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\ A road map /

e The most important application area of optimization

e An “easy” problem to some degree: convex, linear
objective and constraints

But: Often large-scale. May not always be possible to
solve directly.

Solution: Decomposition, column generation

techniques. (Generates “good” variables iteratively.)

Example: The integer programming problems
modelling staff planning at airlines.

N /

\ e Problem type: z; € {0,1} is a logical variable %Q%bm/
whether a particular group of staff should serve during
a particular “leg” (a flight).
e Objective: Choose a cost-effective plan, one per week.
e Constraints: all legs must be covered.
minimize f(z) = ¢z,
subject to Ax > 1™,
x > 0",

a binary,

where A is a 0/1 matrix describing whether a group of

K staff is possible for inclusion in a leg or not. &

\ e We call this a set covering problem. J

e But: This is not alll How do we define z;, that is, the
column a; of A?

e The column a; must reflect the possibility for the
group to do a certain service. This depends a lot upon
the timing of the leg, since the geographical location
puts constraints on the staff availability, as well as

union laws of working hours and conditions.




)

The number of possible columns are in the millions, /
and cannot be generated before-hand.

e Answer: column generation. Solve subproblems that
generate “feasible” columns, then solve the restricted
problem to combined feasible columns into a work plan.

e This technique solves the problem of minimizing the
cost over the convex hull of the feasible set; the strong
formulation of the LP relaxation of the above integer
program. Combined with effective IP techniques.

e More on this topic in course on integer programming

and the Project course.
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\ Basic method and its foundations /

o Know that if there exists an optimal solution, one of

them is an extreme point.

Search only among extreme points.

Extreme points can be easily described in algebraic

terms.

Find such a point.

Generate a descent direction which leads to a better

extreme point.

e Continue until convergence (finite!)

N /

\ Duality and optimality /

LP problems are convex problems with CQ fulfilled
(linear constraints—Abadie).

Strong duality holds.

e KKT necessary and sufficient!

Lagrangian dual same as LP dual.

Simplex method: always satisfies complementarity;
always primal feasibility after finding the first feasible
solution; searches for a dual feasible point.

N /

\ An introductory problem—A DUPLO game J

e A manufacturer produces two pieces of furniture, tables
and chairs.

e The production of furniture requires two different

pieces of raw-material, large and small pieces.

e One table is assembled from two pieces of each; one
chair is assembled from one of the larger pieces and two
of the smaller pieces.

- /
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Small piece )
Chair, xo

7 -
Large piece Table, z, m

e Data: 6 large and 8 small pieces available. Selling a
table gives 1600 SEK, a chair 1000 SEK.

/o Not trivial to choose an optimal production plan.

\

\ e What is the problem and how do we solve it? /

e Solution by (1) the DUPLO game; (2) graphically;
(3) the Simplex method.
maximize z = 1600x; +1000x2
+xz9 < Qv
M,&,H |TMHM < mv

subject to 211

zy, T NO

N /
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\ Further topics J

e Sensitivity analysis: What happens with z*, «* if ...7

e A dual problem: A manufacturer (Billy) produce book
shelves with same raw material. Billy wish to expand

their production; interested in acquiring our resources.

e Two questions (with identical answers): (1) what is the
lowest bid (price) for the total capacity at which we are
willing to sell?; (2) what is the highest bid (price) that
Billy are prepared to offer for the resources? The
answer is a measure of the wealth of the company in
terms of their resources.

- /
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\ A dual problem /

e To study the problem, we introduce the variables

y1 = the price which Billy offers for each large piece,
Y2 = the price which Billy offers for each small piece,

w = the total bid which Billy offers.

e Example: Net income for a table is 1600 SEK; need to
get at least price bid y such that 2y; + 2y, > 1600.
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minimize w = 6y; +8ys

211 +2y2 > 1600,
y1 +2y2 = 1000,
Y1, Y2 = 0.

subject to

e Why the sign? y is a price!

e Optimal solution: y* = (600,200)*. The bid is
w* = 5200 SEK.

e Remarks: (1) z* = w*! Our total income is the same as
the value of our resources. (2) The price for a large
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/ \ / piece equals its shadow price! \
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\ Geometric <= Algebraic connections / \ e Slack variables: (x € R", b€ R™, A € R"™*") J
e Must have equality constraints. Why? Inequalities Az < b, Az +1I"s=0b,
cannot be manipulated while keeping the same solution z>0" — xz>0",
set! Equalities can! s> Q"

e Good to know: Every polyhedron P can be described
in the form

P={xzecR"|Ax=b; = >0"}.

e We call this the standard form.

N /

e We can always assume even that b > 0™; otherwise,
multiply necessary rows by —1.

e Idea: We describe an extreme point through this
characterization of the feasible set; we then prove that

moving between “adjacent” extreme points is simple.

e Basic feasible solutions is the buzz-word. Algebraic

/ description of an extreme point. \




\o Note: « : Ax = b = Linear algebra. /
e x > 0": Ax = b = Polyhedra, convex analysis!

e Sign restrictions? If x; is free of sign, substitute it

everywhere by
R
Tj =T i

where 2, z; > 0!

N /
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\ Basic feasible solutions (BFS) /

e Comnsider an LP in standard form:

minimize z=c'x
subject to Ax = b,
x >0",

A € R™" with rank A = m (otherwise, delete rows),
n>m, and b € R

e A point & is a basic solution if
1. Az = b; and

2. the columns of A corresponding to the non-zero

/ components of & are linearly independent. \
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\ e A basic solution that satisfies non-negativity is called m/
basic feasible solution (BF'S).

Additional terms: degenerate, non-degenerate basic
solutions.

Connection BFS—extreme points?

Theorem 9.7: A point x is an extreme point of the set
{x e R"| Az = b; > 0"} if and only if it is a basic
feasible solution.

Proof by the fact that the rank of A is full +
Theorem 3.17. a

N /
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\ The Representation Theorem revisited J

e Theorem 9.9: Let P={x € R" | Az =b; = > 0"}
and V = {v!,... v*} its set of extreme points. If and
only if P is nonempty, V' is nonempty (finite). Let
C={zecR"| Az =0"; x> 0"} and
D ={d",...,d"} be the set of extreme directions of C.
If and only if P is unbounded D is nonempty (finite).
Every « € P is the sum of a convex combination of
points in V' and a non-negative linear combination of
points in D:

k r
€r = MQ&\Q& + Mﬁuﬁ&uv
i=1 j=1 \
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\ for some av, ..., > 0 such that Mwﬂ o; =1, and /
Qf...i@ﬁ WO

e This is a restatement of Representation Theorem 3.22,
adapted to the standard form of the LP.

N /
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\memﬁmboo of optimal solutions to LP: Theorem @.Hy

Let the sets P, V and D be defined as in Theorem 9.9
and consider the LP

minimize z=c'x
subject to x € P.

This problem has a finite optimal solution if and only if
P is nonempty and z is lower bounded on P, that is, if
c'd’ > 0 for all @ € D. If the problem has a finite
optimal solution, then there exists an optimal solution

among the extreme points.

Proof. Let & € P. Then by the Representation \
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\ Theorem, /
k r
c'x = MU et v’ + MU Bic'd’. (1)
i=1 Jj=1

Now vary @« over P. Then, we vary o; and 3; only.
Then, the first term above is finite, the second is finite
if and only if ¢'d’ > 0 for all d’ € D. Supposing that
that is true, we choose 3; = 0 for all j.

o Now, let

a € arg minimum {c v’}
ie{l,....k}

N /
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Then, J

k k k
ctv® = c¢o® M o = M actv® < M a;ctvt = cle,
i=1 i=1 i=1

that is, the extreme point v* is a global minimum. 0O
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\ Adjacent extreme points /

e Consider the following polytope.

w (not adjacent to x)

u (adjacent to x)
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\ e Every point on the line segment joining x and u /
cannot be written as a convex combination of any pair
of points that are not on this line segment. However,
this is not true for the points on the line segment
between the extreme points & and w. The extreme
points & and u are said to be adjacent (while & and w
are not adjacent).

e Theorem 9.13: Two extreme points are adjacent if and
only if there exist corresponding BFSs whose sets of
basic variables differ in exactly one place. d

e The DUPLO example!

N /
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