
Technology
Backgrounder

Accelerating MATLAB

Background: 3GLs vs. 4GLs and
MATLAB Language Execution
Third-generation languages are sometimes referred

to as high-level languages because they add a layer of

abstraction to hard-to-use lower-level languages, such

as assembly and machine code. 3GLs are translated

into assembly or machine language to execute very

quickly. To use 3GLs effectively requires a good deal

of programming experience and knowledge.

Fourth-generation languages are much less procedural

in nature than 3GLs and consist of statements similar

to those in human language. For this reason, 4GLs are

typically much easier to use than 3GLs. However, due

to the way that 4GL code is interpreted, execution

time is often slower than with 3GLs. MATLAB is a 4GL

that was developed specifically for engineers and sci-

entists. While many common functions, such as vector

and matrix math, are highly optimized to execute

quickly, other operations have incurred the overhead

common in 4GLs.

MATLAB Language Execution
Before MATLAB 6.5, the MATLAB language was

processed in two steps. First, the MATLAB code was

converted into a linear stream of p-code, the instruction

set that is executed by the MATLAB interpreter. Second,

the interpreter executed each p-code instruction in

sequence. Each p-code execution incurred a small

amount of overhead. Some p-code instructions were

high-level and took much longer to execute than the

overhead, so the execution overhead was insignificant.

In some cases however, the p-code operation ran very

quickly and the interpreter overhead was the majority

of the total execution time. The most common examples

are codes that deal with scalar values and for loops.

MATLAB Type Handling
An important benefit of MATLAB is that users do not have

to declare variables to be of certain data types, as is required

with 3GLs. In MATLAB, any variable can be assigned a

value of any type, and that type can be changed implicitly

at will because of an assignment to a new value of a differ-

ent type. As a result, the MATLAB interpreter is prepared to

deal with the most complicated data types (such as an n-

dimensional array of complex doubles) and is capable of

performing operations no matter what the actual data

types turn out to be at run-time. Prior to M 6.5, the p-code

specified the most complicated case. As a result, code that

operated on scalar values incurred additional overhead in

execution time and storage.

Introduction

Most engineers and scientists use two types of computer languages for the analysis, design, and imple-

mentation of technical applications: third-generation languages (3GLs), such as C, C++, Fortran, and

Basic, and fourth-generation languages (4GLs) such as MATLAB.While 4GLs offer tremendous ease-of-

use and productivity benefits, certain types of code have typically executed more quickly using third-

generation languages. The MathWorks has developed technology that combines the ease-of-use of a

4GL with the fast performance of a 3GL. The MATLAB JIT-Accelerator, introduced in MATLAB 6.5,

includes several technological innovations that accelerate the execution of MATLAB code. This technol-

ogy backgrounder describes MATLAB language execution, explains how the new JIT-Accelerator speeds

up MATLAB code, and identifies which types of code will see the greatest performance benefit from the

JIT-Accelerator.

The MATLAB JIT-Accelerator

Accelerating MATLAB The JIT-Accelerator

MATLAB JIT-Accelerator:
Fast Execution of MATLAB Code
The JIT-Accelerator is a built-in feature of MATLAB

that lets users automatically take advantage of increased

code execution speed. MATLAB 6.5 is the first release

of MATLAB to include the JIT-Accelerator. This first

release focuses on improving the speed of loops and

scalar math. Subsequent releases of MATLAB will con-

tain additional performance improvements.

The MATLAB 6.5 JIT-Accelerator speeds up execution

of MATLAB code using two primary methods: Just-In-

Time Code Generation and Run-time Type Analysis.

Just-In-Time Code Generation
The JIT-Accelerator converts many p-code instructions

into native machine instructions. These instructions

suffer no interpreter overhead, and therefore run very

quickly. In some cases, code generated by the JIT-

Accelerator can run several thousand times faster than

was possible in prior versions of MATLAB. While most

programs will not have speed increases of that magni-

tude, some scalar code running in large loops can achieve

speedups of several hundred times. Users are likely to

experience greater productivity on Intel X86-based Linux

and Windows systems than on other platforms due to

some additional optimization for these systems.

Run-time Type Analysis
Prior to MATLAB 6.5, some additional overhead was

generated during p-code execution due to the way that

MATLAB handled the typing of variables. Run-time type

analysis eliminates this overhead, significantly speeding

up execution of many p-code operations.

Run-time type analysis is based on the following prem-

ise: If a line of M-code has been processed before, it is

very likely that the variables have the same types and

shapes that they had the last time the system saw this

line. The first time that a line of code is executed, the

system examines the variables and generates specific

code for the data types and shapes that were found.

Subsequent executions of the line can reuse this code

as long as the system verifies that the variable types and

sizes have not changed. Since the types rarely change,

subsequent executions run as quickly as possible. If the

types do change, the code is regenerated.

Performance Benefits of the
JIT-Accelerator and Supported
MATLAB Features

Programming Style
The JIT-Accelerator gives you the flexibility to run your

code faster without having to perform vectorization.

Vectorization, the process of structuring MATLAB code

to work on matrices, serves two purposes: It enables

algorithms to be expressed more succinctly and provides

a mechanism for improving MATLAB execution speed.

Today with the JIT-Accelerator, you no longer need to vec-

torize code to speed up the execution of many applications.

MATLAB users write the MATLAB code that is the most

understandable or that best fits their application. The

JIT-Accelerator then ensures optimal performance.

Vectorization can be used if it results in code that

is clearer and more concise. Loops processed by the

JIT-Accelerator often execute at least as fast as vectorized

loops. Programs that are already vectorized may experience

minor improvements with the JIT-Accelerator. However,

since the internal vectorized funtions have already been

optimized, acceleration of this code may be modest.

Supported MATLAB Features
The MATLAB JIT-Accelerator supports the following

aspects of the MATLAB language:

• Data types and array shapes

• for loops

• Conditional statements

• Array size

These supported features will automatically take

advantage of the JIT-Accelerator.

Data Types and Array Shapes
MATLAB accelerates code that uses the data types that

are shaded in the class hierarchy diagram below. Both

real and complex doubles are accelerated. All arrays are

accelerated except sparse arrays and those array shapes

with more than three dimensions.

ARRAY

logical char NUMERIC cell

single double

structure

user classes java classes

function
handle

int8, uint8
int16,uint16
int32,uint32
int64,uint64

MATLAB

data types.

for Loops
Loops controlled by a for statement execute faster in

MATLAB as long as they meet the following conditions:

• Indices of the for loop are set to a range of

scalar values.

• Code in the for loop uses only the supported data

types and array shapes.

• Any functions called within the loop are MATLAB

built-in functions.

Loop performance is optimal when every line of code

in the loop can take advantage of the JIT-Accelerator.

When this is the case, MATLAB speeds up execution of

the entire loop, including the for and end statements.

If this is not the case, then acceleration of the loop is

temporarily interrupted on each iteration of the loop.

Conditional Statements
if, elseif, while, and switch statements

execute faster as long as the expression in the statement

evaluates to a scalar value.

Array Size
The execution overhead represents a small percentage

of the total execution time when handling large arrays.

For small arrays, however, the reverse is true. Since the

JIT-Accelerator reduces the overhead incurred with

data handling, there is a greater relative performance

improvement in programs that use smaller arrays.

Code that Benefits Most from the JIT-Accelerator
Programs consisting of large, contiguous portions of

code that contain only those elements of MATLAB that

take advantage of the JIT-Accelerator will show the

greatest speed improvement. This is because whenever

the interpreter encounters an element not supported

by the JIT-Accelerator, it handles the instruction

through the nonaccelerated interpreter. The more often

this happens, the less opportunity there is to speed up

the code. For this reason, the most significant perform-

ance improvements are achieved in functions and scripts

that primarily consist of self-contained loops, particularly

loops that make no calls to M-file functions and operate

on scalar data.

MATLAB is optimized for vector and matrix math. Most

of the built-in functions in MATLAB (such as fft,

eig, and matrix multiply functions) are already run-

ning as fast as possible. As a result, this type of code will

not be affected by the JIT-Accelerator.

A Simple Example
The following code example demonstrates the

optimizations provided by the JIT-Accelerator:

a = 2.5;

b = 3.33;

c = 6.23;

for i = 1:10000000

a = b + c;

b = a - c;

c = b * a;

if(a > b)

a = b - c;

else

b = b + 12.3;

end

end

This piece of code cycles through a loop ten million

times. The loop performs some scalar math and a

comparison. Tests show this code running approximately

550 times faster in MATLAB 6.5 with the JIT-Accelerator

than with MATLAB 6.1. This code was developed with

code acceleration in mind, and represents one of the

larger improvements that one is likely to experience.

However, other examples executed as much as 3,400

times faster than with MATLAB 6.1.

Summary
The MATLAB 6.5 JIT-Accelerator is the first step towards

the MathWorks ultimate goal of eliminating the

performance difference between MATLAB and 3GLs.

Without any difference in performance, users can skip

the additional work of recoding their programs in C,

for example. With MATLAB 6.5, programs that include

a lot of scalar math and loops for iterative numeric algo-

rithms will experience the greatest performance benefits.

While it is still the case that MATLAB functions operate

on matrices quickly, it is no longer necessary to vectorize

code to achieve optimum speed. The JIT-Accelerator

enables MATLAB users to write programs in a style that

is both comfortable and fits the application at hand.

With its flexible development environment, intuitive

language, and the performance optimization of the JIT-

Accelerator, MATLAB 6.5 is a compelling alternative to

3GLs for technical computing applications. It is the only

tool available that maximizes both application perform-

ance and user productivity.

Accelerating MATLAB The JIT-Accelerator

Sample Accelerated Programs
The following programs demonstrate how to make the

best use of the MATLAB JIT-Accelerator:

� Program 1 – Bayes’ Rule

� Program 2a – Vector Comparison, with Loop

� Program 2b – Vector Comparison, Vectorized

� Program 3 – Relaxation Algorithm

Each program shows a sizeable performance improve-

ment over earlier versions of MATLAB. The table shows

hardware specifications for the systems used in measur-

ing performance on the program examples.

Program 1—Bayes‘ Rule
This program implements Bayes’ Rule for computing

probability based on prior probability and updated

information. The program contains nested for loops

that, unless they were vectorized, would be quite costly

to execute without the JIT-Accelerator.

The table below compares the performance of this

program in MATLAB 6.1 (with no acceleration) and in

MATLAB 6.5 (with acceleration). The increase in per-

formance is shown in the far right column for the three

operating systems tested.

Here is the Bayes.m program.

function score = Bayes(Seq, Matrix, priorProbability)

% BAYES Use Bayes’ rule to determine

signal probabilities.

%

% score = BAYES(Seq, Matrix,

% priorProbability) is the

% probability that the signal whose

% probability is expressed in Matrix

% occurs at each position in Seq,

% where priorProbability is the probability

% of seeing the signal at any position.

% Using Bayes' rule:

% P(a|b) = P(b|a) * P(a) / P(b), where Pa

% is the probability that whatever signal

% we're looking for occurs at a given posi-

% tion, Pb|a is the probability that we would

% see this specific nucleotide if the signal

% were here, and Pb is the unconditional

% probability of seeing this nucleotide here.

% Initially, we'll assume each nt is

% equally likely.

Pb = 1/4;

% Initialize storage for the result.

% score = zeros(1, length(Seq));

lm = length(Matrix);

ls = length(Seq) - length(Matrix);

for m = 1:ls

Pa = priorProbability;

k = m - 1;

for n = 1:lm

nt = Seq(k + n);

if (nt > 0) && (nt < 5)

PbGa = Matrix(nt, n);

Pb = Pa * PbGa + (1 - Pa) * 0.25;

Pa = PbGa * Pa / Pb;

end

end

score(m) = Pa;

end

The times shown in the previous table were recorded by

running the Bayes’ program on data stored in a double

matrix and a large 8-bit integer vector, with a prior

probability of 0.0001.

Variables in the Bayes.m program
Name Size Bytes Class
Matrix 4x20 640 double array

Seq 1x912211 912211 int8 array

Operating System CPU Type Processor Speed Main Memory

Windows Intel x86 1 GHz 256 MB

Linux Pentium III 550 MHz 256 MB

Solaris Sparc 270 MHz 128 MB

Operating System MATLAB 6.1 MATLAB 6.5 Performance Gain

Windows 16 min., 0.5 sec. 2.7 sec. x 355.7

Linux 38 min., 15.8 sec. 5.9 sec x 389.1

Solaris 1 hr., 47 min.,32.7 sec. 57.9 sec. x 111.4

What Makes It Faster
The program spends most time in a nested for loop that

calculates the Pb|a, Pb, and Pa values. When run with

the data shown in the previous table, the inner loop exe-

cutes more than 18 million times. Because all the code in

the program uses elements of MATLAB that support

acceleration, the entire program runs much faster.

MATLAB accelerates this code as follows:

Supported Data Types and Array Shapes. All the state-

ments within the inner and outer loops use double and

8-bit integer data in scalar, vector, and two-dimensional

matrix form. These data types and array shapes support

performance acceleration.

Scalar Loop Indices. Both for loops operate on a range

of scalar values, a criteria for JIT-acceleration. For exam-

ple, ls used in this statement is scalar.

for m = 1:ls

Function Calls and Overloading. Calling functions that

are MATLAB built-ins execute very quickly, but calling

functions implemented in M-files can use up consider-

able time. This program calls only built-in functions,

such as zeros and length,with no function calls in

the nested loops. In addition to direct function calls,

there are no overloaded operations that implicitly call M-

file functions.

Conditional Statements. The one conditional statement

residing in the inner loop evaluates scalar terms, enabling

it to be JIT-accelerated This statement uses the scalar,

nt, as shown here.

if (nt > 0) && (nt < 5)

Small Array Size. The second argument, matrix, is

a 4-by-20 array. Small arrays perform faster. The over-

head of array handling, which is more noticeable with

smaller arrays, is insignificant in accelerated versions of

MATLAB. The first argument, Seq, is quite large and

does not speed up much due to its size alone.

Program 2a—Vector Comparison, with Loop
This program scans two sorted input vectors and finds

the elements that are common to both. It returns the

indices of these common elements.

There are two versions of this program: Program 2a

processes the vectors using a while loop. Program 2b

replaces the loop with vectorized code. When run on

MATLAB without acceleration, there is a big difference

in performance between the two. When run with acceler-

ation, there is no significant difference.

function [aIndex, bIndex] = vfind_scalar(avec, bvec)

avecLen = length(avec);
bvecLen = length(bvec);

% Size aIndex and bIndex to be large enough
outlen = min(avecLen, bvecLen);
aIndex = zeros(outlen,1);
bIndex = zeros(outlen,1);

n = 0;
ai = 1;
bi = 1;

while (ai <= avecLen || bi <= bvecLen)
% Get vector elements at indices ai and bi

A = avec(ai);
B = bvec(bi);

% If equal, record indices where elements match
if A == B

n = n + 1;
aIndex(n) = ai;
bIndex(n) = bi;

end

% Advance index of avec, when appropriate
if A <= B

if ai < avecLen
ai = ai + 1;

else
break;

end
end

% Advance index of bvec, when appropriate
if A >= B

if bi < bvecLen
bi = bi + 1;

Operating System MATLAB 6.1 MATLAB 6.5 Performance Gain

Windows 10.6 sec. 0.1 sec. x 106.0

Linux 24.0 sec. 0.1 sec. x 240.0

Solaris 1 min., 4.7 sec. 1.5 sec. x 43.1

Accelerating MATLAB The JIT-Accelerator

else
break;

end
end

end

% Snip aIndex and bIndex to correct size
aIndex = aIndex(1:n);
bIndex = bIndex(1:n);

In preparation for running the program, you must
create two sorted vectors that have some common
elements. The following statements create vectors a and
b, append the elements from a third vector, c, to both,
and then sort. This gives vectors a and b at least 20,000
common elements.

a = rand(200000,1);
b = rand(260000,1);
c = rand(20000,1);
a = sort([a;c]);
b = sort([b;c]);

Now pass a and b into the function shown above. Use

the tic and toc functions to track how much time it

takes to execute.
tic; [ia, ib] = vfind_scalar(a, b); toc

What Makes It Faster
MATLAB accelerates every line in this program. The

code in the while loop matters most, since this takes up

nearly all the program execution time. Consider the fol-

lowing factors:

Supported Data Types and Array Shapes. All the code in

the program operates on vectors of type double. This is one

of the data types and array shapes that supports acceleration.

Conditional Expression Evaluates to Scalar. The

expressions in the while and if statements all evaluate

to scalar values. For example,

while (ai <= avecLen || bi <= bvecLen)

No Disqualifying Statements in Loop. Every line of

code in the while loop qualifies for JIT-acceleration.

This means that every iteration of the loop can execute

at a higher speed without being interrupted to separately

process any disqualifying lines.

Function Calls and Overloading. The only functions

called are MATLAB built-ins. No M-file or MEX-file

functions are called, and no operations are overloaded

for the data types being used.

Program 2b—Vector Comparison, Vectorized
Here is the vectorized version of the program 2a. Note

that there is little difference in performance between the

accelerated while loop, shown in Program 2a, and the

vectorized code shown below. This means that with

accelerated MATLAB, you can choose the style of coding

that you prefer for each MATLAB application without

affecting performance.

The table below also shows little difference in the

times measured for running the vectorized code on

unaccelerated and accelerated versions of MATLAB.

You will not see a significant performance improve-

ment in vectorized programs when run with the JIT-

Accelerator.

Here is the vectorized version of the vfind program:

function [aIndex, bIndex] =
vfind_vector(avec, bvec)

avecLen = length(avec);
bvecLen = length(bvec);

avec = reshape(avec, avecLen, 1);
bvec = reshape(bvec, bvecLen, 1);

[c, pc] = sort([avec; bvec]);
cIndex = find(diff(c) == 0);
aIndex = pc(cIndex);
bIndex = pc(cIndex + 1) - avecLen;

Operating System MATLAB 6.1 MATLAB 6.5 Performance Gain

Windows 0.7 sec. 0.6 sec. x 1.2

Linux 1.0 sec. 0.9 sec. x 1.1

Solaris 1.2 sec. 1.2 sec. x 1.0

Program 3 —Relaxation Algorithm
This program starts by creating a sharply contrasted

graphics display in a figure window. When you press

any key after starting the program, it runs a relaxation

algorithm on the figure, gradually blurring the

color boundaries.

When the algorhithm is run on earlier versions of

MATLAB, you can see the algorithm taking effect in dis-

tinct steps that are spaced over time. When it is run on

MATLAB 6.5, the display changes smoothly over a much

shorter period.

This table shows comparative execution times for 300

iterations of the program. (The version of this program

used in these measurements differs slightly from what

is shown below. The final image handling functions

(set and drawnow) were moved to the outside of the

three nested for loops, and thus refreshed the image

only once, at the very end.)

Here is the program:

function relax(iterations)

sz = 102;

plate = magic(sz) * 64 / (sz * sz);

newPlate = plate;

im = image(plate);

axis off

set(gcf, 'DoubleBuffer', 'on')

% Wait for user to press a key to kick

% off the image processing

pause

for i = 1:iterations

for j = 2:(sz-1)

jm1 = j - 1;

jp1 = j + 1;

for k = 2:(sz-1)

km1 = k - 1;

kp1 = k + 1;

newPlate(j,k) = (plate(jm1,km1)/2 + ...

plate(jm1,k) + plate(jm1,kp1)/2 + ...

plate(j,km1) + plate(j,kp1) + ...

plate(jp1,km1)/2 + plate(jp1,k) + ...

plate(jp1,kp1)/2)/6;

end

end

plate = newPlate;

% Refresh the image once every 5 times

% through the loop.

if (0 == rem(i,5))

set(im, 'cdata', plate)

drawnow

end

end

You can see the visual effect of the faster execution by

running the program yourself. Put the code into an M-file

named relax.m, and run it for 300 iterations by typing

relax(300);

A new window is created showing the initial image. Once

you see this, reselect the MATLAB command window, and

then press any key to start processing the image.

What Makes It Faster
The program spends most of its time in a nested for

loop that modifies the image data. The newPlate calcula-

tion in the inner loop executes 3 million times when

iterations is set to 300, as it is in the above test.

MATLAB accelerates the two inner for loops for the rea-

sons explained below. The outer loop does not accelerate

(see The Outer for Loop), yet that has little effect on the

overall execution time, as nearly all of the time spent is in

the inner loops.

Scalar loop indices. The for loops operate on a range of

scalar values, a criteria for JIT-acceleration. For example,

for j = 2:(sz-1)

Operating System MATLAB 6.1 MATLAB 6.5 Performance Gain

Windows 1 min., 25.9 sec. 1.1 sec. x 78.1

Linux 3 min., 13.8 sec. 1.7 sec. x 114.0

Solaris 8 min., 51.0 sec. 23.5 sec. x 22.6

Supported Data Types and Array Shapes. All of the

statements within the inner loops use a double data

type with either a scalar value or a two-dimensional

matrix. These are among the data types and array

shapes that MATLAB accelerates.

Higher Complexity Operations. MATLAB usually shows

a noticeable performance gain for statements containing

multiple operators and/or functions. The plate computa-

tion is an example of this.

newPlate(j,k) = (plate(jm1,km1)/2 + ...

plate(jm1,k) + plate(jm1,kp1)/2 + ...

plate(j,km1) + plate(j,kp1) + ...

plate(jp1,km1)/2 + plate(jp1,k) + ...

plate(jp1,kp1)/2)/6;

Function Calls and Overloading. One factor that enables the

acceleration of the two inner loops is that the only function

calls made in this code are to built-in functions. The program

performs a number of mathematical operations, but as long

as none of the math operators used (+, -, and /) is overloaded

for the data type being operated on (double), these math

operations execute quickly, not having to make M-file calls.

The Outer for Loop
The outer for loop is not sped up by the JIT-

Accelerator. One reason is that the leading for statement

relies on an ambiguous data type for the maximum

index value. The value for iterations is passed into the

program and thus may not necessarily be one of the data

types or array shapes supported for JIT-acceleration.

for i = 1:iterations

If you include the final set and drawnow calls in the

loop, these will not be sped up by the JIT-Accelerator

because they operate on Handle Graphics® objects,

which are not among the data types supported for

performance acceleration.

set(im,'cdata',plate)

drawnow

The fact that the outer loop does not accelerate is not

that important in this case, as nearly all of the execution

time is spent in the inner loops.

© 2002 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

09/02 91076v00

Will my MATLAB code run faster
in MATLAB 6.5?
The JIT-Accelerator will result in the greatest per-

formance improvements to MATLAB code that:

� Is loop intensive

� Does a lot of scalar math

� Does not include sparse arrays or 3-D arrays

� Includes if, elseif, while, and switch

statements within the code that has expressions

that evaluate to a scalar value

� Includes for loops that resolve to scalar values

� Does not call other functions (M-file or MEX)

or subfunctions

� Has large, contiguous portions of code with the

characteristics mentioned above

� Is not highly vectorized

� Is executed on Intel X86 platforms

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)241 470 750
Italy +39 (011) 2274 700
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

