EXERCISE 11: LINEARLY CONSTRAINTED NONLINEAR OPTIMIZATION

NICLAS ANDRÉASSON

The Frank-Wolfe algorithm

Step 0: Generate the starting point $x_0 \in X$, for example by letting it be any extreme point in X. Set k := 0.

Step 1: Solve the problem to

$$\underset{\boldsymbol{y} \in X}{\text{minimize}} \ z_k(\boldsymbol{y}) := \nabla f(\boldsymbol{x}_k)^{\mathrm{T}} (\boldsymbol{y} - \boldsymbol{x}_k). \tag{1}$$

Let y_k be a solution (extreme point) to this LP problem, and $p_k := y_k - x_k$ be the search direction.

Step 2: Approximately solve the one-dimensional problem to minimize $f(x_k + \alpha p_k)$ over $\alpha \in [0, 1]$. Let α_k be the resulting step length.

Step 3: Let $x_{k+1} := x_k + \alpha_k p_k$.

Step 4: If, for example, $z_k(y_k)$ or α_k is close to zero, then terminate! Otherwise, let k := k + 1 and go to Step 1.

EXERCISE 1 (The Frank-Wolfe method). Consider the linearly constrainted nonlinear optimization problem to

minimize
$$z = \frac{1}{2}(x_1 - \frac{1}{2})^2 + \frac{1}{2}x_2^2$$

subject to
$$x_1 \le 1,$$

$$x_2 \le 1,$$

$$x_1, x_2 \ge 0.$$

(a) Start at the extreme point $(1,1)^T$ and perform two iterations of the Frank-Wolfe algorithm to get the point x_2 !

1

П

- (b) Is x_2 optimal?
- (c) Give upper and lower bounds for the optimal solution!

Date: March 2, 2004.

The simplicial decomposition algorithm

Step 0: Generate the starting point $x_0 \in X$, for example by letting it be any extreme point in X. Set k := 0. Let $\mathcal{P}_0 := \emptyset$.

Step 1: Let y^k be a solution (extreme point) to the LP problem (1). Let $\mathcal{P}_{k+1} := \mathcal{P}_k \cup \{k\}$.

Step 2: Let ν_{k+1} be a solution to the restricted master problem to

$$\begin{split} & \text{minimize} & & f\left(\boldsymbol{x}_k + \sum_{i \in \mathcal{P}_{k+1}} \nu_i(\boldsymbol{y}^i - \boldsymbol{x}_k)\right) \\ & \text{subject to} & & \sum_{i \in \mathcal{P}_{k+1}} \nu_i \leq 1, \\ & & & \nu_i \geq 0, \qquad i \in \mathcal{P}_{k+1}. \end{split}$$

$$\nu_i \ge 0, \qquad i \in \mathcal{P}_{k+1}$$

Step 3: Let $x_{k+1} := x_k + \sum_{i \in \mathcal{P}_{k+1}} (\nu_{k+1})_i (y^i - x_k)$.

Step 4: If, for example, $z_k(y^k)$ is close to zero, or if $\mathcal{P}_{k+1} = \mathcal{P}_k$, then terminate! Otherwise, let k := k + 1 and go to Step 1.

EXERCISE 2 (The simplicial decomposition method). Consider the linearly constrainted nonlinear optimization problem to

minimize
$$z = \frac{1}{2}(x_1 - \frac{1}{2})^2 + \frac{1}{2}x_2^2$$
 subject to
$$x_1 \le 1,$$

$$x_2 \le 1,$$

$$x_1, x_2 \ge 0.$$

(a) Start at the extreme point $(1,1)^T$ and perform two iterations of the simplicial decomposition algorithm to get the point x_2 !

П

(b) Is x_2 optimal?

EXERCISE 3 (Finite convergence of the simplicial decomposition algorithm). Show that the simplicial decomposition algorithm converges in a finite number of steps!

EXERCISE 4 (The gradient projection algorithm). Consider the problem to

minimize
$$f(x)$$

subject to $x \in X$,

where $X \subseteq \mathbb{R}^n$ is non-empty, closed and convex, and $f : \mathbb{R}^n \to \mathbb{R}$ is in C^1 on X. Let $x \in X$, $\alpha > 0$, and

$$p = \text{Proj}_X[x - \alpha \nabla f(x)] - x.$$

Show that if $p \neq 0^n$, then it defines a descent direction (this is exactly the direction used in the gradient projection algorithm)!