Lecture 12: Linearly constrained
nonlinear optimization

Michael Patriksson

26 February 2004

\ Feasible-direction methods j
e Consider the problem to find
f* = minimum f(x), (la)
subject to & € X (1b)

X C R” non-empty, closed and convex set; f: R" — R
is C' on X.

e Most methods for (1) manipulate the constraints
defining X; in some cases even such that the sequence
{x} is infeasible until convergence. Why?

e Consider a constraint “g;(x) < b;,” where g; is

/ nonlinear. K

\ e Checking whether p is a feasible direction at @, or éwma/
the maximum feasible step from « in the direction of p
is, is very difficult.

e For which step length a > 0 does it happen that
gi(x + ap) = b;? This is a nonlinear equation in «a!

e Assuming that X is polyhedral, these problems are not
present.

\ Feasible-direction descent methods J
Step 0. Determine a starting point o € R™ such that
xy € X. Set k:=0.

Step 1. Determine a search direction p;,, € R™ such that
p;. is a feasible direction.

Step 2. Determine a step length oy > 0 such that
f(@r + arpy,) < fzy) and xy + cxp, € X.

Step 3. Let Tp41 := x + arpy,.

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k := k + 1 and go to Step 1.

o \

\ Notes /

e Similar form as the general method for unconstrained
optimization.

e Just as local as methods for unconstrained
optimization.

e Search directions typically based on the approximation
of f—relaxation!

e Line searches similar; note the maximum step.

e Termination criteria and descent based on first-order
optimality (remember the unconstrained condition that

Vf(x*) = 0" holds).
N \

\ LP-based algorithm, I: The Frank—Wolfe Emﬁroa/

The Frank—Wolfe (1952) method is based on a
first-order approximation of f around the iterate xy.
This means that the relaxed problems are LPs, which
can then be solved by using the Simplex method.

Remember the following first-order condition
[Proposition 4.20(b)]: If &* € X is a local minimum of

f on X then
Vi) (z—=x*) >0, x € X, (2)

holds.

\

\ e Remember also the following equivalent statement: /
minimum Vf(z*)T(z — *) = 0. (3)

zeX

e Follows that if, given an iterate @, € X,

minimum V f ()" (y — x;) < 0,
yeX

and y, is a solution to this LP problem, then the
direction of p, := y, — @}, is a feasible descent direction
with respect to f at .

e The search direction is towards an extreme point [one
that is optimal in the LP over X with costs V f(xy)].

Ko This is the basis of the Frank—Wolfe algorithm. &

Note: We must assume that X is bounded in order ﬁoJ
ensure that the LP always has a finite solution. The
algorithm can in fact be extended to allow for
unbounded solutions to the LP, and thereby extending
the Frank—Wolfe method for general polyhedra; the
search directions then are either towards an extreme
point (finite solution to LP) or in the direction of an
extreme ray of X (unbounded solution to LP).

-

The search-direction problem /

Step 0. Find xy € X, for example any extreme point in
X. Set k:=0.

Step 1. Find a solution y,, to the problem to

yeX
Let p;, := y;, — o), be the search direction.

Step 2. Approximately solve the problem to minimize
f(zr + apy) over a € [0,1]. Let oy be the step length.

Step 3. Let &y := @) + arpy.

/ terminate! Otherwise, let k := k + 1 and go to Step 1.

minimize z(y) := Vf(zr)" (y — xp). (4)

Step 4. If, for example, z(y,) or ay is close to zero, then

\ Algorithm description, Frank—Wolfe /

\

Convergence /

e Theorem 12.1: Suppose that X C R" is a non-empty,

bounded polyhedron, and that the function f is in C*
on X. Suppose that in Step 2 of the Frank—Wolfe
algorithm, we either use an exact line search or the
Armijo step length rule. Then, the sequence {x}} is
bounded, {f(x)} is descending, and every limit point
(at least one exists) is stationary; further, the sequence
[an(wi)} — 0.

If f is convex on X, then every limit point is globally
optimal. n

/

10

\ The convex case: Lower bounds

e Remember the following characterization of convex
functions in C'' on X [Theorem 3.44(a)]:
f is convex on X <=

fly) > f(x) +Vf(x)' (y—x), forallz,yc X.

e Suppose f is convex on X. Then, f(xy) + zx(xr) < f
(lower bound, LBD), and f(xy) + zx(xx) = f* if and
only if xy is globally optimal.

e Utilize the lower bound as follows: we know that
f* e [f(zr) + ze(zr), f(xr)]. Store the best LBD, and

/ and if so terminate.

*

check in Step 4 whether [f(x;) — LBD]/|LBD] is small,

~

/

11

Final comments /

Frank—Wolfe uses linear approximations—works best
for almost linear problems.

For highly nonlinear problems, the approximation is
bad—the optimal solution may be far from an extreme
point.

In order to find a near-optimum requires many
iterations—the algorithm is slow.

Another reason is that the information generated (the
extreme points) are forgotten. Even if we keep the
linear subproblems, we can do better by storing and

utilizing this information. \

12

\

\Hﬂ-vmmm& algorithm, II: Simplicial QmOOEGOmmﬁos/

e Remember the Representation Theorem 9.9 (special

case for bounded polyhedra): Let

P={x eR"| Az =b; > 0"}, be non-empty and
bounded, and V = {v',... v%} be the set of extreme
points of P. Every x € P can be represented as a

convex combination of the points in V', that is,

K
T = M ;v
i=1

for some a, ..., a > 0 such that MUMMHQ:. =1. n

\

13

The idea behind the Simplicial decomposition Bmﬂwoa/
is to generate the extreme points v* which can be used

to describe an optimal solution x*, that is, the vectors

v’ with positive weights o; in

K
Tt = M ;v
i=1

The process is still iterative: we generate a

“working

set” Py of indices i, optimize the function f over the
convex hull of the known points, and check for
stationarity and/or generate a new extreme point.

14

\ Algorithm description, Simplicial decomposition J

Step 0. Find xy € X, for example any extreme point in

X. Set k:=0. Let Py := 0.

Step 1. Let y,. be a solution to the LP problem (4).

Let Pry1 := Pr U {k}.

15

aﬁmﬁ 2. Let (ug, vr+1) be an approximate solution to ﬁrm/
restricted master problem to

minimize f | paxy + M vy | (5a)
(1) i€Pys1
subject to p+ MU v =1, (5b)
i€Ppin
w,v; >0, i € Prr1. (5c)

Step 3. Let xyy1 = ppi1Tr + Mus.mﬁﬂt?wtvs@&.

Step 4. If, for example, zx(y,) is close to zero, or if
Pri1 = Pk, then terminate! Otherwise, let k& :=k + 1

and go to Step 1.
N /

16

\

This basic algorithm keeps all information generated, /

and adds one new extreme point in every iteration.

An alternative is to drop columns (vectors y;) that
have received a zero weight, or to keep only a
maximum number of vectors. (Stated in the Notes.)

Special case: maximum number of vectors kept = 1 —

the Frank—Wolfe algorithm!

We obviously improve the Frank—Wolfe algorithm by
utilizing more information.

\

17

\ Convergence /

Based on the fact that it does at least as well as the
Frank—Wolfe algorithm.

Convergence is finite if the restricted master problems
(RMPs) are solved exactly, and the maximum number
of vectors kept is at least as many as are needed to
span x*.

e Much more efficient than the Frank—Wolfe algorithm in
practice.

We can solve the RMPs efficiently, since they are

almost unconstrained.

N /

18

-

e A large-scale non-linear network flow problem which is

An illustration of FW vs. SD

used to estimate traffic flows in cities.

The model is over the small city of Sioux Falls in North

Dakota, whose representation has 24 nodes, 76 links,
and 528 pairs of origin and destination.

Three algorithms for the RMPs were tested—a Newton
method and two gradient projection methods (see the

next section). A MATLAB implementation.

Remarkable difference—The Frank—Wolfe method
suffers from very small step length being taken.

~

/

19

SDIGradient P-1]
— SD/Gradient P-2|
— - SD/Newton

— - Frank-—Wolfe

Max relative objective function error
5,

L
0 10 20 30 40 50 60 70 80 90 100
CPU time (s)

Figure 1: The performance of DSD vs. FW on the Sioux Falls network.

- /

20

\ QP-based algorithm: The gradient projection J
algorithm

e The gradient projection algorithm is based on the
projection characterization of a stationary point
(Section 4.4): x* is a stationary point if and only if

x* = Projy[z" — Vf(z)].

- /

21

22

\o Let p := Projy[x — aV f(x)] — x, for any o > 0. %rﬁy
if and only if « is non-stationary, p is a feasible descent
direction of f at .

e The gradient projection algorithm is normally stated
such that the line search is done over the projection
arc, that is, we find a step length «y for which

Tpp1 = Projyler — iV f ()], k=1,.... (6)

has a good objective value. Use the Armijo rule to
determine oy:

- /

23

-

24

-

e Theorem 12.3 (simplified): Suppose that X C R™ is

e Gradient projection becomes steepest descent with

/o Convergence arguments similar to steepest descent 05@\

Convergence /

non-empty, compact and convex. Consider the iterative
algorithm defined by the iteration (6), where the step
length oy, is determined by the Armijo step length rule
along the projection arc. Then, the sequence {x} is
bounded, the sequence {f(x)} is descending, lower
bounded and therefore has a limit, and every limit
point of {x} is stationary. [

Armijo line search when X = R"!

25

e State the KKT conditions for the strictly convex QP
problem which determines the projection.

e Add slack variables.

e Result: A system of linear inequalities and equalities

x;v; = 0 and s;p; = 0.

e Set up a Phase I problem for the linear inequality
system, and treat the complementarity conditions
implicitly, as follows: if z; (respectively, v;) is a basic
variable, then v; (respectively, z;) must not be an

/ entering variable. Same for the pair (s;, ;).

\ Quadratic subproblems—how are they solved? /

plus two sets of complementarity conditions of the form

26

