t = Av

A is large, sparse and symmetric so we need a special data struc-

ture which takes the sparsity and the symmetry into account.

First try: store all triples (r, c, ar,c) where ar,c 6= 0 and r ≤ c.

I.e. we are storing the nonzeros in the upper triangle of the

matrix.

The triples can be stored in three arrays, rows, cols and A or as

an array of triples. Let us use the three arrays and let us change

the meaning of nz to mean the number of stored nonzeros. The

first coding attempt may look like:

do k = 1, nz
if (rows(k) == cols(k)) then

... ! diagonal element
else

... ! off-diagonal element
end if

end do

If-statements in loops mat degrade performance, so we must

think some more.

If A has a dense diagonal we can store it in a separate array,

diag_A say. We use the triples for all ar,c 6= 0 and r < c (i.e.

elements in the strictly upper triangle).

If the diagonal is sparse we can use pairs (r, ar,r) where ar,r 6= 0.

Another way is to use the triples format but store the

diagonal first, or to store ak,k/2 instead of ak,k.

271

Our second try may look like this, where now nz is the number

stored nonzeros in the strictly upper triangle of A.

! compute t = diag(A) * t
...

do k = 1, nz ! take care of the off-diagonals
r = rows(k)
c = cols(k)
t(r) = t(r) + A(k) * v(c) ! upper triangle
t(c) = t(c) + A(k) * v(r) ! lower triangle

end do

...

tr
...

tc
...

=

.

. . . ar,r . . . ar,c . . .
...

. . . ac,r . . . ac,c . . .
...

...

vr
...

vc
...

Let us now concentrate on the loops for the off-diagonals and

make it parallel using OpenMP.

Note that we access the elements in A once.

272

! Take care of diag(A)
...

!$omp do default(none), private(k, r, c), &
!$omp shared(rows, cols, A, nz, v, t)

do k = 1, nz ! take care of the off-diagonals
r = rows(k)
c = cols(k)
t(r) = t(r) + A(k) * v(c) ! upper triangle
t(c) = t(c) + A(k) * v(r) ! lower triangle

end do

This will probably give us the wrong answer (if we use more

than one thread) since two threads can try to update the same

t-element.

Example: The first row in A it will affect t1, t3 and t5, and the

second row in A will affect t2, t4 and t5. So there is a potential

conflict when updating t5 if the two rows are handled by

different threads.

t1

t2

t3

t4

t5

=

0 0 a1,3 0 a1,5

0 0 0 a2,4 a2,5

a1,3 0 0 0 0

0 a2,4 0 0 0

a1,5 a2,5 0 0 0

v1

v2

v3

v4

v5

If the first row is full it will affect all the other rows. A block

diagonal matrix would be nice.

As in the previous example it is not possible to use critical sec-

tions. Vector reduction is an option and we can do our own

exactly as in case study II. Here is a slightly different version

using a public matrix, instead.

273

X has n rows and as many columns as there are threads, num_thr
below. Each thread stores its sum in X(:, thr), where thr is

the index of a particular thread.

Here is the code:

!$omp parallel shared(X, ...)
...
i_am = omp_get_thread_num() + 1
...
do i = 1, n ! done by all threads

X(i, i_am) = 0.0 ! one column each
end do

!$omp do
do i = n + 1, nz

r = rows(i)
c = cols(i)
X(r, i_am) = X(r, i_am) + A(i) * v(c)
X(c, i_am) = X(c, i_am) + A(i) * v(r)

end do
!$omp end do

!$omp do
do i = 1, n

do thr = 1, num_thr
t(i) = t(i) + X(i, thr)

end do
end do

...
!$omp end parallel

The addition loop is now parallel, but we have bad cache locality

when accessing X (this can be fixed). None of the parallel loops

should end with nowait.
One can get a reasonable speedup (depends on problem

and system).

274

Compressed storage

The triples-format is not the most compact possible. A common

format is the following compressed form. We store the diagonal

separately as before and the off-diagonals are stored in order,

one row after the other. We store cols as before, but rows now

points into cols and A where each new row begins. Here is an

example (only the strictly upper triangle is shown):

0 a1,2 a1,3 0 a1,5

0 0 a2,3 a2,4 0

0 0 0 0 0

0 0 0 0 a4,5

0 0 0 0 0

is stored as A = [a1,2 a1,3 a1,5 | a2,3 a2,4 | 0 | a4,5],

cols = [2 3 5 | 3 4 | • | 5], (• fairly arbitrary, n say)

rows = [1 4 6 7 8]. (8 is one step after the last)

Note that rows now only contains n elements.

The multiplication can be coded like this (no OpenMP yet):

... take care of diagonal, t = diag(A) * v

do r = 1, n - 1 ! take care of the off-diagonals
do k = rows(r), rows(r + 1) - 1

c = cols(k)
t(r) = t(r) + A(k) * v(c) ! upper triangle
t(c) = t(c) + A(k) * v(r) ! lower triangle

end do
end do

275

We can parallelise this loop (with respect to do r) in the same

way as we handled the previous one (using the extra array X).

There is one additional problem though.

Suppose that the number of nonzeros per row is fairly constant

and that the nonzeros in a row is evenly distributed over the

columns.

If we use default static scheduling the iterations are divided

among the threads in contiguous pieces, and one piece is

assigned to each thread. This will lead to a load imbalance, since

the upper triangle becomes narrower for increasing r.

To make this effect very clear I am using a full matrix (stored

using a sparse format).

A hundred matrix-vector multiplies with a full matrix of order

2000 takes (wall-clock-times):

#threads → 1 2 3 4

triple storage 19.7 10.1 7.1 6.9

compressed, static 20.1 16.6 12.6 10.1

compressed, static, 10 20.1 11.2 8.8 7.5

The time when using no OpenMP is essentially equal to the

time for one thread.

276

