Lecture 8: Linear programming models

Michael Patriksson

12 February 2004

0-0

- Problem type: $x_j \in \{0,1\}$ is a logical variable deciding whether a particular group of staff should serve during a particular "leg" (a flight).
- Objective: Choose a cost-effective plan, one per week.
- Constraints: all legs must be covered.

$$\underset{\boldsymbol{x}}{\text{minimize}} f(\boldsymbol{x}) = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x},$$

subject to $Ax \geq 1^m$,

 $oldsymbol{x} \geq oldsymbol{0}^n,$

x binary

where \mathbf{A} is a 0/1 matrix describing whether a group of staff is possible for inclusion in a leg or not.

A road map

- The most important application area of optimization
- An "easy" problem to some degree: convex, linear objective and constraints
- But: Often large-scale. May not always be possible to solve directly.
- Solution: Decomposition, column generation techniques. (Generates "good" variables iteratively.)
- Example: The integer programming problems modelling staff planning at airlines.

- We call this a set covering problem
- But: This is not all! How do we define x_j , that is, the column a_j of A?
- The column a_j must reflect the possibility for the group to do a certain service. This depends a lot upon the timing of the leg, since the geographical location puts constraints on the staff availability, as well as union laws of working hours and conditions.

Cro

- Answer: column generation. Solve subproblems that generate "feasible" columns, then solve the restricted problem to combined feasible columns into a work plan
- This technique solves the problem of minimizing the cost over the convex hull of the feasible set; the *strong* formulation of the LP relaxation of the above integer program. Combined with effective IP techniques.
- More on this topic in course on integer programming and the Project course.

σ

Duality and optimality

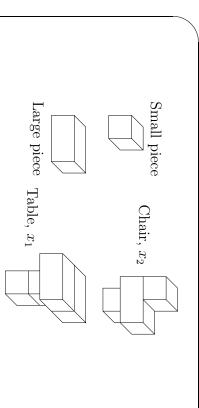
- LP problems are convex problems with CQ fulfilled (linear constraints—Abadie).
- Strong duality holds
- KKT necessary and sufficient!
- Lagrangian dual same as LP dual
- Simplex method: always satisfies complementarity; always primal feasibility after finding the first feasible solution; searches for a dual feasible point.

Basic method and its foundations

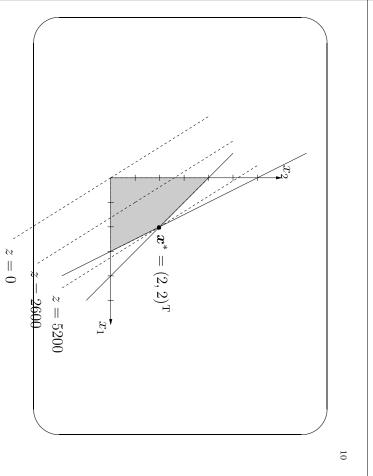
- Know that if there exists an optimal solution, one of them is an extreme point.
- Search only among extreme points
- Extreme points can be easily described in algebraic terms.
- Find such a point.
- Generate a descent direction which leads to a better extreme point.
- Continue until convergence (finite!)

An introductory problem—A DUPLO game

- A manufacturer produces two pieces of furniture, tables and chairs.
- The production of furniture requires two different pieces of raw-material, large and small pieces.
- One table is assembled from two pieces of each; one chair is assembled from one of the larger pieces and two of the smaller pieces.



- Data: 6 large and 8 small pieces available. Selling a table gives 1600 SEK, a chair 1000 SEK.
- Not trivial to choose an optimal production plan.



- What is the problem and how do we solve it?
- Solution by (1) the DUPLO game; (2) graphically;

maximize
$$z = 1600x_1 + 1000x_2$$

subject to $2x_1 + x_2 \le 6$,

$$2x_1 +2x_2 \le 8,$$

$$x_1, x_2 \ge 0.$$

Further topics

11

- Sensitivity analysis: What happens with z^* , x^* if ...?
- A dual problem: A manufacturer (Billy) produce book shelves with same raw material. Billy wish to expand their production; interested in acquiring our resources.
- Two questions (with identical answers): (1) what is the lowest bid (price) for the total capacity at which we are willing to sell?; (2) what is the highest bid (price) that Billy are prepared to offer for the resources? The answer is a measure of the wealth of the company in terms of their resources.

• To study the problem, we introduce the variables

A dual problem

 y_2 = the price which Billy offers for each small piece y_1 = the price which Billy offers for each large piece

w =the total bid which Billy offers

• Example: Net income for a table is 1600 SEK; need to get at least price bid y such that $2y_1 + 2y_2 \ge 1600$.

12

14

Geometric \iff Algebraic connections

• Must have equality constraints. Why? Inequalities set! Equalities can! cannot be manipulated while keeping the same solution

 \bullet Good to know: Every polyhedron P can be described in the form

$$P = \{ oldsymbol{x} \in \mathbb{R}^n \mid oldsymbol{A} oldsymbol{x} = oldsymbol{b}; \quad oldsymbol{x} \geq oldsymbol{0}^n \}.$$

• We call this the standard form.

subject to $minimize \quad w = 6y_1 + 8y_2$ $2y_1 + 2y_2 \ge 1600$ $y_1, \quad y_2 \ge 0.$ $y_1 + 2y_2 \ge 1000,$

- Why the sign? \boldsymbol{y} is a price!
- Optimal solution: $\boldsymbol{y}^* = (600, 200)^{\mathrm{T}}$. The bid is $w^* = 5200 \text{ SEK}.$
- Remarks: (1) $z^* = w^*!$ Our total income is the same as piece equals its shadow price! the value of our resources. (2) The price for a large

• Slack variables: $(\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{b} \in \mathbb{R}^m, \boldsymbol{A} \in \mathbb{R}^{m \times n})$

15

 $Ax \leq b$, $x \geq 0^n$ $oldsymbol{A}oldsymbol{x} + oldsymbol{I}^moldsymbol{s} = oldsymbol{b},$ $x \geq 0^n$, $s \geq 0^m$

- We can always assume even that $b \ge 0^m$; otherwise, multiply necessary rows by -1.
- Idea: We describe an extreme point through this moving between "adjacent" extreme points is simple. characterization of the feasible set; we then prove that
- Basic feasible solutions is the buzz-word. Algebraic description of an extreme point

- $x \ge 0^n : Ax = b \Longrightarrow$ Polyhedra, convex analysis!
- \bullet Sign restrictions? If x_j is free of sign, substitute it everywhere by

$$x_j = x_j^+ - x_j^-,$$

where $x_{j}^{+}, x_{j}^{-} \ge 0!$

18

- A basic solution that satisfies non-negativity is called a basic feasible solution (BFS).
- Additional terms: degenerate, non-degenerate basic solutions.
- Connection BFS-extreme points?
- Theorem 9.7: A point x is an extreme point of the set $\{x \in \mathbb{R}^n \mid Ax = b; x \geq 0^n\}$ if and only if it is a basic feasible solution.
- Proof by the fact that the rank of \boldsymbol{A} is full + Theorem 3.17.

• Consider an LP in standard form:

Basic feasible solutions (BFS)

17

minimize
$$z = c^{\mathrm{T}} x$$

subject to
$$Ax = b$$
, $x \ge 0^n$.

 $A \in \mathbb{R}^{m \times n}$ with rank A = m (otherwise, delete rows), n > m, and $b \in \mathbb{R}^m_+$.

- A point \tilde{x} is a basic solution if
- 1. $A\tilde{x} = b$; and
- 2. the columns of \boldsymbol{A} corresponding to the non-zero components of $\tilde{\boldsymbol{x}}$ are linearly independent.

The Representation Theorem revisited

• Theorem 9.9: Let $P = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}; \ \boldsymbol{x} \geq \boldsymbol{0}^n \}$ and $V = \{ \boldsymbol{v}^1, \dots, \boldsymbol{v}^k \}$ its set of extreme points. If and only if P is nonempty, V is nonempty (finite). Let $C = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}^m; \ \boldsymbol{x} \geq \boldsymbol{0}^n \}$ and $D = \{ \boldsymbol{d}^1, \dots, \boldsymbol{d}^r \}$ be the set of extreme directions of C. If and only if P is unbounded D is nonempty (finite). Every $\boldsymbol{x} \in P$ is the sum of a convex combination of points in V and a non-negative linear combination of points in D:

$$oldsymbol{x} = \sum_{i=1}^k lpha_i oldsymbol{v}^i + \sum_{j=1}^r eta_j oldsymbol{d}^j,$$

• This is a restatement of Representation Theorem 3.22, adapted to the standard form of the LP.

22

Theorem,

$$\mathbf{c}^{\mathrm{T}}\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{c}^{\mathrm{T}} \mathbf{v}^i + \sum_{j=1}^{r} \beta_j \mathbf{c}^{\mathrm{T}} \mathbf{d}^j.$$
 (1)

Now vary \boldsymbol{x} over P. Then, we vary α_i and β_j only. Then, the first term above is finite, the second is finite if and only if $\boldsymbol{c}^{\mathrm{T}}\boldsymbol{d}^j \geq 0$ for all $\boldsymbol{d}^j \in D$. Supposing that that is true, we choose $\beta_j = 0$ for all j.

• Now, let

 $a \in \arg \min_{i \in \{1, \dots, k\}} \{ \boldsymbol{c}^{\mathrm{T}} \boldsymbol{v}^i \}.$

Existence of optimal solutions to LP: Theorem 9.10

21

• Let the sets P, V and D be defined as in Theorem 9.9 and consider the LP

$$\text{minimize} \quad z = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$$

subject to $x \in P$.

This problem has a finite optimal solution if and only if P is nonempty and z is lower bounded on P, that is, if $\mathbf{c}^{\mathrm{T}}\mathbf{d}^{j} \geq 0$ for all $\mathbf{d}^{j} \in D$. If the problem has a finite

optimal solution, then there exists an optimal solution

among the extreme points.

• Proof. Let $x \in P$. Then by the Representation

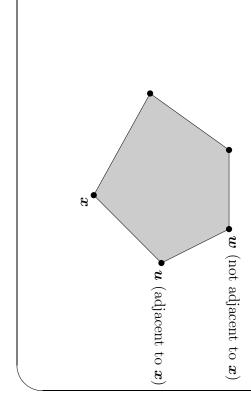
Then,

$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{v}^{a} = \boldsymbol{c}^{\mathrm{T}}\boldsymbol{v}^{a} \sum_{i=1}^{k} \alpha_{i} = \sum_{i=1}^{k} \alpha_{i} \boldsymbol{c}^{\mathrm{T}}\boldsymbol{v}^{a} \leq \sum_{i=1}^{k} \alpha_{i} \boldsymbol{c}^{\mathrm{T}}\boldsymbol{v}^{i} = \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x},$$

that is, the extreme point v^a is a global minimum.

Adjacent extreme points

• Consider the following polytope.



• Every point on the line segment joining \boldsymbol{x} and \boldsymbol{u} cannot be written as a convex combination of any pair of points that are not on this line segment. However, this is not true for the points on the line segment between the extreme points \boldsymbol{x} and \boldsymbol{w} . The extreme points \boldsymbol{x} and \boldsymbol{u} are said to be adjacent (while \boldsymbol{x} and \boldsymbol{w} are not adjacent).

- Theorem 9.13: Two extreme points are adjacent if and only if there exist corresponding BFSs whose sets of basic variables differ in exactly one place.
- The DUPLO example!