EXERCISE 5: OPTIMALITY CONDITIONS

NICLAS ANDRÉASSON

EXERCISE 1 (uppvärmning). Bestäm arean av den största likbenta triangel som kan skrivas in i enhetscirkeln.

EXERCISE 2 (KKT-conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(x) = \sum_{j=1}^n c_j x_j$$

subject to $\sum_{j=1}^n x_j^2 \le 1$, $x_j \ge 0$, $j = 1, \dots, n$,

where $\max_{j=1,...,n} \{c_j\} > 0$ and $\min_{j=1,...,n} \{c_j\} < 0$. Find an optimal solution to the problem!

EXERCISE 3 (KKT-conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(x) = \sum_{j=1}^{n} c_j x_j^2$$

subject to $\sum_{j=1}^{n} x_j = b$,

where b and c_j are all strictly positive constants. Find an optimal solution to the problem and show that it is unique!

 ${\tt Exercise}\ 4$ (KKT-conditions: Investigating feasible solutions). Consider the problem to

minimize
$$f(\boldsymbol{x}) = 4x_1^2 + 2x_2^2 - 6x_1x_2 + x_1$$
 subject to
$$-2x_1 + 2x_2 \ge 1,$$

$$2x_1 - x_2 \le 0,$$

$$x_1 \le 0,$$

$$x_2 > 0.$$

Is the point $\mathbf{x} = (0, 1/2)^{\mathrm{T}}$ a local minimum?

Date: February 5, 2004.

1

EXERCISE 5 (KKT-conditions: Investigating feasible solutions). Consider the problem to

$$\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) = x_1^2 + 3x_2^2 - x_1 \\ \text{subject to} & x_1^2 - x_2 \leq 1, \\ & x_1 + x_2 \geq 1. \end{array}$$

Is the point $\boldsymbol{x} = (1,0)^{\mathrm{T}}$ a global minimum?