EXERCISE 6: LAGRANGIAN DUALITY

NICLAS ANDRÉASSON

EXERCISE 1 (Formulating the Lagrangian dual problem). Consider the problem to

minimize
$$f(x) = x_1 + 2x_2^2 + 3x_3^3$$

subject to $x_1 + 2x_2 + x_3 \le 3$, (1)

$$2x_1^2 + x_2 \ge 2, \tag{2}$$

$$2x_1 + x_3 = 2, (3)$$

$$x_1, \quad x_2, \quad x_3 \geq 0.$$

- (a) Formulate the Lagrangian dual problem that originates from a relaxation of the constraints (1)–(3).
- (b) State the primal-dual optimality conditions!

EXERCISE 2 (Formulating the Lagrangian dual problem). Consider the linear program

minimize
$$z = c^{T}x$$

subject to $Ax \ge b$, (1)
 $x \ge 0^{n}$,

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Formulate the Lagrangian dual problem that originates from a relaxation of the constraints (1).

EXERCISE 3 (Primal-dual optimality conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(x) = x_1^2 + 2x_2^2$$

subject to $x_1 + x_2 \ge 2$, $x_1^2 + x_2^2 \le 5$.

Find an optimal solution!

EXERCISE 4 (Primal-dual optimality conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(x) = \frac{1}{2} ||y - x||^2$$

subject to $Ax = 0^m$,

where $y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$ such that rank A = m. Find an optimal solution!

Date: February 12, 2004.

1

 ${\tt Exercise}\ 5$ (Primal-dual optimality conditions: Investigating feasible solutions). Consider the problem to

minimize
$$f(x) = -x_1 + x_2$$

subject to $x_1^2 + x_2^2 \le 25,$
 $x_1 - x_2 \le 1.$

Is the point $\boldsymbol{x}=(4,3)^{\mathrm{T}}$ a global minimum?