
GPU-programming

A GPU (Graphics Processing Unit) is used to generate images

(rendering) to be shown on a computer display. Rendering for

animated 3D-graphics can be very computationally intense so

speed is essential. The computation is performed by a shader (a

program), essentially on pixel level. The shader can be run in

parallel in a multi-threaded SIMD-fashion, and a GPU is basi-

cally a parallel SIMD computer.

Since a GPU has excellent floating point performance, GPU:s

can be used for scientific computing as well (at least for suitable

applications). It used to be quite complicated to use GPU:s this

way, but these last few years it has become less complicated.

The focus of this lecture is CUDA, (Compute Unified Device

Architecture), Nvidia’s GPU-architecture. Nvidia provides an

SDK (software development kit) which makes it possible to use

the GPU from C.

There are third party wrappers for other languages as well such

as Fortran and Matlab. Matlab requires a GPU that supports

double precision (CUDA compute capability ≥ 1.3). The GPU:s

on the math computers only support single precision

(have compute capability 1.1).

An alternative to the CUDA SDK is OpenCL (see Wikipedia).

This lecture will skip most of the details, but if you need to

know more, read a CUDA-book (> 300 pages).

See http://developer.nvidia.com/cuda-books.

A few are available as e-books form the Chalmers library, e.g.

R. Farber, CUDA Application Design and Development, Morgan

Kaufmann, 2011 (Chalmers e-book from sciencedirect.com).

On the next page comes an incomplete description of the GPU:s

in the student lab.

1

The lab computers have Nividia GeForce 9500 GT, GPU:s (see

/proc/driver/nvidia/gpus/0/informationor type

gpuDevice in Matlab, for example), a mid-range GPU.

According to the CUDA_C_Programming_Guide.pdf(part of the

SDK distribution), the GPU has four SM:s (streaming multipro-

cessors). Each SM has two SFU:s (special function units) and

eight SP:s (shader or streaming processors), each with one FPU.

Only single precision is supported. The 4 ·8 = 32 SP:s run at 1.4

GHz (http://en.wikipedia.org/wiki/GeForce_9_Series).
The GPU has 512 Mbyte memory.

Each FPU can finish two MAD:s per cycle and each SFU can

finish four function evaluations (or multiplications) per cycle. In

http://en.wikipedia.org/wiki/Nvidia_gpusthe theoretical

floating point performance for GeForce 9500 GT is stated as

134.4 Gflop/s (not our usual definition of flop).

Counting one MAD or one SF as a flop we get:

4 · (8 · 2 MAD + 2 · 4 SF) · 1.4 · 109/s = 134.4 · 109 flops/s

The dual core CPU is capable of 2 · 4 · 3.2 · 109 = 25.6 · 109

(two threads, four + and four * (vector-single), equivalent to

four MAD).

CPU:s are complicated: high clock frequency, large caches, branch

prediction, multiple instruction streams, out of order execution,

speculative execution, MIMD-applications, few threads.

GPU:s are “simple”: lower clock frequency, no caches (but start-

ing to appear on new high-end models), in-order execution, SIMD-

applications. A GPU requires many threads to give good per-

formance.

Thousands of threads making fairly simple operations at low

speed can be much faster than a few threads performing

complicated operations at high speed.

2

There are much more powerful (and expensive > 25 kkr) GPU:s.

http://en.wikipedia.org/wiki/CUDAlists specifications for

GPU:s based on their “compute capability-values”.

The math compute server has a Tesla C1060-GPU, rather good,

with 240 SP:s running at 1.296 GHz. Peak performance is 622

Gflop/s (single), 933 counting SF:s, and 77.8 Gflop/s (double)

http://en.wikipedia.org/wiki/Nvidia_Tesla.

An easy way to use the GPU is to call a ready-made function

(BLAS or FFT, for example) supplied with the SDK.

The following program uses cublasSgemm to compute

C := alpha * A * B + beta * C where A, B and C are single

precision 3×3-matrices. The code consists of the following main

parts:

• Allocate and initialize the matrices in main memory.

• cudaMalloc: allocate space for the matrices on the GPU.

• cublasCreate: initialize CUBLAS.

• cublasSetMatrix: copy the matrices from main memory to

the GPU.

• cublasSgemm: perform the matrix operation on the GPU.

• cublasGetMatrix: transfer the result from the GPU to main

memory.

• cudaFree: deallocate matrices on the GPU.

• cublasDestroy: release CUBLAS resources.

A bottleneck is usually the transfer of data to and from the GPU

(using the PCI-bus).

Here comes the program, it is rather long even though I have

tried to shorten it, using a clean_up-routine for error messages

and deallocation of memory.

3

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"

// My own routine to shorten the code
void clean_up(float *, float *, float *,

cublasHandle_t, int);

int main(void)
{
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;

// size and byt (number of bytes) to shorten the code
int j, n = 3, size = sizeof(float),

byt = n * n * size;

// use malloc for large problems
float A[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
float B[] = {9, 8, 7, 6, 5, 4, 3, 2, 1};
float C[] = {1, 1, 1, 1, 1, 1, 1, 1, 1};
float *GPU_A, *GPU_B, *GPU_C;
float alpha = 1.0, beta = -1.0;

// To make clean_up work properly.
GPU_A = GPU_B = GPU_C = 0;
handle = (cublasHandle_t) 0; // eight byte zero

// Allocate space on the GPU
if (cudaMalloc((void **) &GPU_A, byt) != cudaSuccess)
clean_up(GPU_A, GPU_B, GPU_C, handle, 0);

4

if (cudaMalloc((void **) &GPU_B, byt) != cudaSuccess)
clean_up(GPU_A, GPU_B, GPU_C, handle, 1);

if (cudaMalloc((void **) &GPU_C, byt) != cudaSuccess)
clean_up(GPU_A, GPU_B, GPU_C, handle, 2);

// Initialize the CUBLAS library context
if (cublasCreate(&handle) != CUBLAS_STATUS_SUCCESS)
clean_up(GPU_A, GPU_B, GPU_C, handle, 3);

// Copy the matrices to the GPU
if (cublasSetMatrix(n, n, size, A, n, GPU_A, n) !=

CUBLAS_STATUS_SUCCESS)
clean_up(GPU_A, GPU_B, GPU_C, handle, 4);

if (cublasSetMatrix(n, n, size, B, n, GPU_B, n) !=
CUBLAS_STATUS_SUCCESS)

clean_up(GPU_A, GPU_B, GPU_C, handle, 5);

if (cublasSetMatrix(n, n, size, C, n, GPU_C, n) !=
CUBLAS_STATUS_SUCCESS)

clean_up(GPU_A, GPU_B, GPU_C, handle, 6);

// Compute C := alpha * A * B + beta * C
stat = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N,

n, n, n, &alpha, GPU_A, n, GPU_B,
n, &beta, GPU_C, n);

if (stat != CUBLAS_STATUS_SUCCESS)
clean_up(GPU_A, GPU_B, GPU_C, handle, 7);

// Copy GPU_C to C
if (cublasGetMatrix(n, n, size, GPU_C, n, C, n) !=

CUBLAS_STATUS_SUCCESS)
clean_up(GPU_A, GPU_B, GPU_C, handle, 8);

5

// Free allocated resources on the GPU, no error
clean_up(GPU_A, GPU_B, GPU_C, handle, 9);

// In Matlab:
// C = reshape(1:9, 3, 3) * reshape(9:-1:1, 3, 3) - 1
// C =
// 89 53 17
// 113 68 23
// 137 83 29

for (j = 0; j < n * n; j++)
printf("%4.0f,", C[j]);

printf("\n");

return EXIT_SUCCESS;
}

void clean_up(float *GPU_A, float *GPU_B, float *GPU_C,
cublasHandle_t handle, int err_no)

{
char errors[9][37] = {
"device memory allocation of A failed",
"device memory allocation of B failed",
"device memory allocation of C failed",
"CUBLAS initialization failed",
"data download of A failed",
"data download of B failed",
"data download of C failed",
"cublasSgemm failed",
"data upload of C failed"};

// It is safe to cudaFree(arg) if arg = 0.
cudaFree(GPU_A); cudaFree(GPU_B); cudaFree(GPU_C);
if(handle != 0) // or it may crash
cublasDestroy(handle);

6

if (err_no < 9) {
printf("%s\n", errors[err_no]);
exit(EXIT_FAILURE);

}
}

We compile using the Nvidia C-compiler, nvcc, and link with

cublas:

% nvcc simple_sgemm_ex_short.c -lcublas
% ./a.out
89, 113, 137, 53, 68, 83, 17, 23, 29,

If you want to test CUDA on the lab-computers look at the

non-compulsory CUDA-lab. You need to fetch and install the

SDK yourself (easy, look at the lab) since I am prohibited by

the Nvidia-license to install the SDK in the unsup64-area.

A drawback with using CUDA this way (CUBLAS) is that the

transfer of data to and from the GPU is a bottleneck since the

PCI-bus is rather slow. In the sgemm-example we need to trans-

fer four matrices. So even though the floating point arithmetic

may be much faster, the total execution time may no be reduced

so much (or at all).

It is possible to write CUDA-code directly (instead of using ex-

isting libraries). This is rather more complicated as one has to

keep track of threads and use the up to six different types of

memory in an efficient way (register, local, shared, global, con-

stant and texture).

For maximum performance you would like to create the data on

the GPU, perform many flops and then transfer the result back

(preferably just a few numbers) to the CPU. Using the graphics

library OpenGL, http://en.wikipedia.org/wiki/Opengl, it

is possible to display a graphical result on the monitor directly,

although I have not tested this yet. See chapter 3.2.11 Graphics

Interoperability in the NVIDIA CUDA C Programming Guide,

for details.
7

Here comes a low-level example, but first some technical details.

Threads are divided into thread blocks. Each SM can execute

one or more thread blocks. Threads in a thread blocks can share

data through shared memory in the SM. The GPU has a global

scheduler which allocates one or more thread blocks to each SM,

taking hardware limitations into account. The GF 9500 supports

a maximum of 768 threads per SM (newer CUDA architectures

allow for more). These 768 threads can be divided into three

blocks of 256 threads each or six blocks of 128 threads.

It may be convenient to map the thread numbers, in a thread

block, to one, two or three dimensions (much like using Cartesian

grids in MPI). For this purpose the SDK supplies a 3-component

vector, threadIdx(a C++-object, I think) with the three mem-

ber variables, x, y and z (for the dimensions). The vector can

be used in the GPU-code and different threads will get differ-

ent values of the member variables. We define dimensions of

the blocks when calling the GPU-code. Thread blocks are sim-

ilarly organized in 1D, 2D or 3D-grids (though not 3D for the

GeForce 9500). This is part of a code (it contains some new

C++-statements):

...
__global__ void gpu_func(parameter list)
{
compute

}

int main()
{
...
dim3 threadsPerBlock(4, 8, 2); // C++-constructor
dim3 blocksPerGrid(2, 4); // only 2D for GF 9500

gpu_func <<< blocksPerGrid, threadsPerBlock >>>
(parameter list); // start GPU-code

...
}

8

Inside the GPU-code we can access blocksPerGridand

threadsPerBlockusing blockDim and blockIdx.
In this example blockDim.x, blockDim.yand blockDim.zequals

4, 8 and 2. (blockIdx.x, blockIdx.y)will take on the values

(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3) and (1, 3).

For each block the threadIdx-vector will be (written in two

columns to save space):

(0, 0, 0) (0, 0, 1)
(1, 0, 0) (1, 0, 1)
(2, 0, 0) (2, 0, 1)
(3, 0, 0) (3, 0, 1)

(0, 1, 0) (0, 1, 1)
(1, 1, 0) (1, 1, 1)
(2, 1, 0) (2, 1, 1)
(3, 1, 0) (3, 1, 1)

etc

(0, 7, 0) (0, 7, 1)
(1, 7, 0) (1, 7, 1)
(2, 7, 0) (2, 7, 1)
(3, 7, 0) (3, 7, 1)

The grid can we viewed as a 2 × 4-array where each element (a

block) is a 4 × 8 × 2-array. An element in a block is a thread.

Assume now we have a 1D-grid with two 1D-blocks consisting of

four threads each. We can make the call:

// scalars (instead of dim3) will do in this case
gpu_func <<< 2, 4 >>> (parameter list);

and inside the GPU-code we use:

int i_am = blockIdx.x * blockDim.x + threadIdx.x;

to get a consecutive numbering of the threads.

9

i_am = blockIdx.x * blockDim.x + threadIdx.x;

blockDim = (4, 1, 1) constant in the GPU-code

blockIdx = (0, 0, 0)
threadId i_am
(0, 0, 0) 0
(1, 0, 0) 1
(2, 0, 0) 2
(3, 0, 0) 3

blockIdx = (1, 0, 0)
threadId
(0, 0, 0) 4
(1, 0, 0) 5
(2, 0, 0) 6
(3, 0, 0) 7

Now for the code. We approximate π by throwing darts, hitting

in (x, y), 0 ≤ x, y ≤ 1, x, y uniformly distributed on (0, 1). The

number of (x, y) with x2 +y2 ≤ 1 compared the number of darts

thrown is proportional to π/4.

Standard C-routines for random numbers are not thread-safe

(they save status information). There are thread-safe routines

but they may not be called from the GPU-code, you get

error: calling a host function from a device / global func-

tion(”darts”) is not allowed. There is a CUDA-library for ran-

dom numbers but I copied some simple code from www instead.

Calling printf gives the same error (unless the GPU has com-

pute capability 2.x). Nvidia supplies cuPrintf. Register as a

CUDA-developer or google, for access. You need cuPrintf.cu
and cuPrintf.cuh.

To call your own function from the GPU-code, use __device__,
e.g. __device__ float my_func(float x, float y)

10

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double csecond();

#define THROWS_PER_THREAD 2000000

__global__ void darts(uint*hits)
{
const float r_max = 2.328306435454494e-10;
uint m_z, m_w, u, n; // r_max should be double ...
float x, y; // automatic variables
int i_am, k; // in registers

// thread ID
i_am = blockDim.x * blockIdx.x + threadIdx.x;

n = 0;
m_z = 1 + i_am; m_w = 1;

for(k = 0; k < THROWS_PER_THREAD; k++) {
m_z = 36969 * (m_z & 65535) + (m_z >> 16);
m_w = 18000 * (m_w & 65535) + (m_w >> 16);
u = (m_z << 16) + m_w; // <<, >> left, right shift
x = (u + 1.0f) * r_max; // random number

m_z = 36969 * (m_z & 65535) + (m_z >> 16);
m_w = 18000 * (m_w & 65535) + (m_w >> 16);
u = (m_z << 16) + m_w;
y = (u + 1.0f) * r_max; // random number

if (x*x + y*y <= 1.0f) // inside circle?
n++; // 1.0f single prec one

} // store in texture memory
hits[i_am] = n; // off chip, on board, slow

}
11

int main()
{
int threadsPerBlock = 512 / 4, k;
int blocksPerGrid = 4;
size_t size = threadsPerBlock* blocksPerGrid *

sizeof(uint);

double t = csecond();

// allocate space
uint *cpu_hits = (uint *) malloc(size);
uint *gpu_hits;
cudaMalloc(&gpu_hits, size); // in texture memory

// call GPU-code
darts <<< blocksPerGrid, threadsPerBlock >>>
(gpu_hits);

// -------- error-checking (I had some problems)
cudaThreadSynchronize();

cudaError_t cudaLastError = cudaGetLastError();
if(cudaLastError != cudaSuccess) {
printf("error: %s\n",

cudaGetErrorString(cudaLastError));
cudaFree(gpu_hits);
free(cpu_hits);
return(EXIT_FAILURE);

}
// -------- end error-checking

// fetch GPU-data
cudaMemcpy(cpu_hits, gpu_hits, size,

cudaMemcpyDeviceToHost);

12

// add hits together
double total_hits = 0.0;
for(k = 0; k < threadsPerBlock* blocksPerGrid; k++)
total_hits += cpu_hits[k];

printf("time = %f\n", csecond() - t);

// compute approximation
printf("%e\n", 4.0 * total_hits /
((double) THROWS_PER_THREAD* threadsPerBlock *

blocksPerGrid));

// deallocate memory
cudaFree(gpu_hits);
free(cpu_hits);

return 0;
}

% nvcc -O monte_carlo.cu csecond.c
% ./a.out
time = 1.180731
3.141572e+00

THROWS_PER_THREAD = 2000000
threadsPerBlock blocksPerGrid wct

512 1 3.93 s
512/2 2 2.0 s
512/4 4 1.2 s
512/8 8 1.2 s

THROWS_PER_THREAD = 500000
512 4 1.02 s

In the last cases all the four SP:s are used in parallel. The wct

is 8.5 s for the equivalent non-parallel C-code. Note that the

code is not so floating point intense, most of the instructions

deal with integers.
13

Making longer runs leads to problems, the approximation be-

comes zero and one can see that the screen flickers. Here is the

explanation (from the CUDA Release Notes):

(Windows and Linux) Individual GPU program launches are

limited to a run time of less than 5 seconds on a GPU with

a display attached. Exceeding this time limit usually causes a

launch failure reported through the CUDA driver or the CUDA

runtime. GPUs without a display attached are not subject to

the 5 second runtime restriction. For this reason it is recom-

mended that CUDA be run on a GPU that is NOT attached to

a display and does not have the Windows desktop extended onto

it. In this case, the system must contain at least one NVIDIA

GPU that serves as the primary graphics adapter.

So one should have a compute server or an extra GPU.

I added the error-checking code and if you increase 2000000

enough you get: error: the launch timed out and was termi-

nated.

Instead of computing the total number of hits (a reduction)

using the CPU one could have done it in the GPU-code. This is

a bit tricky, see the C Programming Guide for an example.

A potential problem is using control flow instructions (for, if
etc) which may cause different threads to follow different exe-

cution paths. This leads to a significant slowdown, the code is

serialized. I do not think this is a problem in the darts-code

since all threads execute the same number of iterations.

14

It is possible to generate GPU-assembly code.

% nvcc -O -ptx monte_carlo.cu

generates monte_carlo.ptx(Parallel Thread Execution).

Here is part of the loop:

...
$Lt_0_2562:
// <loop> Loop body line 20, nesting depth: 1,
// iterations: 500000
...
mov.f32 %f4, 0f2f800000; // 2.32831e-10
mul.f32 %f5, %f3, %f4;
...
mov.f32 %f9, 0f2f800000; // 2.32831e-10
mul.f32 %f10, %f8, %f9;

// %f11 = x * x (TE’s comment)
mul.f32 %f11, %f10, %f10;

// %f12 = %f11 + y * y (TE)
mad.f32 %f12, %f5, %f5, %f11;

mov.f32 %f13, 0f3f800000; // 1
setp.le.f32 %p1, %f12, %f13; // compare (TE)
...
@%p2 bra $Lt_0_2562; // branch (TE)

// hits[i_am] = n; (TE)
ld.param.u64 %rd1, [__cudaparm__Z5dartsPj_hits];
...

The SDK comes with a GUI-based profiler, computeprof. It

provides execution times, usage of registers and hints.

Setting blocksPerGrid to two, for example, gives a warning:

Grid Size (2) is less than number of available SMs (4).

15

