
Draft from February 22, 2005

0.5 setgray0 0.5 setgray1

1

Draft from February 22, 2005

2

Draft from February 22, 2005

An Introduction to Optimization:

Foundations and Fundamental Algorithms

Niclas Andréasson, Anton Evgrafov, and Michael Patriksson

Draft from February 22, 2005

Preface

The present book has been developed from course notes, continuously
updated and used in optimization courses during the past several years
at Chalmers University of Technology, Göteborg (Gothenburg), Sweden.

A note to the instructor: The book serves to provide lecture and ex-
ercise material in a first course on optimization for second to fourth year
students at the university. (Computer exercises and projects are pro-
vided at course home pages on the local web site.) The book’s focus lies
on providing a solid basis for the analysis of optimization models and of
candidate optimal solutions, especially for continuous optimization mod-
els. The main part of the mathematical material therefore concerns the
analysis and algebra that underlie the workings of convexity and dual-
ity, and necessary/sufficient local/global optimality conditions for uncon-
strained and constrained optimization. Natural and most often classic
algorithms are then developed from these principles, and their conver-
gence characteristics analyzed. The book answers many more questions
of the form “Why/why not?” than “How?”.

This choice of focus is in contrast to books mainly providing nu-
merical guidelines as to how these optimization problems should be
solved. The number of algorithms for linear and nonlinear optimization
problems—the two main topics covered in this book—are kept quite low;
those that are discussed are considered classical, and serve to illustrate
the basic principles for solving such classes of optimization problems and
their links to the fundamental theory of optimality. Any course based
on this book therefore should add project work on concrete optimization
problems, including their modelling, analysis, solution, and interpreta-
tion.

A note to the student: The material assumes some familiarity with
algebra, real analysis, and logic. In algebra, we assume an active knowl-
edge of bases, norms, and matrix algebra and calculus. In real analysis,
we assume an active knowledge of sequences, the basic topology of sets,

Draft from February 22, 2005

Preface

real- and vector-valued functions and their calculus of differentiation. We
also assume a familiarity with basic predicate logic, especially because
proofs are based on it. A summary of the most important background
topics is found in Chapter 2, which also serves as an introduction to the
mathematical notation. The student is advised to refresh any unfamiliar
or forgotten material of this chapter before reading the rest of the book.

A detailed road map of the contents of the book’s chapters, and di-
dactic statements as well, are provided at the end of Chapter 1. Each
chapter ends with a selected number of exercises which either illustrate
the theory and algorithms with numerical examples or develop the theory
slightly further. In Appendix A solutions are given to most of them, in a
few cases in detail. (Those exercises marked “exam” together with a date
are examples of exam questions given in the course “Applied optimiza-
tion” at Göteborg University and Chalmers University of Technology
since 1997.) Sections with supplementary (but nevertheless important)
material are marked with an asterisk.

In our work on this book we have benefited from discussions with
Dr. Ann-Brith Strömberg, presently at the Fraunhofer–Chalmers Re-
search Centre for Industrial Mathematics (FCC), Göteborg, and for-
merly at mathematics at Chalmers University of Technology. We thank
the heads of undergraduate studies at mathematics, Göteborg University
and Chalmers University of Technology, Jan-Erik Andersson and Sven
Järner respectively, for reducing our teaching duties while preparing this
book.

Göteborg, XX 2005 Anton Evgrafov

Niclas Andréasson

Michael Patriksson

vi

Draft from February 22, 2005

Contents

I Introduction 1

1 Modelling and classification 3
1.1 Modelling of optimization problems 3

1.1.1 What does it mean to optimize? 3
1.1.2 Application examples 5

1.2 A quick glance at optimization history 9
1.3 Classification of optimization models 11
1.4 Conventions . 14
1.5 Applications and modelling examples 16
1.6 Defining the field . 16
1.7 Soft and hard constraints 17

1.7.1 Definitions . 17
1.7.2 A derivation of the exterior penalty function . . . 18

1.8 A road map through the material 19
1.9 On the background of this book and a didactics statement 25
1.10 Illustrating the theory . 26
1.11 Notes and further reading 27
1.12 Exercises . 28

II Fundamentals 31

2 Analysis and algebra—A summary 33
2.1 Reductio ad absurdum . 33
2.2 Linear algebra . 34
2.3 Analysis . 37

3 Convex analysis 41
3.1 Convexity of sets . 41
3.2 Polyhedral theory . 42

Draft from February 22, 2005

Contents

3.2.1 Convex hulls . 42
3.2.2 Polytopes . 45
3.2.3 Polyhedra . 47
3.2.4 The Separation Theorem and Farkas’ Lemma . . . 52

3.3 Convex functions . 57
3.4 Application: the projection of a vector onto a convex set . 66
3.5 Notes and further reading 67
3.6 Exercises . 68

III Optimality Conditions 73

4 An introduction to optimality conditions 75
4.1 Local and global optimality 75
4.2 Existence of optimal solutions 78
4.3 Optimality in unconstrained optimization 84
4.4 Optimality for optimization over convex sets 88
4.5 Near-optimality in convex optimization 95
4.6 Applications . 96

4.6.1 ∗Continuity of convex functions 96
4.6.2 The Separation Theorem 98
4.6.3 The traffic equilibrium problem 99
4.6.4 Euclidean projection 102
4.6.5 Fixed point theorems 103

4.7 Notes and further reading 109
4.8 Exercises . 110

5 Optimality conditions 115
5.1 Relations between optimality conditions (OCs) and CQs

at a glance . 115
5.2 A note of caution . 116
5.3 Geometric optimality conditions 118
5.4 The Fritz–John conditions 122
5.5 The Karush–Kuhn–Tucker conditions 128
5.6 Proper treatment of equality constraints 132
5.7 Constraint qualifications 134

5.7.1 Mangasarian–Fromovitz CQ (MFCQ) 134
5.7.2 Slater CQ . 135
5.7.3 Linear independence CQ (LICQ) 135
5.7.4 Affine constraints 136

5.8 Sufficiency of KKT–conditions under convexity 136
5.9 Applications and examples 138
5.10 Notes and further reading 140

viii

Draft from February 22, 2005

Contents

5.11 Exercises . 141

6 Lagrangian duality 145
6.1 The relaxation theorem 145
6.2 Lagrangian duality . 146

6.2.1 Lagrangian relaxation and the dual problem 146
6.2.2 Global optimality conditions 150
6.2.3 Strong duality for convex programs 152
6.2.4 Strong duality for linear and quadratic programs . 157

6.3 Illustrative examples . 159
6.3.1 Two numerical examples 159

6.4 ∗Differentiability properties of the dual function 161
6.4.1 Sub-differentiability of convex functions 162
6.4.2 Differentiability of the Lagrangian dual function . 164

6.5 Subgradient optimization methods 167
6.5.1 Convex problems 167
6.5.2 Application to the Lagrangian dual problem 174

6.6 ∗Obtaining a primal solution 176
6.6.1 Differentiability at the optimal solution 177
6.6.2 Everett’s Theorem 178

6.7 ∗Sensitivity analysis . 180
6.7.1 Analysis for convex problems 180
6.7.2 Analysis for differentiable problems 182

6.8 Applications . 183
6.8.1 Electrical networks 184
6.8.2 A Lagrangian relaxation of the traveling salesman

problem . 187
6.9 Notes and further reading 192
6.10 Exercises . 193

IV Linear Optimization 199

7 Linear programming: An introduction 201
7.1 The manufacturing problem 201
7.2 A linear programming model 202
7.3 Graphical solution . 203
7.4 Sensitivity analysis . 203

7.4.1 An increase in the number of large pieces available 204
7.4.2 An increase in the number of small pieces available 205
7.4.3 A decrease in the price of the tables 205

7.5 The dual of the manufacturing problem 206
7.5.1 A competitor . 206

ix

Draft from February 22, 2005

Contents

7.5.2 A dual problem . 207
7.5.3 Interpretations of the dual optimal solution 207

8 Linear programming models 209
8.1 Linear programming modelling 209
8.2 The geometry of linear programming 214

8.2.1 Standard form . 215
8.2.2 Basic feasible solutions and the Representation The-

orem . 218
8.2.3 Adjacent extreme points 224

8.3 Notes and further reading 226
8.4 Exercises . 226

9 The simplex method 229
9.1 The algorithm . 229

9.1.1 A BFS is known 230
9.1.2 A BFS is not known: Phase I & II 237
9.1.3 Alternative optimal solutions 241

9.2 Termination . 241
9.3 Computational complexity 242
9.4 Notes and further reading 243
9.5 Exercises . 244

10 LP duality and sensitivity analysis 247
10.1 Introduction . 247
10.2 The linear programming dual 248

10.2.1 Canonical form . 249
10.2.2 Constructing the dual 249

10.3 Linear programming duality theory 253
10.3.1 Weak and strong duality 253
10.3.2 Complementary slackness 257

10.4 The Dual Simplex method 260
10.5 Sensitivity analysis . 264

10.5.1 Perturbations in the objective function 264
10.5.2 Perturbations in the right-hand side coefficients . . 265

10.6 Notes and further reading 267
10.7 Exercises . 267

V Optimization over Convex Sets 273

11 Unconstrained optimization 275
11.1 Introduction . 275

x

Draft from February 22, 2005

Contents

11.2 Descent directions . 277
11.2.1 Basic ideas . 277
11.2.2 Less basic ideas . 280

11.3 Line searches . 285
11.3.1 Introduction . 285
11.3.2 Approximate line search strategies 286

11.4 Convergent algorithms . 288
11.4.1 Basic convergence results 288

11.5 Finite termination criteria 291
11.6 A comment on non-differentiability 292
11.7 Trust region methods . 294
11.8 Conjugate gradient methods 295

11.8.1 Conjugate directions 296
11.8.2 Conjugate direction methods 297
11.8.3 Generating conjugate directions 298
11.8.4 Conjugate gradient methods 299
11.8.5 Extension to non-quadratic problems 302

11.9 A quasi-Newton method 303
11.9.1 Introduction . 303
11.9.2 The Davidon–Fletcher–Powell method 303

11.10Convergence rates . 306
11.11Implicit functions . 306
11.12Notes and further reading 307
11.13Exercises . 308

12 Optimization over convex sets 315
12.1 Feasible direction methods 315
12.2 The Frank–Wolfe method 317
12.3 The simplicial decomposition method 320
12.4 The gradient projection algorithm 324

12.4.1 The algorithm and its convergence 324
12.4.2 A method for the projection problem 329

12.5 Notes and further reading 330
12.6 Exercises . 331

VI Optimization over General Sets 333

13 Constrained optimization 335
13.1 Penalty methods . 335

13.1.1 Exterior penalty methods 336
13.1.2 Interior penalty methods 340
13.1.3 Computational considerations 343

xi

Draft from February 22, 2005

Contents

13.1.4 Applications and examples 344
13.2 Sequential quadratic programming 348

13.2.1 Introduction . 348
13.2.2 A penalty-function based SQP algorithm 350
13.2.3 A numerical example on the MSQP algorithm . . . 354
13.2.4 On recent developments in SQP algorithms 355

13.3 A summary and comparison 356
13.4 Notes and further reading 357
13.5 Exercises . 358

VII Appendix 361

A Answers to the exercises 363
Chapter 1: Modelling and classification 363
Chapter 3: Convexity . 366
Chapter 4: An introduction to optimality conditions 369
Chapter 5: Optimality conditions 370
Chapter 6: Lagrangian duality 372
Chapter 8: Linear programming models 373
Chapter 9: The simplex method 375
Chapter 10: LP duality and sensitivity analysis 376
Chapter 11: Unconstrained optimization 378
Chapter 12: Optimization over convex sets 379
Chapter 13: Constrained optimization 380

References 383

Index 395

xii

Draft from February 22, 2005

Part I

Introduction

Draft from February 22, 2005 Draft from February 22, 2005

Modelling and
classification

I

1.1 Modelling of optimization problems

1.1.1 What does it mean to optimize?

The word “optimum” is Latin, and means “the ultimate ideal;” similarly,
“optimus” means “the best.” Therefore, to optimize refers to trying to
bring whatever we are dealing with towards its ultimate state. Let us
take a closer look at what that means in terms of an example, and at
the same time bring the definition of the term optimization forward, as
the scientific field understands and uses it.

Example 1.1 (a staff planning problem) Consider a hospital ward which
operates 24 hours a day. At different times of day, the staff requirement
differs. Table 1.1 shows the demand for reserve wardens during six work
shifts.

Shift 1 2 3 4 5 6
Hours 0–4 4–8 8–12 12–16 16–20 20–24

Demand 8 10 12 10 8 6

Table 1.1: Staff requirements at a hospital ward.

Each member of staff works in 8 hour shifts. The goal is to fulfill the
demand with the least total number of reserve wardens.

Consider now the following interpretation of the term “to optimize:”

To optimize = to do something as well as is possible.

Draft from February 22, 2005

Modelling and classification

We utilize this description to identify the mathematical problem associ-
ated with Example 1.1; in other words, we create a mathematical model
of the above problem.

Do something We identify, in the decision problem, activities which
we can control and influence. Each such activity is associated with
a variable whose value (or, activity level) is to be decided upon
(that is, optimized). The remaining quantities are constants in the
problem.

Well How good a vector of activity levels is is measured by a real-valued
function of the variable values. This quantity is to be given a high-
est or lowest value, that is, we minimize or maximize, depending
on our goal; this defines the objective function.

Possible Normally, the activity levels cannot be arbitrarily large, since
an activity often is associated with the utilization of resources
(time, money, raw materials, labour, etcetera) that are limited;
there may also be requirements of a least activity level, resulting
from a demand. Some variables must also fulfill technical/logical
restrictions, and/or relationships among themselves. The former
can be associated with a variable necessarily being integer-valued
or non-negative, by definition. The latter is the case when prod-
ucts are blended, a task is performed for several types of products,
or a process requires the input from more than one source. These
restrictions on activities form constraints on the possible choices
of the variable values.

Looking again at the problem described in Example 1.1, this is then
our declaration of a mathematical model thereof:

Variables We define

xj := number of reserve wardens whose first shift is j,

j = 1, 2, . . . , 6.

Objective function We wish to minimize the total number of reserve
wardens, that is, the objective function, which we call f , is to

minimize f(x) := x1 + x2 + · · · + x6 =

6∑

j=1

xj .

Constraints There are two types of constraints:

4

Draft from February 22, 2005

Modelling of optimization problems

Demand The demand for wardens during the different shifts can
be written as the following inequality constraints:

x6 + x1 ≥ 8,

x1 + x2 ≥ 10,

x2 + x3 ≥ 12,

x3 + x4 ≥ 10,

x4 + x5 ≥ 8,

x5 + x6 ≥ 6.

Logical There are two physical/logical constraints:

Sign xj ≥ 0, j = 1, . . . , 6.

Integer xj integer, j = 1, . . . , 6.

Summarizing, we have defined our first mathematical optimization
model, namely, that to

minimize
x

f(x) :=

6∑

j=1

xj ,

subject to x1 + x6 ≥ 8, (last shift: 1)

x1 + x2 ≥ 10, (last shift: 2)

x2 + x3 ≥ 12, (last shift: 3)

x3 + x4 ≥ 10, (last shift: 4)

x4 + x5 ≥ 8, (last shift: 5)

x5 + x6 ≥ 6, (last shift: 6)

xj ≥ 0, j = 1, . . . , 6,

xj integer, j = 1, . . . , 6.

This problem has an optimal solution, which we denote by x∗, that
is, a vector of decision variable values which gives the objective function
its minimal value among the feasible solutions (that is, the vectors x

that satisfy all the constraints). In fact, the problem has at least two
optimal solutions: x∗ = (4, 6, 6, 4, 4, 4)T and x∗ = (8, 2, 10, 0, 8, 0)T; the
optimal value is f(x∗) = 28. (The reader is asked to verify that they are
indeed optimal.)

1.1.2 Application examples

The above model is of course a crude simplification of any real appli-
cation. In practice, we would have to add requirements on the individ-
ual’s competence as well as other more detailed restrictions, the planning

5

Draft from February 22, 2005

Modelling and classification

horizon is usually longer, employment rules and other conditions apply,
etcetera, which all contribute to a more complex model. We mention a
few successful applications of staffing problems below.

Example 1.2 (applications of staffing optimization problems) (a) It has
been reported that a 1990 staffing problem application for the Montreal
municipality bus company, employing 3,000 bus drivers and 1,000 metro
drivers and ticket salespersons and guards, saved some 4 million Cana-
dian dollars per year.

(b) Together with the San Francisco police department a group of
operations research scientists developed in 1989 a planning tool based
on a heuristic solution of the staff planning and police vehicle allocation
problem. It has been reported that it gave a 20% faster planning and
savings in the order of 11 million US dollars per year.

(c) In an application from 1986, scientists collaborating with United
Airlines considered their crew scheduling problem. This is a very com-
plex problem, where the time horizon is long (typically, 30 minute inter-
vals during 7 days), and the constraints that define a feasible pattern of
allocating staff to airplanes are defined by, among others, complicated
work regulations. The savings reported then was 6 million US dollars per
year. The company Carmen Systems AB in Gothenburg develops and
markets such a tool; buyers include American Airlines, Lufthansa, SAS,
and SJ; this company has one of the largest concentrations of optimizers
in Sweden.

Remark 1.3 (on the complexity of the variable definition) The variables
xj defined in Example 1.1 are decision variables; we say that, since the
selection of the values of these variables are immediately connected to
the decisions to be made in the decision problem, and they also contain,
within their very definition, a substantial amount of information about
the problem at hand (such as shifts being eight hours long).

In the application examples discussed in Example 1.2 the variable
definitions are much more complex than in our simple example. A typ-
ical decision variable arising in a crew scheduling problem is associated
with a specific staff member, his/her home base, information about the
crew team he/she works with, a current position in time and space, a
flight leg specified by flight number(s), additional information about the
staff member’s previous work schedule and work contract, and so on.
The number of possible combinations of work schedules for a given staff
member is nowadays so huge that not all variables in a crew schedul-
ing problem can even be defined! (That is, the complete problem we
wish to solve cannot be written down.) The philosophy in solving a
crew scheduling problem is instead to algorithmically generate variables

6

Draft from February 22, 2005

Modelling of optimization problems

that one believes may receive a non-zero optimal value, and most of the
computational effort lies in defining and solving good variable genera-
tion problems, whose result is (part of) a feasible work schedule for given
staff member. The term column generation is the operations researcher’s
name for this process of generating variables in a decision problem.

Remark 1.4 (non-decision variables) Not all variables in a mathemati-
cal optimization model are decision variables:

In linear programming, we will utilize slack variables whose role is to
take on the difference between the left-hand and the right-hand side of
an inequality constraint; the slack variable thereby aids in the transfor-
mation of the inequality constraint to an equality constraint, which is
more appropriate to work with in linear programming.

Other variables can be introduced into a mathematical model simply
in order to make the model more easy to state or interpret, or to improve
upon the properties of the model. As an example of the latter, consider
the following simple problem: we wish to minimize over R the special
one-variable function f(x) := maximum {x2, x + 2}. (Plot the function
to see where the optimum is.) This is an example of a non-differentiable
function: at x = 2, for example, both the functions f1(x) := x2 and
f2(x) := x+2 define the value of the function f , but they have different
derivatives there. One way to turn this problem into a differentiable one
is by introducing an additional variable. We let z take on the value of
the largest of f1(x) and f2(x) for a given value of x, and instead write
the problem as that to minimize z, subject to z ∈ R, x ∈ R, and the
additional constraints that x2 ≤ z and x + 2 ≤ z. Convince yourself
that this transformation is equivalent to the original problem in terms
of the set of optimal solutions in x, and that the transformed problem
is differentiable.

Figure 1.1 illustrates several issues in the modelling process, which
are forthwith discussed.

The decision problem faced in the “fluffy” reality is turned into an
optimization model, through a process with several stages. By commu-
nicating with those who have raised the issue of solving the problem in
the first place, one reaches an understanding about the problem to be
solved. In order to identify and describe the components of a mathe-
matical model which is also tractable, it is often necessary to simplify
and also limit the problem somewhat, and to quantify any remaining
qualitative statements.

The modelling process does not come without difficulties. The com-
munication can often be difficult, simply because the two parties speak
different languages in terms of describing the problem. The optimization

7

Draft from February 22, 2005

Modelling and classification

Communication
Simplification
Quantification

Limitation

Data

Modification

Algorithms

Interpretation

Reality

Evaluation

Optimization model Results

Figure 1.1: Flow chart of the modelling process

problem quite often have uncertainties in the data, which moreover are
not always easy to collect or to quantify. Perhaps the uncertainties are
there for a purpose (such as in financial decision problems), but it may
be that the data is uncertain because not enough effort has been put
into providing a good enough accuracy. Further, there is often a conflict
between problem solvability and problem realism.

The problem actually solved through the use of an optimization
methodology must be supplied with data, providing model constants
and parameters in functions describing the objective function and per-
haps also some of the constraints. For this optimization problem, an
optimization algorithm then yields a result in the form of an optimal
value and/or optimal solution, if an optimal solution exists. This re-
sult is then interpreted and evaluated, which may lead to alterations of
the model, and certainly to questions regarding the applicability of the
optimal solution. The optimization model can also be altered slightly
on purpose in order to answer “what if?” type questions, for example
sensitivity analysis questions concerning the effect of small variations in
data.

The final problems that we will mention come at this stage: it is
crucial that the interpretation of the result makes sense to those who
wants to use the solution, and, finally, it must be possible to transfer the
solution back into the “fluffy” world where the problem came from.

The art of forming good optimization models is as much an art as a
science, and an optimization course can only really cover the latter. On
the other hand, this part of the modelling process should not be glossed

8

Draft from February 22, 2005

A quick glance at optimization history

over; it is often possible to construct more than one form of an mathemat-
ical model that represents the same problem equally accurately, and the
computational complexity can differ substantially between them. Form-
ing a good model is in fact as crucial to the success of the application as
the modelling exercise itself.

Optimization problems can be grouped together in classes, according
to their properties. According to this classification, the staffing problem
is a linear integer optimization problem. In Section 1.3 we present the
major distinguishing factors between different problem classes.

1.2 A quick glance at optimization history

At Chalmers, the courses in optimization are mainly given at the math-
ematics department. “Mainly” is the important word here, because
courses that have a substantial content of optimization theory and/or
methodology can be found also at other departments, such as com-
puter science, the mechanical, industrial and chemical engineering de-
partments, and at the Gothenburg School of Economics. The reason is
that optimization is so broad in its applications.

From the mathematical standpoint, optimization, or mathematical
programming as it is sometimes called, rests on several legs: analysis,
topology, algebra, discrete mathematics, etcetera, build the foundation
of the theory, and applied mathematics subjects such as numerical anal-
ysis and mathematical parts of computer science build the bridge to
the algorithmic side of the subject. On the other side, then, with opti-
mization we solve problems in a huge variety of areas, in the technical,
natural, life and engineering sciences, and in economics.

Before moving on, we would just like to point out that the term
“program” has nothing to do with “computer program;” a program is
understood to be a “decision program,” that is, a strategy or decision
rule. A “mathematical program” therefore is a mathematical problem
designed to produce a decision program.

The history of optimization is also very long. Many very often
geometrical or mechanical problems (and quite often related to war-
fare!) that Archimedes, Euclid, Heron, and other masters from antiq-
uity formulated and also solved, are optimization problems. For ex-
ample, we mention the problem of maximizing the volume of a closed
three-dimensional object (such as a sphere or a cylinder) built from a
two-dimensional sheet of metal with a given area.

The masters of two millenia later, like Bernoulli, Lagrange, Euler, and
Weierstrass developed variational calculus, studying problems in applied
physics (and still often with a mind towards warfare!) such as how to

9

Draft from February 22, 2005

Modelling and classification

find the best trajectory for a flying object.

The notion of optimality and especially how to characterize an opti-
mal solution, began to be developed at the same time. Characterizations
of various forms of optimal solutions are indeed a crucial part of any basic
optimization course.

The scientific subject operations research refers to the study of deci-
sion problems regarding operations, in the sense of controlling complex
systems and phenomena. The term was coined in the 1940s at the height
of World War 2 (WW2), when the US and British military commands
hired scientists from several disciplines in order to try to solve complex
problems regarding the best way to construct convoys in order to avoid,
or protect the cargo ships from, enemy (read: German) submarines,
how to best cover the British isles with radar equipment given the scarce
availability of radar systems, and so on. The multi-disciplinarity of these
questions, and the common topic of maximizing or minimizing some ob-
jective subject to constraints, can be seen as being the defining moment
of the scientific field. A better term than operations research is decision
science, which better reflects the scope of the problems that can be, and
are, attacked using optimization methods.

Among the scientists that took part in the WW2 effort in the US
and Great Britain, some were the great pioneers in placing optimization
on the map after WW2. Among them, we find several researchers in
mathematics, physics, and economics, who contributed greatly to the
foundations of the field as we now know it. We mention just a few here.
George W. Dantzig invented the simplex method for solving linear op-
timization problems during his WW2 efforts at Pentagon, as well as the
whole machinery of modelling such problems.1 Dantzig was originally
a statistician and famously, as a young Ph.D. student, provided solu-
tions to some then unsolved problems in mathematical statistics that
he found on the blackboard when he arrived late to a lecture, believ-
ing they were home work assignments in the course. Building on the
knowledge of duality in the theory of two-person zero-sum games, which
was developed by the world-famous mathematician John von Neumann
in the 1920s, Dantzig was very much involved in developing the theory
of duality in linear programming, together with the various characteri-
zations of an optimal solution that is brought out from that theory. A
large part of the duality theory was developed in collaboration with the
mathematician Albert W. Tucker.

1As Dantzig explains in [Dan57], linear programming formulations in fact can first
be found in the work of the first theoretical economists in France, such as F. Quesnay
in 1760; they explained the relationships between the landlord, the peasant and the
artisan. The first practical linear programming problem solved with the simplex
method was the famous diet problem.

10

Draft from February 22, 2005

Classification of optimization models

Several researchers interested in national economics studied trans-
portation models at the same time, modelling them as special linear
optimization problems. Two of them, the mathematician Leonid W.
Kantorovich and the statistician Tjalling C. Koopmans received The
Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel
in 1975 “for their contributions to the theory of optimum allocation of
resources.” They had, in fact, both worked out some of the basics of lin-
ear programming, independently of Dantzig, at roughly the same time.
(Dantzig stands out among the three especially for creating an efficient
algorithm for solving such problems.)2

1.3 Classification of optimization models

We here develop a subset of problem classes that can be set up by con-
trasting certain aspects of a general optimization problem. We let

x ∈ Rn : vector of decision variables xj , j = 1, 2, . . . , n;

f : Rn → R ∪ {±∞} : objective function;

X ⊆ Rn : ground set defined logically/physically;

gi : Rn → R : constraint function defining restriction on x :

gi(x) ≥ bi, i ∈ I; (inequality constraints)

gi(x) = di, i ∈ E . (equality constraints)

We let bi ∈ R (i ∈ I) and di ∈ R (i ∈ E) denote the right-hand sides
of these constraints; without loss of generality, we could actually let
them all be equal to zero, as any constants can be incorporated into the
definitions of the functions gi (i ∈ I ∪ E).

The optimization problem then is to

minimize
x

f(x), (1.1a)

subject to gi(x) ≥ bi, i ∈ I, (1.1b)
gi(x) = di, i ∈ E , (1.1c)

x ∈ X. (1.1d)

(If it is really a maximization problem, then we change the sign of f .)

2Incidentally, several other laureates in economics have worked with the tools of
optimization: Paul A. Samuelson (1970, linear programming), Kenneth J. Arrow
(1972, game theory), Wassily Leontief (1973, linear transportation models), Gerard
Debreu (1983, game theory), Harry M. Markowitz (1990, quadratic programming in
finance), John F. Nash Jr. (1994, game theory), William Vickrey (1996, economet-
rics), and Daniel L. McFadden (2000, microeconomics).

11

Draft from February 22, 2005

Modelling and classification

The problem type depends on the nature of the functions f and gi,
and the set X . Let us look at some examples.

(LP) Linear programming Objective function linear: f(x) = cTx =∑n
j=1 cjxj (c ∈ Rn); constraint functions affine: gi(x) = aT

i x − bi
(ai ∈ Rn, bi ∈ R, i ∈ I ∪ E)); X = {x ∈ Rn | xj ≥ 0, j = 1, 2, . . . , n }.

(NLP) Nonlinear programming Some function(s) f, gi (i ∈ I ∪ E)
are nonlinear.

Continuous optimization f, gi (i ∈ I∪E) are continuous on an open
set containing X ; X is closed and convex.

(IP) Integer programming X ⊆ {0, 1}n (binary) or X ⊆ Zn (inte-
ger).

Unconstrained optimization I ∪ E = ∅; X = Rn.

Constrained optimization I ∪ E 6= ∅ and/or X ⊂ Rn.

Differentiable optimization f, gi (i ∈ I ∪ E) are at least once con-
tinuously differentiable on an open set containing X (that is, “in C1

on X ,” which means that ∇f and ∇gi (i ∈ I ∪ E) exist there and the
gradients are continuous); further, X is closed and convex.

Non-differentiable optimization At least one of f, gi (i ∈ I ∪ E) is
non-differentiable.

(CP) Convex programming f is convex; gi (i ∈ I) are concave; gi

(i ∈ E) are affine; and X is closed and convex.

Non-convex programming The complement of the above

In Figure 1.2 we show how the problem types NLP, IP, and LP are
related.

That LP is a special case of NLP is clear by the fact that a linear
function is a special kind of nonlinear function; that IP is a special case

12

Draft from February 22, 2005

Classification of optimization models

NLP

IP

LP

Figure 1.2: The relations among NLP, IP, and LP.

of NLP can be illustrated by the fact that the constraint xj ∈ {0, 1} can
be written as the nonlinear constraint xj(1 − xj) = 0.3

Last, there is a subclass of IP that is equivalent to LP, that is, a class
of problems for which there exists at least one optimal solution which
automatically is integer valued even without imposing any integrality
constraints, provided of course that the problem has any optimal solu-
tions at all. We say that such problems have the integrality property.
An important example problem belonging to this category is the linear
single-commodity network flow problem with integer data; this class of
problems in turn includes as special cases such important problems as the
linear versions of the assignment problem, the transportation problem,
the maximum flow problem, and the shortest route problem.

Among the above list of problem classes, we distinguish, roughly only,
between two of the most important ones, as follows:

LP Linear programming ≈ applied linear algebra. LP is “easy,” be-
cause there exist algorithms that can solve every LP problem in-
stance efficiently in practice.

NLP Nonlinear programming ≈ applied analysis in several variables.
NLP is “hard,” because there does not exist an algorithm that can
solve every NLP problem instance efficiently in practice. NLP is
such a large problem area that it contains very hard problems as
well as very easy problems. The largest class of NLP problems
that are solvable with some algorithm in reasonable time is CP (of
which LP is a special case).

Our problem formulation (1.1) does not cover the following:

3If a non-negative integer variable xj is upper bounded by the integer M , it is

also possible to write

QM
k=0(xj − k) = (xj − 0)(xj − 1) · · · (xj −M) = 0, by which we

restrict a continuous variable xj to be integer-valued.

13

Draft from February 22, 2005

Modelling and classification� infinite-dimensional problems (that is, problems formulated in func-
tional spaces rather than vector spaces);� implicit functions f and/or gi (i ∈ I∪E): then, no explicit formula
can then be written down; this is typical in engineering applica-
tions, where the value of, say, f(x) can be the result of a simulation;� multiple-objective optimization:

“minimize {f1(x), f2(x), . . . , fp(x)}”;� optimization under uncertainty, or, stochastic programming (that
is, where some of f , gi (i ∈ I∪E) are only known probabilistically).

1.4 Conventions

Let us denote the set of vectors satisfying the constraints (1.1b)–(1.1d)
by S ⊆ Rn, that is, the set of feasible solutions to the problem (1.1).
What exactly do we mean by solving the problem to

minimize
x∈S

f(x)? (1.2)

Since there is no explicit operation involved here, the question is war-
ranted. The following two operations are however well-defined:

f∗ := infimum
x∈S

f(x)

denotes the infimum value of the function f over the set S; if and only
if the infimum value is attained at some point x∗ in S (and then both
f∗ and x∗ necessarily are finite) we can write that

f∗ := minimum
x∈S

f(x), (1.3)

and then we of course have that f(x∗) = f∗. (When considering maxi-
mization problems, we obtain the analogous definitions of the supremum
and the maximum.)

The second operation defines the set of optimal solutions to the prob-
lem at hand:

S∗ := arg minimum
x∈S

f(x);

the set S∗ ⊆ S is nonempty if and only if the infimum value f∗ is
attained. Finding at least one optimal solution,

x∗ ∈ argminimum
x∈S

f(x), (1.4)

14

Draft from February 22, 2005

Conventions

is a special case which moreover defines an often much more simple task.

As an example, consider the problem instance where S = { x ∈ R |
x ≥ 0 } and

f(x) =

{
1/x, if x > 0,

+∞, otherwise.

For this problem f∗ = 0 but S∗ = ∅, because the value 0 is not attained
for a finite value of x—the problem has a finite infimum value but not
an optimal solution.

These examples lead to our convention in reading the problem (1.2):
the statement “solve the problem (1.2)” means “find f∗ and an x∗ ∈ S∗,
or conclude that S∗ = ∅.”

Hence, it is implicit in the formulation that we are interested both
in the infimum value and in (at least) one optimal solution if one exists.
Whenever we are certain that only one of the two is of interest then
we will state so explicitly. We are aware that the formulation has, in
the past, been considered “vague” since no operation is visible; so, to
summarize and clarify our convention, it in fact includes two operations,
(1.3) and (1.4).

There is a second reason for stating the optimization problem (1.1)
in the way it is, a reason which is computational. To solve the problem,
we almost always need to solve a sequence of relaxations/simplifications
of the original problem in order to eventually reach a solution. (These
problem manipulations include Lagrangian relaxation, penalization, and
objective function linearization, which will be developed later on.) When
describing the particular relaxation/simplification utilized, having access
to constraint identifiers [such as (1.1c)] certainly makes the presentation
easier and clearer. That will become especially valuable when dealing
with various forms of duality, when (subsets of) the constraints are re-
laxed.

A last comment on conventions: as it is stated prior to the prob-
lem formulation (1.1) the objective function f can in general take on
both ±∞ as values. Since we are generally going to study minimiza-
tion problem, we will only be interested in objective functions f having
the properties that (a) f(x) 6= −∞ for every feasible vector x, and (b)
f(x) < +∞ for at least one feasible vector x. Such functions are known
as proper functions (which makes sense, as it is impossible to perform
a proper optimization unless these two properties hold). We will some
times refer to these properties, in particular by stating explicitly when f
can take on the value +∞, but we will assume throughout that f does
not take on the value −∞. So, in effect then, we assume implicitly that
the objective function f is proper.

15

Draft from February 22, 2005

Modelling and classification

1.5 Applications and modelling examples

To give but a quick view of the scope of applications of optimization, here
is a subset of the past few years of applied master’s or doctoral projects,
performed either at Linköping University or at Chalmers University of
Technology:� Planning routes for snow removal machines� Planning routes for disabled persons transportation� Planning of production of energy in power plants� Scheduling production and distribution of electricity� Scheduling of empty freight cars in railways� Scheduling log cutting in forests� Optimizing paper production in paper mills� Scheduling paper cutting in paper mills� Optimization of engine performance for aircraft, boats, and cars� Portfolio optimization under uncertainty for pension funds� Analysis of investment in future energy systems� Network design for mobile telecommunication, optical and internet

protocol networks� Optimal wave-length and routing in optimal networks� Scheduling of production of circuit boards� Scheduling of time tables in schools� Optimal packing and distribution of gas� Bin packing of objects in freight cars, truck, and cargo ships� Routing of vehicles for road carriers� Optimal congestion pricing in urban traffic networks

1.6 Defining the field

To define what the subject area of optimization encompasses is difficult,
given that it is connected to so many scientific areas in the natural and
technical sciences.

An obvious distinguishing factor is that an optimization model always
has an objective function and a group of constraints. On the other hand
by letting f ≡ 0 and E = ∅ then the generic problem (1.1) is that
of a feasibility problem for equality constraints, and by instead letting
I ∪E = ∅ we obtain an unconstrained optimization problem. Both these
special cases are classic problems in numerical analysis, which most often
deal with the solution of a linear or non-linear system of equations.

16

Draft from February 22, 2005

Soft and hard constraints

We can here identify a distinguishing element between optimization
and numerical analysis—that an optimization problem often involve in-
equality constraints while a problem in numerical analysis does not. Why
does that make a difference? The reason is that while in the latter
case the analysis is performed on a manifold—possibly even a linear
subspace—the analysis of an optimization problem must deal with the
fact that there are feasible regions residing in different dimensions be-
cause of the nature of inequality constraints being either active or inac-
tive. As a result, there will always be some kind of non-differentiabilities
present in some associated functionals, while numerical analysis typically
is “smooth.”

As an illustration, although this is beyond the scope of this book, we
ask the reader to ask herself what the proper extension of the famous
Implicit Function Theorem is when we replace the system h(x,y) = 0ℓ

with, say, h(x,y) ≤ 0m?

1.7 Soft and hard constraints

1.7.1 Definitions

So far, we have not discussed much about the role of different types of
constraints. In the set covering problem, for example, the constraints
are of the form

∑n
j=1 aijxj ≥ 1, i = 1, 2, . . . ,m, where aij ∈ {0, 1}.

These, as well as constraints of the form xj ≥ 0 and xj ∈ {0, 1} are hard
constraints, meaning that if they are violated then the solution does not
make much sense. Typical such constraints are technological ones; for
example, if xj is associated with the level of production, then a negative
value has no meaning, and therefore a negative value is never acceptable.
A binary variable, xj ∈ {0, 1}, is often logical, associated with the choice
between something being “on” or “off,” such as a production facility, a
city being visited by a traveling salesman, and so on; again, a fractional
value like 0.7 makes no sense, and binary restrictions almost always are
hard.

Consider now a collection of constraints that are associated with the
capacity of production, and suppose it has the form

∑n
j=1 uijxij ≤ ci, i =

1, 2, . . . ,m, where xij denotes the level of production of an item/product
j using a production process i, uij is a positive number associated with
the use of a resource (man hours, hours before inspection of the machine,
etcetera) per unit of production of the item, and ci is the available ca-
pacity of this resource in the production process. In some circumstances,
it is not unnatural to allow for the left-hand side to become larger than
the capacity, because that production plan might still be feasible, pro-

17

Draft from February 22, 2005

Modelling and classification

vided however that additional resources are made available. We consider
two types of ways to allow for this violation, and which give rise to two
different types of solution.

The first, which we are not quite ready to discuss here from a tech-
nical standpoint, is connected to the Lagrangian relaxation of the ca-
pacity constraints. If, when solving the corresponding Lagrangian dual
optimization problem, we terminate the solution process prematurely,
we will typically have a terminal primal vector that violates some of
the capacity constraints slightly. Since the capacity constraints are soft,
this solution may be acceptable.4 See Chapter 6 for further details on
Lagrangian duality.

Since it is however natural that additional resources come only at an
additional cost, an increase in the violation of this soft constraint should
have the effect of an additional, increasing cost in the objective function.
In other words, violating a constraint should come with a penalty. Given
a measure of the cost of violating the constraints, that is, the unit cost
of additional resource, we may transform the resulting problem to an
unconstrained problem with a penalty function representing the original
constraint.

Below, we relate soft constraints to exterior penalties.

1.7.2 A derivation of the exterior penalty function

Consider the standard nonlinear programming problem to

minimize
x

f(x), (1.5a)

subject to gi(x) ≥ 0, i = 1, . . . ,m, (1.5b)

where f and gi (i = 1, . . . ,m) are real-valued functions.
Consider the following relaxation of (1.5), where ρ > 0:

minimize
(x ,s)

f(x) + ρ

m∑

i=1

si, (1.6a)

subject to gi(x) ≥ −si, i = 1, . . . ,m, (1.6b)

si ≥ 0, i = 1, . . . ,m. (1.6c)

We interpret this problem as follows: by allowing the variable si to
become positive, we allow for extra slack in the constraint, at a positive
cost, ρsi, proportional to the violation.

4One interesting application arises when making capacity expansion deci-
sions in production and work force planning problems (e.g., Johnson and Mont-
gomery [JoM74, Example 4-14]) and in forest management scheduling (Hauer and
Hoganson [HaH96]).

18

Draft from February 22, 2005

A road map through the material

How do we solve this problem, for a given value of ρ > 0? What
we will develop below is a specialization of the following result (see, for
example, [RoW97, Proposition 1.35]): for a function φ : Rn × Rm →
R ∪ {+∞} one has in terms of p(s) = infimumx φ(x, s) and q(x) =
infimums φ(x, s) that

infimum
(x ,s)

φ(x, s) = infimum
x

q(x) = infimum
s

p(s).

In other words, we can solve an optimization problem in two types of
variables x and s by “eliminating” one of them (in our case, s) through
optimization, and then determine the best value of the remaining one.

Suppose then that we for a moment keep x fixed to an arbitrary
value. The above problem (1.6) then reduces to that to

minimize
s

ρ

m∑

i=1

si, (1.7a)

subject to si ≥ −gi(x), i = 1, . . . ,m, (1.7b)

si ≥ 0, i = 1, . . . ,m, (1.7c)

which clearly separates into the m independent problems to

minimize
si

ρsi, (1.8a)

subject to si ≥ −gi(x), (1.8b)

si ≥ 0. (1.8c)

This problem is trivially solvable: si := maximum {0,−gi(x)}, that is, si

takes on the role of a slack variable for the constraint. Replacing si with
this expression in x in the problem (1.6) we finally obtain the problem
to

minimize
x

f(x) + ρ

m∑

i=1

maximum {0,−gi(x)}, (1.9a)

subject to x ∈ Rn. (1.9b)

If the constraints instead are of the form gi(x) ≤ 0, then the resulting
penalty function is of the form ρ

∑m
i=1 maximum {0, gi(x)}.

See Section 13.1 for a thorough discussion on and analysis of penalty
functions and methods.

1.8 A road map through the material

Chapter 2 gives a short overview of some basic material from calculus
and linear algebra that is used throughout the book. Familiarity with
these topics is therefore very important.

19

Draft from February 22, 2005

Modelling and classification

Chapter 3 is devoted to the study of convexity, a subject known as
convex analysis. We characterize the convexity of sets and real-valued
functions and show their relations. We provide an overview of the spe-
cial convex sets called polyhedra, which can be described by linear con-
straints. Parts of the theory covered, such as the Representation Theo-
rem, Farkas’ Lemma and the Separation Theorem, build the foundation
of the study of optimality conditions in Chapter 5, the theory of strong
duality in Chapter 6 and of linear programming in Chapters 7–10.

Chapter 4 gives a gentle overview of topics associated with optimal-
ity, including the very important result that locally optimal solutions
are globally optimal solution in a convex problem. We establish basic
results regarding the existence of optimal solutions, including the famous
Weierstrass Theorem, and establish basic logical relationships between
locally optimal solutions and characterizations in terms of conditions
of “stationarity”. The latter includes the standard result in differen-
tiable, unconstrained optimization that says that a locally optimal solu-
tion must have the property that the gradient of the objective function
there is zero. Along the way, we define important concepts such as the
normal cone, the variational inequality, and the Euclidean projection of
a vector onto a convex set, and outline fixed point theorems and their
applications.

Chapter 5 collects results leading up to the central Karush–Kuhn–
Tucker (KKT) Theorem on the necessary conditions for the local opti-
mality of a feasible point in a constrained optimization problem. Es-
sentially, these conditions state that a given feasible vector x can only
be a local minimum if it is feasible in the problem and if there is no
descent direction at x which simultaneously is a feasible direction. In
order to state the KKT conditions in algebraic terms such that it can be
checked in practice and such that as few interesting vectors x as possible
satisfy them, we must restrict our study to problems and vectors satis-
fying some regularity properties. These properties are called constraint
qualifications (CQs); among them, the classic one is that “the active con-
straints are linearly independent” which is familiar from the Lagrange
Multiplier Theorem in differential calculus. Our treatment however is
more general and covers weaker (that is, better) CQs as well. The chap-
ter begins with a schematic road map for these results to further help in
the study of this material.

Chapter 6 presents a rather broad picture of the theory of Lagrangian
duality. Associated with the KKT conditions in the previous chapter is
a vector, known as the Lagrange multiplier vector, denoted µ (λ) for in-
equality (equality) constraints. The Lagrange multipliers are associated
with an optimization problem which is referred to as the Lagrangian

20

Draft from February 22, 2005

A road map through the material

dual, or simply dual, problem.5 The role of the dual problem is to define
a largest lower bound on the primal value f∗ of the primal (original)
problem. This chapter establishes the basic properties of this dual prob-
lem. In particular, it is always a convex problem. It is therefore an
appealing problem to solve in order to extract the optimal solution to
the primal problem. This chapter is in fact almost entirely devoted to
the topic of analyzing when it is possible to generate, from an optimal
dual solution µ∗, in a rather simple manner an optimal primal solution
x∗. The most important term in this context then is “strong duality”
which refers to the occasion when the optimal values in the two problems
are equal—only then is the “translation” relatively easy. Some of the
results established here are immediately transferable to the important
case of linear programming, so the link between this chapter and Chap-
ter 10 is very strong. The main difference is that in the present chapter
we must work with more general tools, while for linear programming we
have access to a more specialized analysis; therefore, proof techniques,
for example in establishing the Strong Duality Theorem, will be quite dif-
ferent. Additional topics include an analysis of optimization algorithms
for the solution of the Lagrangian dual problem, and sensitivity analysis
with respect to changes in the right-hand sides of inequality constraints.

Chapters 7–10 are devoted to the study of linear programming (LP)
models and methods. Its importance is unquestionable: it has been
stated that in the 1980s LP problems was the scientific problem that
ate the most computing power in the world. While the efficiency of LP
solvers have multiplied since then, so has the speed of computers, and LP
models still define the most important problem area in optimization in
practice. (Partly, this is also due to the fact that integer programming
models, where some, or all, variables are required to take on integer
values, use LP techniques.) It is not only for this reason however that
we devote special chapters to this topic. Their optimal solutions can be
found using quite special techniques that are not common to nonlinear
programming. As was shown in Chapter 3 linear programs have optimal
solutions at the extreme points of the polyhedral feasible set. This fact,
together with the linearity of the objective function and the constraints,
means that a feasible-direction (descent) method can be very cleverly
devised. Since we know that only extreme points are of interest, we
start at one extreme point, and then only consider as candidate search

5The dual problem was first discovered in the study of (linear) matrix games by
John von Neumann in the 1920s, but had for a long time implicitly been used also for
nonlinear optimization problems before it was properly stated and studied by Arrow,
Hurwicz, Uzawa, Everett, Falk, Rockafellar, etcetera, starting in earnest in the 1950s.
By the way, the original problem is then referred to as the primal problem, a name
given by George Dantzig’s father, a Greek scholar.

21

Draft from February 22, 2005

Modelling and classification

directions those that point towards another (in fact, adjacent) extreme
point. We can generate such directions extremely efficiently by using
a basis representation of the extreme points, and the move from one
extreme point to the other is then associated with a very simple basis
change. This special procedure is known as the Simplex method, which
was invented by George Dantzig in the 1940s.

In Chapter 7 a simple manufacturing problem is used to illustrate
the basics of linear programming. The problem is graphically solved
and it turns out that the optimal solution is an extreme point. We
investigate how the optimal solution changes if the data of the problem is
changed, and the linear programming dual to the manufacturing problem
is derived by using economical arguments.

Chapter 8 begins with a presentation of the axioms underlying the use
of LP models, and a general modelling technique is discussed. The rest
of the chapter deals with the geometry of LP models. It is shown that
every linear program can be transformed into the standard form which
is the form that the Simplex method uses. We introduce the concept
of basic feasible solution and discuss its connection to extreme points.
A version of the Representation Theorem adapted to the standard form
is presented, and we show that if there exists an optimal solution to a
linear program in standard form, then there exists an optimal solution
among the basic feasible solutions. Finally, we define adjacency between
extreme points and give an algebraic characterization of adjacency which
actually proves that the Simplex method at each iteration step moves
from one extreme point to an adjacent one.

Chapter 9 presents the Simplex method. First it is assumed that
a basic feasible solution (BFS) is known at the start of the algorithm,
and then we describe what to do when a BFS is not known from the
beginning. Termination characteristics of the algorithm is discussed and
it is shown that if all the BFSs of the problem are non-degenerate, then
the basic algorithm terminates. However, if there exist degenerate BFSs
there is a possibility that the basic algorithm cycles between degenerate
BFSs and hence never terminates. We give a simple rule, called Bland’s
rule, that eliminates cycling. We close the chapter by discussing the
computational complexity of the Simplex algorithm.

In Chapter 10 linear programming duality is studied. We discuss
how to construct the linear programming dual to a general linear pro-
gram and present duality theory, such as weak and strong duality and
complementary slackness. The dual simplex method is developed, and
we discuss how the optimal solution of a linear program changes if the
right-hand side or the objective function coefficients are modified.

Chapter 11 presents basic algorithms for differentiable, unconstrained

22

Draft from February 22, 2005

A road map through the material

optimization problems. The typical optimization algorithm is iterative,
which means that a solution is approached through a sequence of trial
vectors, typically such that each consecutive objective value is strictly
lower than the previous one in a minimization problem. This improve-
ment is possible because we can generate improving search directions—
descent (ascent) directions in a minimization (maximization) problem—
by means of solving an approximation of the original problem or the op-
timality conditions. This approximate problem (for example, the system
of Newton equations) is then combined with a line search, which approx-
imately solve the original problem over the line segment defined by the
current iterate and the search direction. This idea of combining approx-
imation (or, relaxation) with a line search (or, coordination) is the basic
methodology also for constrained optimization problems. Also, while
our opinion is that the subject of differentiable unconstrained optimiza-
tion largely is a subject within numerical analysis rather than within the
optimization field, its understanding is important because the approx-
imations/relaxations that we utilize in constrained optimization often
result in (essentially) unconstrained optimization subproblems. We de-
velop a class of quasi-Newton methods in detail, to illustrate a classic
analysis.

Chapter 12 presents some natural algorithms for differentiable nonlin-
ear optimization over polyhedral sets, which utilize LP techniques when
searching for an improving direction. The basic algorithm is known as
the Frank–Wolfe algorithm, or the conditional gradient method; it uti-
lizes ∇f(xk) as the linear cost vector at iteration k, and the direction
towards any optimal extreme point yk has already in Chapter 4 been
shown to be a feasible direction of descent whenever xk is not stationary.
A line search in the line segment [xk,yk] completes an iteration. Because
of the work involved in repeatedly solving LPs a natural improvement
of this algorithm is to keep in memory all, or some of, the previously
generated extreme points y0,y1, . . . ,yk−1, and to generate the next it-
eration point as the optimal solution within the convex hull of the union
of them, the current iterate xk and the new extreme point yk. The gra-
dient projection method extends the steepest descent method for uncon-
strained optimization problem in a natural manner. The subproblems
here are Euclidean projection problems which in this case are strictly
convex quadratic programming problems that can be solved efficiently
for some types of polyhedral sets. The convergence results reached show
that convexity of the problem is crucial in reaching good convergence
results—not only regarding the global optimality of limit points but re-
garding the nature of the set of limit points as well.

Chapter 13 begins by describing natural approaches to nonlinearly

23

Draft from February 22, 2005

Modelling and classification

constrained optimization problems, wherein all (or, a subset of) the con-
straints are replaced by penalties. The resulting penalized problem is
then possible to solve by using techniques for unconstrained problems or
problems with convex feasible sets, like those we have presented in Chap-
ters 11 and 12. In order to force the penalized problems to more and more
resemble the original one, the penalties are more and more strictly en-
forced. There are essentially two types of penalty functions, exterior and
interior penalties. Exterior penalty methods were devised mainly in the
1960s, and are perhaps the most natural ones; they are valid for almost
every type of explicit constraint, and is therefore amenable to solving
also non-convex problems. The penalty terms are gradually enforced by
letting larger and larger weights be associated with the constraints in
comparison with the objective function. Under some circumstances, one
can show that a finite value of the these penalty parameters are needed,
but in general they must tend to infinity. Therefore, these algorithms
are often burdened by numerical accuracy problems, which however, in
some cases can be limited when Newton methods are used for the sub-
problems. Interior penalty methods are also amenable to the solution
of non-convex problems, but are perhaps most naturally associated with
convex problems, where they are quite effective. In particular, the best
methods for linear programming in terms of their worst-case complexity
are interior point methods which are based on interior penalty functions.
In this type of method, the interior penalties are asymptotes with respect
to the constraint boundaries; a decreasing value of the penalty param-
eters then allow for the boundaries to be approached at the same time
as the original objective function come more and more into play. For
both types of methods, we reach convergence results on the convergence
to KKT points in the general case—including estimates of the Lagrange
multipliers—, and global convergence results in the convex case.

Chapter 13 continues by describing a basic and quite popular class
of algorithms for general nonlinear programming problems with twice
differentiable objective and constraint functions. It is called Sequential
Quadratic Programming (SQP) and is, essentially, Newton’s method ap-
plied to the KKT conditions of the problem; there are, however, some
modifications necessary. For example, because of the linearization of the
constraints, it is in general difficult to maintain feasibility in the pro-
cess, and therefore convergence cannot merely be based on line searches
in the objective function; instead one must devise a measure of “good-
ness” that take constraint violation into account. The classic approach
is to utilize a penalty function so that a constraint violation comes with
a price, and as such the SQP method ties in with the penalty methods
above. Another approach which is gaining popularity is to use a type of

24

Draft from February 22, 2005

On the background of this book and a didactics statement

bi-criterion method where a new iterate is “accepted” based both on its
objective value and its constraint violation; this is referred to as a filter
SQP method. In any case, in this type of method one strives for feasibil-
ity and optimality simultaneously, like Lagrangian relaxation methods
do; in fact, there are strong relationships between the methods in this
chapter and Lagrangian methods.

Each chapter ends with exercises on its contents, through numerical
examples or extensions of the theory developed; we have also included
a few previous exam questions from the course Applied Optimization
tought at Chalmers and Gothenburg University.

1.9 On the background of this book and a

didactics statement

This book’s foundation is the collection of lecture notes written by the
third author and used in basic optimization courses for about ten years at
Linköping University, Chalmers University of Technology, and Gothen-
burg University. With the same lecturer the course Applied Optimiza-
tion has been given at Chalmers University of Technology and Gothen-
burg University since 1997, and the lecture notes have developed more
and more from one based on algorithms to one that mainly covers the
fundamentals of optimization. With the addition of the first two authors
has come a further development of these fundamentals into the present
book, in which also our didactic wishes has begun to come true.

The third author’s main inspiration in shaping the lecture notes and
the book came from the excellent text book by Bazaraa, Sherali, and
Shetty [BSS93]. The authors separate the basic theory (convexity, poly-
hedral theory, separation, optimality, etcetera) from the algorithms de-
vised for solving nonlinear optimization problems, and they develop the
theory based on first principles, in a natural order. (The book is how-
ever too advanced to be used in a first optimization course, it does not
cover linear programming, and the algorithmic part is getting old in
some parts.)

In writing the book we have also made a few additional didactic de-
velopments. In almost every text book on optimization the topic of linear
optimization is developed before that of nonlinear and convex optimiza-
tion, and linear programming duality is developed before Lagrangian
duality. Teaching in this order may however feel unnatural both for the
lecturer and for the students: since Lagrangian duality is more general,
but similar, to linear programming duality, the feeling is that more or
less the same material is repeated, or, which is even worse, the feeling is

25

Draft from February 22, 2005

Modelling and classification

that linear programming is a rather strange special case that we develop
because we must, but not because it is an interesting topic. We have de-
veloped the material in this book such that linear programming emerges
as a natural special case of general convex programming, having a dual-
ity theory which is even richer than that of general convex programming
duality.

In keeping with this idea of developing nonlinear programming before
linear programming, we should also have covered the simplex method last
in the book. This is a possibly conflicting situation, because we believe
that the simplex method should not be described merely as a feasible-
direction method; its combinatorial nature is important, and the subject
of degeneracy is more naturally treated and understood by developing
the simplex method immediately following the development of the con-
nections between the geometry and algebra of linear programming. This
has been our choice, and we have consequently also decided that it-
erative algorithms for general nonlinear optimization over convex sets,
especially polyhedra, should be developed before those for more general
constraints, the reason being that linear programming is an important
basis for these algorithms.

1.10 Illustrating the theory

The subject of optimization, including both its basic theory and the
natural, basic, algorithmic development that is associated with solving
different classes of optimization models, is special compared to many
other mathematics subjects in that the ties between analysis/algebra and
geometry are so strong. This means, particularly, that optimization can
be learned, illustrated and revised (at least partially) by using geometric
tools. We give a few such examples.

The various techniques available for checking the convexity of a set
(respectively, a function) can be illustrated by examples in two (respec-
tively, one) dimensions. All the necessary and sufficient conditions for
local optimality in constrained and unconstrained optimization given in
Chapter 4 can thus be illustrated. A simple method in R2 is as follows:
choose a (suitably many times) differentiable function f such that a min-
imum over R2 is known. If the test problem should be unconstrained,
one is immediately ready to work with the corresponding instruments; if
the objective function should be minimized subject to a convex set, then
choose this set such that the “constrained” optimum is different from the
“unconstrained” one and use the corresponding optimality conditions for
checking that the optimal solution indeed satisfies them, or that an ar-
bitrarily chosen non-optimal vector does not. For general convex sets,

26

Draft from February 22, 2005

Notes and further reading

the KKT conditions analyzed in Chapter 5, and their relationships to
global or local optima, are illustrated through the same methodology;
the constraint qualifications (CQs), which play an important role, can
also be investigated through such examples.

In linear programming, much of the above is specialized, since duality
and the KKT conditions have their immediate correspondence in linear
programming duality and optimality. A two-dimensional polyhedron,
together with a suitable objective function can illustrate primal–dual re-
lationships such as the complementarity conditions, based on a problem
with a known solution; it can also test ones mastering of the Simplex
method. In that respect, the Simplex method offers several possibilities
for checking that the computations are done correctly; for example, the
BFS should be feasible in the problem, and the objective value given by
the matrix–vector product cT

BB−1b can be calculated in two ways, based
either on the primal basic solution xB = B−1b or the dual tentative so-
lution yT = cT

BB−1, thus providing an additional test for consistency.
The algorithmic chapters in Part VI are similar with respect to these

types of tests. For each problem class and algorithm analyzed, it is
possible, and instrumental, to construct a two-dimensional example and
check that the algorithm in question will reach a stationary point, if the
convergence conditions are met, or disprove convergence when the con-
ditions are not. This also enables a revision of the optimality conditions
of Chapters 4 and 5.

The variety of examples that can be thus constructed is immense.
This is in fact one of the reasons why we have decided to limit the
number of exercises—one can in fact create ones own set of exercises,
and will benefit greatly from doing so.

1.11 Notes and further reading

Extensive collections of optimization applications and models can be
found in several basic text books in operations research, such as [Wag75,
BHM77, Mur95, Rar98, Tah03]. The optimization modelling book by
Williams [Wil99] is a classic, now in its fourth edition. Modelling books
also exist for certain categories of applications; for example, the book
[EHL01] concerns the mathematical modelling and solution of optimiza-
tion problem arising in chemical engineering applications.

Several accounts have been written during the past few years on the
origins of operations research and mathematical programming, the rea-
sons being that we recently celebrated the 50th anniversary of the simplex
method (1997), the 80th birthday of its inventor George Dantzig (1994),
the 50th anniversary of the creation of ORSA (the Operations Research

27

Draft from February 22, 2005

Modelling and classification

Society of America) (2002), and the 50th anniversary of the Operational
Research Society (2003). The special issue of the journal Operations
Research, vol. 50, no. 1 (2002), is filled with historical anecdotes, as is
the book History of Mathematical Programming ([LRS91]).

1.12 Exercises

Exercise 1.1 (modelling, exam 980819) A new producer of perfume wish
to get a break into a lucrative market. An exclusive fragrance, Chinelle,
is to be produced and marketed for maximum profit. With the equip-
ment available it is possible to produce the perfume using two alternative
processes, and the company also consider utilizing the services of a fa-
mous model when launching it. In order to simplify the problem, let
us assume that the perfume is manufactured by the use of two main
ingredients—the first a secret substance called MO and the second a
more well-known mixture of ingredients. The first of the two processes
available provides three grams of perfume for every unit of MO and two
units of the standard substance, while the other process gives five grams
of perfume for every two (respectively, three) units of the two main in-
gredients. The company has at its disposal manufacturing processes that
can produce at most 20,000 units of MO during the planning period and
35,000 units of the standard mixture. Every unit of MO costs three
EUR (it is manufactured in France) to produce, and the other mixture
only two EUR per unit. One gram of the new perfume will cost fifty
EUR. Even without any advertising the company thinks they can sell
1000 grams of the perfume, simply because of the news value. A famous
model can be contracted for commercials, costing 5,000 EUR per photo
session (which takes half an hour), and the company thinks that a cam-
paign using his image can raise the demand by about 200 grams per half
hour of his time, but not exceeding three hours (he has too many other
offers).

Formulate the problem of choosing the best production strategy as
an LP problem.

Exercise 1.2 (modelling) A computer company has estimated the num-
ber of service hours needed during the next five months, according to
Table 1.2.

The service is performed by hired technicians; their number is 50 at
the beginning of January. Each technician can work up to 160 hours
per month. In order to cover the future demand of technicians new ones
must be hired. Before a technician is hired he/she undergoes a period of
training, which takes a month and requires 50 hours of supervision by a

28

Draft from February 22, 2005

Exercises

Month # Service hours
January 6000
February 7000
March 8000
April 9500
May 11,500

Table 1.2: Number of service hours per month; Exercise 1.2.

trained technician. A trained technician has a salary of 15,000 SEK per
month (regardless of the number of working hours) and a trainee has a
monthly salary of 7500 SEK. At the end of each month on average 5%
of the technicians quit to work for another company.

Formulate an LP problem whose optimal solution will minimize the
total salary costs during the given time period, given that the number
of available service hours are enough to cover the demand.

Exercise 1.3 (modelling, exam 010821) The advertising agency ZAP (Zetter-
ström, Anderson, and Pettersson) is designing their new office with an
open office space. The office is rectangular, with length l meters and
width b meters. Somewhat simplified, we may assume that each working
space requires a circle of diameter d and that the working spaces must
not overlap. In addition, each working space must be connected to the
telecom and computer network at one of the two possible connection
points in the office. As the three telephones have limited cable lengths
(the agency is concerned with the possible radiation danger associated
with hands-free phones and therefore do not use cordless phones)—ai

meters, respectively, i = 1, . . . , 3—the work spaces must be placed quite
near the connection points.6 See Figure 1.3 for a simple picture of the
office.

For simplicity we assume that the phone is placed at the center of the
work place. One of the office’s walls is a large panorama window and the
three partners all want to sit as close as possible to it. Therefore, they
decide to try to minimize the distance to the window for the workplace
that is the furthest away from it.

Formulate the problem of placing the three work places so that the
maximum distance to the panorama window is minimized, subject to all
the necessary constraints.

Exercise 1.4 (modelling, exam 010523) A large chain of department stores

6All the money went to other interior designs of the office space, so there is no
money left to buy more cable.

29

Draft from February 22, 2005

Modelling and classification

Window

l

b

b/2

Connection

Connection

l/2

Figure 1.3: Image of the office; Exercise 1.3

wants to build a number of distribution centers (warehouses) which will
supply 30 department stores with goods. They have 10 possible locations
to choose between. To build a warehouse at location i (i = 1, . . . , 10)
costs ci MEUR and the capacity of a warehouse at that location would
be ki volume units per week. Department store j has a demand of ej vol-
ume units per week. The distance between warehouse i and department
store j is dij km, i = 1, . . . , 10, j = 1, . . . , 30, and a certain warehouse
can only serve a department store if the distance is at most D km.

One wishes to minimize the cost of investing in the necessary distri-
bution centers.

(a) Formulate a linear integer optimization model describing the op-
timization problem.

(b) Suppose each department store must be served from one of the
warehouses. What must be changed in the model?

30

Draft from February 22, 2005

Part II

Fundamentals

Draft from February 22, 2005 Draft from February 22, 2005

Analysis and
algebra—A summary

II

The analysis of optimization problems and related optimization algo-
rithms requires the basic understanding of formal logic, linear algebra,
and multidimensional analysis. This chapter is not intended as a substi-
tution for the basic courses on these subjects but rather to give a brief
review of the notation, definitions, and basic facts which will be used in
the subsequent parts without any further notice. If you feel inconvenient
with the limited summaries presented in this chapter, contact any of the
abundant number of basic text books on the subject.

2.1 Reductio ad absurdum

Together with the absolute majority of contemporary mathematicians
we accept proofs by contradiction. The proofs in this group essentially
appeal to Aristotles law of the excluded middle, which states that any
proposition is either true or false. Thus, if some statement can be shown
to lead to a contradiction, we conclude that the original statement is
false.

Formally, proofs by contradictions amount to the following:

(A =⇒ B) ⇐⇒ (¬A ∨B) ⇐⇒ (¬¬B ∨ ¬A) ⇐⇒ (¬B =⇒ ¬A).

In the same spirit, when proving A⇐⇒ B, that is, (A =⇒ B)∧(B =⇒
A), we often argue that (A =⇒ B) ∧ (¬A =⇒ ¬B) (see, for example,
the proof of Farkas’ Lemma 3.30).

Draft from February 22, 2005

Analysis and algebra—A summary

2.2 Linear algebra

We will always work with finite dimensional Eucledian vector spaces Rn,
the natural number n denoting the dimension of the space. Elements
v ∈ Rn will be referred to as vectors, and we will always think of them
as of n real numbers stacked on top of each other, i.e., v = (v1, . . . , vn)T,
vi being real numbers, and T denoting the “transpose” sign. The basic
operations defined for two vectors a = (a1, . . . , an)T ∈ Rn and b =
(b1, . . . , bn)T ∈ Rn, and an arbitrary scalar α ∈ R are as follows:� addition: a + b = (a1 + b1, . . . , an + bn)T ∈ Rn;� multiplication by a scalar: αa = (αa1, . . . , αan)T ∈ Rn;� scalar product between two vectors: (a, b) =

∑n
i=1 aibi ∈ R.

Scalar product will most often be denoted as aTb in the subse-
quent chapters.

A linear subspace L ⊂ Rn is a set enjoying the following two proper-
ties:� for every a, b ∈ L it holds that a + b ∈ L, and� for every α ∈ R,a ∈ L it holds that αa ∈ L.

An affine subspace A ⊂ Rn is any set that can be represented as v+L :=
{ v + x | x ∈ L } for some vector v ∈ Rn and some linear subspace
L ⊂ Rn.

We associate a norm, or length, of a vector v ∈ Rn with a scalar
product as:

‖v‖ =
√

(v,v).

We will often write |v| in place of ‖v‖. The Cauchy–Bunyakowski–
Schwarz inequality says that (a, b) ≤ ‖a‖‖b‖ for a, b ∈ Rn; thus we
may define an angle θ between two vectors via cos θ = (a, b)/(‖a‖‖b‖).
Thus, we say that a ∈ Rn is orthogonal to b ∈ Rn iff (a, b) = 0 (i.e,
when cos θ = 0). The only vector orthogonal to itself is the zero vector
0n = (0, . . . , 0)T ∈ Rn; moreover, this is the only vector with zero norm.

The scalar product is symmetric and bilinear, i.e., for every a, b, c,d ∈
Rn, α, β, γ, δ ∈ R it holds that (a, b) = (b,a), and (αa + βb, γc + δd) =
αγ(a, c) + βγ(b, c) + αδ(a,d) + βδ(b,d).

A collection of vectors (v1, . . . ,vk) is said to be linearly independent

iff the equality
∑k

i=1 αivi = 0n, where α1, . . . , αk are arbitrary real
numbers, implies that α1 = · · · = αk = 0. Similarly, a collection of
vectors (v1, . . . ,vk) is said to be affinely independent iff the collection
(v2 − v1, . . . ,vk − v1) is linearly independent.

34

Draft from February 22, 2005

Linear algebra

The largest number of linearly independent vectors in Rn is n; any
collection of n linearly independent vectors from Rn is referred to as
basis. The basis (v1, . . . ,vn) is said to be orthogonal if (vi,vj) = 0 for
all i, j = 1, . . . , n, i 6= j. If, in addition, it holds that ‖vi‖ = 1 for all
i = 1, . . . , n, the basis is called orthonormal.

Given the basis (v1, . . . ,vn) in Rn, every vector v ∈ Rn can be writ-
ten in a unique way as v =

∑n
i=1 αivi, and the n-tuple (α1, . . . , αn)T will

be referred to as coordinates of v in this basis. If the basis (v1, . . . ,vn)
is orthonormal, the coordinates αi are computed as αi = (v,vi), i =
1, . . . , n.

The space Rn will typically be equipped with the standard basis
(e1, . . . , en), where

ei = (0, . . . , 0︸ ︷︷ ︸
i − 1 zeros

, 1, 0, . . . , 0︸ ︷︷ ︸
n − i zeros

)T ∈ Rn.

This basis is orthogonal, and for every vector v = (v1, . . . , vn)T ∈ Rn we
have (v, ei) = vi, i = 1, . . . , n, which allows us to identify vectors and
their coordinates.

Now, consider two spaces Rn and Rk. All linear functions from Rn

to Rk may be described using a linear space of real matrices Rk×n (i.e.,
with k rows and n columns). Given a matrix A ∈ Rk×n it will often
be convenient to view it as a row of its columns, which are thus vectors
in Rk. Namely, let A ∈ Rk×n have elements aij , i = 1, . . . , k, j =
1, . . . , n, then we write A = (a1, . . . ,an), where ai = (a1i, . . . , aki)

T ∈
Rk, i = 1, . . . , k, j = 1, . . . , n. The addition of two matrices and scalar-
matrix multiplication are defined in a straightforward way. For v =
(v1, . . . , vn) ∈ Rn we define Av =

∑n
i=1 viai ∈ Rk, where ai ∈ Rk are

the columns of A. We also define norm of the matrix by

‖A‖ = max
v∈Rn,‖v‖=1

‖Av‖.

Well, this is an example of an optimization problem already!
For a given matrix A ∈ Rk×n with elements aij we define AT ∈ Rn×k

as the matrix with elements aji i = 1, . . . , k, j = 1, . . . , n. We can give

a more elegant, but less straightforward definition: AT is the unique
matrix, satisfying the equality (Av,u) = (v,ATu) for all v ∈ Rn, u ∈
Rk. From this definition it should be clear that ‖A‖ = ‖AT‖, and that
(AT)T = A.

Given two matrices A ∈ Rk×n and B ∈ Rn×m, we define the prod-
uct C = AB ∈ Rk×m elementwise by cij =

∑n
ℓ=1 aiℓbℓj , i = 1, . . . , k,

j = 1, . . . ,m. In other words, C = AB if and only if for all v ∈ Rn,
Cv = A(Bv). By definition, the matrix product is associative (that is,

35

Draft from February 22, 2005

Analysis and algebra—A summary

A(BC) = (AB)C) for matrices of compatible sizes, but not commuta-
tive (that is, AB 6= BA) in general. It is easy (and instructive) to check
that ‖AB‖ ≤ ‖A‖‖B‖, and that (AB)T = BTAT. Vectors v ∈ Rn can
be (and sometimes will be) viewed as matrices v ∈ Rn×1. Check that
this embedding is norm-preserving, i.e., the norm of v viewed as a vector
equals the norm of v viewed as a matrix with one column.

Of course, no discussion about norms could escape mentioning the
triangle inequality: for all a, b ∈ Rn : ‖a+ b‖ ≤ ‖a‖+ ‖b‖, as well as its
consequence (check this!) for all A,B ∈ Rk×n : ‖A +B‖ ≤ ‖A‖+ ‖B‖.
It will often be used in a little bit different form: for all a, b ∈ Rn :
‖b‖ − ‖a‖ ≤ ‖b − a‖.

For quadratic matrices A ∈ Rn×n we can discuss the existence of
the unique matrix A−1, called the inverse of A, verifying the equality
that for all v ∈ Rn : A−1Av = AA−1v = v. If the inverse of a given
matrix exists, we call the latter nonsingular. The inverse matrix exists
iff the columns of A are linearly independent; iff the columns of AT

are linearly independent; iff the system of linear equations Ax = v

has a unique solution for every v ∈ Rn; iff the homogeneous system
of equations Ax = 0n has x = 0n as its unique solution. From this
definition it follows that A is nonsingular iff AT is nonsingular, and,
furthermore, (A−1)T = (AT)−1 and therefore will be denoted simply as
A−T . At last, if A and B are two nonsingular matrices of the same size,
then AB is nonsingular (check!) and (AB)−1 = B−1A−1.

If for some vector v ∈ Rn, and some scalar α ∈ R it holds that
Av = αv, we call α an eigenvalue of A and v an eigenvector, correspond-
ing to eigenvalue α. Eigenvectors, corresponding to a given eigenvalue,
form a linear subspace of Rn; two nonzero eigenvectors, corresponding
to two distinct eigenvalues are linearly independent. In general, ev-
ery matrix A ∈ Rn×n has n eigenvalues (counted with multiplicity),
maybe complex, which are furthermore roots of the characteristic equa-
tion det(A− λIn) = 0, where In ∈ Rn×n is the identity matrix, charac-
terized by the fact that for all v ∈ Rn : Inv = v. The norm of the matrix
is in fact equal to the largest absolute value of its eigenvalues. The ma-
trix A is nonsingular iff none of its eigenvalues are equal to zero, and in
this case the eigenvalues of A−1 are equal to the inverted eigenvalues of
A. The eigenvalues of AT are equal to the eigenvalues of A.

We call A symmetric iff AT = A. All eigenvalues of symmetric
matrices are real, and eigenvectors corresponding to distinct eigenvalues
are orthogonal.

Even if A is not quadratic, then ATA as well as AAT are quadratic
and symmetric. If the columns of A are linearly independent, then ATA

is nonsingular. (Similarly, if the columns of AT are linearly independent,

36

Draft from February 22, 2005

Analysis

then AAT is nonsingular.)
Sometimes, we will use the following simple fact: for every A ∈ Rk×n

with elements aij , i = 1, . . . , k, j = 1, . . . , n, it holds that aij = (ẽi,Aej),
where (ẽ1, . . . , ẽk) is the standard basis in Rk, and (e1, . . . , en) is the
standard basis in Rn, i = 1, . . . , k, j = 1, . . . , n.

We will say that A ∈ Rn×n is positive semidefinite (resp., positive
definite), and denote this by A � 0 (resp., A ≻ 0) iff for all v ∈ Rn :
(v,Av) ≥ 0 (resp., for all v ∈ Rn,v 6= 0n : (v,Av) > 0). The matrix
A is positive semidefinite (resp. positive definite) iff its eigenvalues are
nonnegative (resp., positive).

For two symmetric matrices A,B ∈ Rn×n we will write A � B

(resp., A ≻ B) iff A − B � 0 (resp., A − B ≻ 0).

2.3 Analysis

Consider a sequence {xk} ⊂ Rn. We will write limk→∞ xk = x, for
some x ∈ Rn, or just xk → x, iff limk→∞ ‖xk − x‖ = 0. We will say in
this case that {xk} converges to x, or, equivalently, that x is the limit
of {xk}. Owing to the triangle inequality, every sequence might have at
most one limit (check this!). At the same time, there are sequences that
do not converge. Moreover, an arbitrary non-converging sequence might
contain converging subsequence (or even subsequences). We will refer
to the limits of such converging subsequences as limit points of a given
sequence {xk}.

A subset S ⊂ Rn is called bounded if there exist a constant C > 0
such that for all x ∈ S : ‖x‖ ≤ C; otherwise, the set will be called
unbounded. Now, let S ⊂ Rn be bounded. An interesting and very
important fact about the bounded subsets of Rn is that every sequence
{xk} ⊂ S contains a convergent subsequence.

The set Bε(x) = {y ∈ Rn | ‖x − y‖ < ε } is called an open ball of
radius ε > 0 with center x ∈ Rn. A set S ⊂ Rn is called open iff for all
x ∈ S ∃ ε > 0 : Bε(x) ⊂ S. A set S is closed iff its complement Rn \ S
is open. An equivalent definition of closedness in terms of sequences is:
a set S ∈ Rn is closed iff all the limit points of any sequence {xk} ⊂ S
belong to S. There exist sets which are neither closed nor open. The set
Rn is both open and closed (why?).

The closure of a set S ⊂ Rn (notation: clS) is the smallest closed
set containing S; equivalently, it can be defined as the intersection of all
closed sets in Rn containing S. More constructively, the closure clS can
be obtained by considering all limit points of all sequences in S. The
closure is a closed set, and, quite naturally, the closure of a closed set
equals the set itself.

37

Draft from February 22, 2005

Analysis and algebra—A summary

The interior of a set S ⊂ Rn (notation: intS) is the largest open set
contained in S. The interior of an open set equals the set itself.

Finally, the boundary of a set S ⊂ Rn (notation: bdS, or ∂S) is the
set difference clS \ intS.

A neighbourhood of a point x ∈ Rn is an arbitrary open set contain-
ing x.

Consider a function f : S → R, where S ⊂ Rn. We say that f is
continuous at x0 ∈ S iff for every sequence {xk} ⊂ S such that xk → x0

it holds that limk→∞ f(xk) = f(x0). We say that f is continuous on S
iff f is continuous at every point of S.

Now, let f : S → R be a continuous function defined on some open
set S. We say that f ′(x0; d) ∈ R is a directional derivative of f at x0 ∈ S
in the direction d ∈ Rn if the following limit exists:

f ′(x0,d) = lim
t↓0

f(x0 + td) − f(x0)

t
,

and then f will be called directionally differentiable at x0 ∈ S in the
direction d. Clearly, if we fix x0 ∈ S and assume that f ′(x0; d) exists
for some d, then for every α ≥ 0 we have that f ′(x0;αd) = αf ′(x0; d).
If further f ′(x0; d) is linear in d, then there exists a vector called the
gradient of f at x0 ∈ S, denoted as ∇f(x0) ∈ Rn such that f ′(x0; d) =
(∇f(x0),d) and f is called differentiable at x0 ∈ S. Naturally, we say
that f is differentiable on S if it is differentiable at every point in S.

Equivalently, the gradient∇f(x0) can be defined as follows: ∇f(x0) ∈
Rn is the gradient of f at x0 iff there exists a function o : R → R such
that

f(x) = f(x0) + (∇f(x0),x − x0) + o(‖x − x0‖), (2.1)

and moreover,

lim
t↓0

o(t)

t
= 0. (2.2)

For a differentiable function f : S → R we can go one step further
and define second derivatives of f . Namely, a differentiable function f
will be called twice differentiable at x0 ∈ S iff there exists a symmetric
matrix denoted by ∇2f(x0), referred to as the Hessian matrix, and a
function o : R → R verifying (2.2), such that

f(x) = f(x0)+(∇f(x0),x−x0)+
1

2
(x−x0,∇2f(x0)(x−x0))+o(‖x−x0‖2).

(2.3)
Some times it will be convenient to discuss vector-valued functions

f : S → Rk. We say that f = (f1, . . . , fk)T is continuous if every fi,

38

Draft from February 22, 2005

Analysis

i = 1, . . . , k is; similarly we define differentiability. In the latter case, by
∇f ∈ Rn×k we denote a matrix with columns (∇f1, . . . ,∇fk).

We call a continuous function f : S → R continuously differen-
tiable [notation: f ∈ C1(S)] if it is differentiable on S and the gradient
∇f : S → Rn is continuous on S. We call f : S → R twice continuously
differentiable [notation: f ∈ C2(S)], if it is continuously differentiable
and in addition every component of ∇f : S → Rn is continuously differ-
entiable.

The following alternative forms of (2.1) and (2.3) will be useful some
times. If f : S → R is once continuously differentiable on S, and x0 ∈ S,
then for every x in some neighborhood of x0 we have

f(x) = f(x0) + (∇f(ξ),x − x0), (2.4)

where ξ = λx0 +(1−λ)x, for some 0 ≤ λ ≤ 1, is a point between x and
x0. (This result is also known as the mean-value theorem.) Similarly,
for twice differentiable functions we have

f(x) = f(x0) + (∇f(x0),x − x0) +
1

2
(x − x0,∇2f(ξ)(x − x0)), (2.5)

with the same notation.
If f, g : Rn → R are both differentiable, then f + g and fg are, and

∇(f + g) = ∇f +∇g, ∇(fg) = g∇f + f∇g. Moreover, if g is never zero,
then f/g is differentiable and ∇(f/g) = (g∇f − f∇g)/g2.

If both F : Rn → Rk and h : Rk → R are differentiable, then h(F)
is, and (∇h(F))(x) = (∇F)(x) · (∇h)(F (x)).

Finally, consider a vector-valued function F : Rk+n → Rk. Assume
that F is continuously differentiable in some neighbourhood Nu × Nx

of the point (u0,x0) ∈ Rk × Rn, and that F (u0,x0) = 0k. If the
square matrix ∇uF (u0,x0) is nonsingular, then there exists a unique
function ϕ : N ′

x → N ′
u such that F (ϕ(x),x) ≡ 0k in N ′

x , where N ′
u ×

N ′
x ⊂ Nu ×Nx is another neighbourhood of (u0,x0). Furthermore, ϕ is

differentiable at x0, and

∇ϕ(x0) = −(∇uF (u0,x0))
−1∇xF (u0,x0).

The function ϕ is known as the implicit function defined by the system
of equations F (u,x) = 0k.

Now we consider two special but very important cases.
Let for some a ∈ Rn define a linear function f : Rn → R via f(x) =

(a,x). By the Cauchy–Bunyakowski–Schwarz inequality this function is
continuous, and writing f(x)−f(x0) = (a,x−x0) for every x0 ∈ Rn we
immediately identify from the definitions of the gradient and the Hessian
that ∇f = a, ∇2f = 0n×n.

39

Draft from February 22, 2005

Analysis and algebra—A summary

Similarly, for some A ∈ Rn×n define a quadratic function f(x) =
(x,Ax). This function is also continuous, and since f(x) − f(x0) =
(Ax0,x−x0)+(x0,A(x−x0))+(x−x0,A(x−x0)) = ((A+AT)x0,x−
x0)+0.5(x−x0, (A+AT)(x−x0)), we identify ∇f(x0) = (A+AT)x0,
∇2f(x0) = A + AT. If the matrix A is symmetric, these expressions
reduce to ∇f(x0) = 2Ax0, ∇2f(x0) = 2A.

40

Draft from February 22, 2005

Convex analysis III

3.1 Convexity of sets

Definition 3.1 (convex set) Let S ⊆ Rn. The set S is convex if

x1,x2 ∈ S
λ ∈ (0, 1)

}
=⇒ λx1 + (1 − λ)x2 ∈ S

holds.

A set S is convex if, from everywhere in S, all other points of S are
“visible.”

Figure 3.1 illustrates a convex set.

S
x1

x2λx1 + (1 − λ)x2

Figure 3.1: A convex set. (For the intermediate vector shown, the value
of λ is ≈ 1/2.)

Two non-convex sets are shown in Figure 3.2.

Example 3.2 (convex and non-convex sets) By using the definition of a
convex set, the following can be established:

(a) The empty set is a convex set.

Draft from February 22, 2005

Convex analysis

S

x1

x2

λx1 + (1 − λ)x2 S

Figure 3.2: Two non-convex sets.

(b) The set {x ∈ Rn | ‖x‖ ≤ a } is convex for every value of a ∈ R.
(Note: ‖ · ‖ here denotes any vector norm, but we will almost always use
the 2-norm,

‖x‖2 :=

√√√√
n∑

j=1

x2
j .

We will most often not write the index 2, but instead use the 2-norm
implicitly whenever writing ‖ · ‖.)

(c) The set {x ∈ Rn | ‖x‖ = a } is non-convex for every a > 0.
(d) The set {0, 1, 2} is non-convex. (The second illustration in Fig-

ure 3.2 is such a case of a set of integral points in R2.)

Proposition 3.3 (convex intersection) Suppose that Sk, k ∈ K, is any
collection of convex sets. Then, the intersection

S := ∩k∈KSk

is a convex set.

Proof. Let both x1 and x2 belong to S. (If two such points cannot be
found, then the result holds vacuously.) Then, x1 ∈ Sk and x2 ∈ Sk for
all k ∈ K. Take λ ∈ (0, 1). Then, λx1 + (1 − λ)x2 ∈ Sk, k ∈ K, by the
convexity of the sets Sk. So, λx1 + (1 − λ)x2 ∈ ∩k∈KSk = S.

3.2 Polyhedral theory

3.2.1 Convex hulls

Consider the set V = {v1,v2}, where v1,v2 ∈ Rn and v1 6= v2. A set
naturally related to V is the line in Rn through v1 and v2 [see Figure
3.3(b)], that is, {λv1 + (1 − λ)v2 | λ ∈ R } = {λ1v

1 + λ2v
2 | λ1, λ2 ∈

42

Draft from February 22, 2005

Polyhedral theory

R; λ1 +λ2 = 1 }. Another set naturally related to V is the line segment
between v1 and v2 [see Figure 3.3(c)], that is, {λv1 + (1 − λ)v2 | λ ∈
[0, 1] } = {λ1v

1 + λ2v
2 | λ1, λ2 ≥ 0; λ1 + λ2 = 1 }. Motivated by this

we define the affine hull and the convex hull of a set in Rn.

Definition 3.4 (affine hull) The affine hull of a finite set V = {v1, . . . ,vk} ⊂
Rn is the set

aff V :=

{
λ1v

1 + · · · + λkvk

∣∣∣∣∣ λ1, . . . , λk ∈ R;
k∑

i=1

λi = 1

}
.

The affine hull of an infinite set V ⊆ Rn is the smallest affine subspace
that includes V .

A point λ1v
1 + · · ·+ λkvk, where v1, . . . ,vk ∈ V and λ1, . . . , λk ∈ R

such that
∑k

i=1 λi = 1, is called an affine combination of the points
v1, . . . ,vk (the number k of points in the sum must be finite).

Definition 3.5 (convex hull) The convex hull of a finite set V = {v1, . . . ,vk} ⊂
Rn is the set

convV :=

{
λ1v

1 + · · · + λkvk

∣∣∣∣∣ λ1, . . . , λk ≥ 0;

k∑

i=1

λi = 1

}
.

The convex hull of an infinite set V ⊆ Rn is the smallest convex set
that includes V .

A point λ1v
1 + · · ·+ λkvk, where v1, . . . ,vk ∈ V and λ1, . . . , λk ≥ 0

such that
∑k

i=1 λi = 1, is called a convex combination of the points
v1, . . . ,vk (the number k of points in the sum must be finite).

Example 3.6 (affine hull, convex hull) (a) The affine hull of three or
more points in R2 not all lying on the same line is R2 itself. The convex
hull of five points in R2 is shown in Figure 3.4 (observe that the “corners”
of the convex hull of the points are some of the points themselves).

(b) The affine hull of three points not all lying on the same line in
R3 is the plane through the points.

(c) The affine hull of an affine space is the space itself and the convex
hull of a convex set is the set itself.

From the definition of convex hull of a finite set it follows that the
convex hull equals the set of all convex combinations of points in the set.
It turns out that this also holds for infinite sets.

Proposition 3.7 Let V ⊆ Rn. Then, convV is the set of all convex
combinations of points of V .

43

Draft from February 22, 2005

Convex analysis

(a) (b) (c)

v1 v1 v1

v2v2 v2

Figure 3.3: (a) The set V . (b) The set aff V . (c) The set convV .

v1

v2

v3

v4

v5

Figure 3.4: The convex hull of five points in R2.

Proof. Let Q be the set of all convex combinations of points of V .
The inclusion Q ⊆ convV follows from the definition of a convex set
(since convV is a convex set). We next show that Q is a convex set. If
x1,x2 ∈ Q, then x1 = α1a

1 + · · · + αkak and x2 = β1b
1 + · · · + βmbm

for some a1, . . . ,ak, b1, . . . , bm ∈ V and α1, . . . , αk, β1, . . . , βm ≥ 0 such
that

∑k
i=1 αi =

∑m
i=1 βi = 1. Let λ ∈ (0, 1). Then

λx1 + (1 − λ)x2 = λα1a
1 + · · · + λαkak

+ (1 − λ)β1b
1 + · · · + (1 − λ)βmbm,

and since λα1 + · · ·+λαk +(1−λ)β1 + · · ·+(1−λ)βm = 1, we have that
λx1 + (1 − λ)x2 ∈ Q, so Q is convex. Since Q is convex and V ⊆ Q it
follows that convV ⊆ Q (from the definition of convex hull of an infinite

44

Draft from February 22, 2005

Polyhedral theory

set in Rn it follows that convV is the smallest convex set that contains
V). Therefore Q = convV .

Proposition 3.7 shows that every point of the convex hull of a set
can be written as a convex combination of points from the set. It tells,
however, nothing about how many points that are required. This is the
content of Carathéodory’s Theorem.

Theorem 3.8 (Carathéodory’s Theorem) Let x ∈ convV , where V ⊆
Rn. Then, x can be expressed as a convex combination of n+1 or fewer
points of V .

Proof. From Proposition 3.7 it follows that x = λ1a
1 + · · ·+ λmam for

some a1, . . . ,am ∈ V and λ1, . . . , λm ≥ 0 such that
∑m

i=1 λi = 1. We as-
sume that this representation of x is chosen so that x cannot be expressed
as a convex combination of fewer than m points of V . It follows that
no two of the points a1, . . . ,am are equal and that λ1, . . . , λm > 0. We
prove the theorem by showing that m ≤ n+ 1. Assume that m > n+ 1.
Then the set {a1, . . . ,am} must be affinely dependent, so there exist
α1, . . . , αm ∈ R, not all zero, such that

∑m
i=1 αia

i = 0n and
∑m

i=1 αi = 0.
Let ε > 0 be such that λ1 + εα1, . . . , λm + εαm are non-negative with
at least one of them zero (such an ε exists since the λ’s are all posi-
tive and at least one of the α’s must be negative). Now we have that
x =

∑m
i=1(λi +εαi)a

i and if terms with zero coefficients are omitted this
is a representation of x with fewer than m points; this is a contradiction.

3.2.2 Polytopes

We are now ready to define the geometrical object polytope.

Definition 3.9 (polytope) A subset P of Rn is a polytope if it is the
convex hull of finitely many points in Rn.

Example 3.10 (polytopes) (a) The set shown in Figure 3.4 is a poly-
tope.

(b) A cube and a tetrahedron are polytopes in R3.

We next show how to characterize a polytope as the convex hull of
its extreme points.

Definition 3.11 (extreme point) A point v of a convex set P is called
an extreme point if whenever v = λx1 + (1 − λ)x2, where x1,x2 ∈ P
and λ ∈ (0, 1), then v = x1 = x2.

45

Draft from February 22, 2005

Convex analysis

Example 3.12 (extreme points) The set shown in Figure 3.3(c) has the
extreme points v1 and v2. The set shown in Figure 3.4 has the extreme
points v1, v2, and v3. The set shown in Figure 3.3(b) do not have any
extreme points.

Lemma 3.13 Let P be the polytope convV , where V = {v1, . . . ,vk} ⊂
Rn. Then, each extreme point of P lies in V .

Proof. Assume that w /∈ V is an extreme point of P . We have that
w =

∑k
i=1 λiv

i, for some λi ≥ 0 such that
∑k

i=1 λi = 1. At least one of
the λi’s must be nonzero, say λ1. If λ1 = 1 then w = v1, a contradiction,
so λ1 ∈ (0, 1). We have that

w = λ1v
1 + (1 − λ1)

k∑

i=2

λi

1 − λ1
vi.

Since
∑k

i=2 λi/(1 − λ1) = 1 we have that
∑k

i=2 λi/(1 − λ1)v
i ∈ P , but

w is an extreme point of P so w = v1, a contradiction.

Proposition 3.14 Let P be the polytope convV , where V = {v1, . . . ,vk} ⊂
Rn. Then P is equal to the convex hull of its extreme points.

Proof. Let Q be the set of extreme points of P . If vi ∈ Q for all i =
1, . . . , k we are done, so assume that v1 /∈ Q. Then v1 = λu + (1− λ)w

for some λ ∈ (0, 1) and u,w ∈ P , u 6= w. Further, u =
∑k

i=1 αiv
i and

w =
∑k

i=1 βiv
i, for some α1, . . . , αk, β1, . . . , βk ≥ 0 such that

∑k
i=1 αi =∑k

i=1 βi = 1. Hence

v1 = λ

k∑

i=1

αiv
i + (1 − λ)

k∑

i=1

βiv
i =

k∑

i=1

(λαi + (1 − λ)βi)v
i.

It must hold that α1, β1 6= 1, since otherwise u = w = v1, a contradic-
tion. Therefore

v1 =

k∑

i=2

λαi + (1 − λ)βi

1 − (λα1 + (1 − λ)β1)
vi,

and since
∑k

i=2(λαi +(1−λ)βi)/(1−λα1− (1−λ)β1) = 1 it follows that
convV = conv (V \ {v1}). Similarly every vi /∈ Q can be removed and
we end up with a set T ⊆ V such that convT = convV and T ⊆ Q. But
from Lemma 3.13 we have that every extreme point of the set convT lies
in T and since convT = convV it follows that Q is the set of extreme
points of convT , so Q ⊆ T . Hence T = Q and we are done.

46

Draft from February 22, 2005

Polyhedral theory

3.2.3 Polyhedra

Closely related to the polytope is the polyhedron. We will show that
every polyhedron is the sum of a polytope and a convex cone. In the
next subsection we show that a set is a polytope if and only if it is a
bounded polyhedron.

Definition 3.15 (polyhedron) A subset P of Rn is a polyhedron if there
exist a matrix A ∈ Rm×n and a vector b ∈ Rm such that

P = {x ∈ Rn | Ax ≤ b }.

The importance of polyhedra is obvious, since the set of feasible
solutions of every linear programming problem is a polyhedron.

Example 3.16 (polyhedra) (a) Figure 3.5 shows the bounded polyhe-
dron P = {x ∈ R2 | x1 ≥ 2; x1 + x2 ≤ 6; 2x1 − x2 ≤ 4 }.

(b) The unbounded polyhedron P = {x ∈ R2 | x1+x2 ≥ 2; x1−x2 ≤
2; 3x1 − x2 ≥ 0 } is shown in Figure 3.6.

Often it is hard to decide whether a point in a convex set is an extreme
point or not. This is not the case for the polyhedron since there is an
algebraic characterization of the extreme points of a polyhedron. Given
an x̃ ∈ {x ∈ Rn | Ax ≤ b } we call to the rows of Ax̃ ≤ b that are
fulfilled with equality as the equality subsystem of Ax̃ ≤ b, and denote
it by Ãx̃ = b̃. The number of rows in Ã is denoted by m̃.

Theorem 3.17 (algebraic characterization of extreme points) Let x̃ ∈ P =
{x ∈ Rn | Ax ≤ b }, where A ∈ Rm×n has rankA = n and b ∈ Rm.
Further, let Ãx̃ = b̃ be the equality subsystem of Ax̃ ≤ b. Then x̃ is an
extreme point of P if and only if rank Ã = n.

Proof. [=⇒] Suppose that x̃ is an extreme point of P . If Ax̃ < b

then x̃ + ε1n, x̃ − ε1n ∈ P if ε > 0 is sufficiently small. But x̃ =
1/2(x̃+ε1n)+1/2(x̃−ε1n) which contradicts that x̃ is an extreme point,
so assume that at least one of the rows in Ax̃ ≤ b is fulfilled with equality.
If Ãx̃ = b̃ is the equality subsystem of Ax̃ ≤ b and rank Ã ≤ n − 1,
then there exists a w 6= 0n such that Ãw = 0m̃, so x̃ + εw, x̃− εw ∈ P
if ε > 0 is sufficiently small. But x̃ = 1/2(x̃+ εw)+1/2(x̃− εw), which
contradicts that x̃ is an extreme point. Hence rank Ã = n.

[⇐=] Assume that rank Ã = n. Then x̃ is the unique solution
to Ãx = b̃. If x̃ is not an extreme point of P it follows that x̃ =
λu + (1 − λ)v for some λ ∈ (0, 1) and u,v ∈ P , u 6= v. This yields

47

Draft from February 22, 2005

Convex analysis

1

1

2

2 3

3

4

4

5

5

6

6 x1

x2

x1 + x2 = 6

2x1 − x2 = 4

x1 = 2

P

Figure 3.5: Illustration of the bounded polyhedron P = {x ∈ R2 | x1 ≥
2; x1 + x2 ≤ 6; 2x1 − x2 ≤ 4 }.

that λÃu + (1 − λ)Ãv = b̃, and since Au ≤ b and Av ≤ b it follows
that Ãu = Ãv = b̃, which contradicts that x̃ is the unique solution to
Ãx = b̃. Therefore x̃ must be an extreme point.

Corollary 3.18 The number of extreme points of the polyhedron P =
{x ∈ Rn | Ax ≤ b }, where A ∈ Rm×n and b ∈ Rm, is finite.

Proof. The theorem implies that the number of extreme points of P
never exceeds the number of ways in which n objects can be chosen from
a set of m objects, that is, the number of extreme points is less than or
equal to

(
m
n

)
=

m!

n!(m− n)!
.

48

Draft from February 22, 2005

Polyhedral theory

1

1

2

2

3

3

4

4

5

5

6

6

x1

x2

x1 + x2 = 2

x1 − x2 = 2

3x1 − x2 = 0

P

Figure 3.6: Illustration of the unbounded polyhedron P = {x ∈ R2 |
x1 + x2 ≥ 2; x1 − x2 ≤ 2; 3x1 − x2 ≥ 0 }.

Remark 3.19 Since the number of extreme points is finite, the convex
hull of the extreme points of a polyhedron is a polytope.

Definition 3.20 (cone) A subset C of Rn is a cone if λx ∈ C whenever
x ∈ C and λ > 0.

Example 3.21 (cone) (a) The set {x ∈ Rn | Ax ≤ 0m }, where A ∈
Rm×n, is a cone. Since this set is a polyhedron this type of cone is
usually called a polyhedral cone.

(b) Figure 3.7(a) illustrates a convex cone and Figure 3.7(b) illus-
trates a non-convex cone in R2.

We have arrived at the most important theorem of this section,
namely the Representation Theorem, which tells that every polyhedron
is the sum of a polytope and a polyhedral cone. The Representation

49

Draft from February 22, 2005

Convex analysis

(a) (b)

Figure 3.7: (a) A convex cone in R2. (b) A non-convex cone in R2.

Theorem will have great importance in the linear programming theory
in Chapter 8.

Theorem 3.22 (Representation Theorem) Let Q = {x ∈ Rn | Ax ≤
b }, where A ∈ Rm×n and b ∈ Rm, P is the convex hull of the extreme
points of Q, and C = {x ∈ Rn | Ax ≤ 0m }. If rankA = n then
Q = P + C = {x ∈ Rn | x = u + v for some u ∈ P and v ∈ C }. In
other words, every polyhedron (that has at least one extreme point) is
the sum of a polytope and a polyhedral cone.

Proof. Let x̃ ∈ Q and Ãx̃ = b̃ be the corresponding equality subsystem
of Ax̃ ≤ b. We prove the theorem by induction on the rank of Ã.

If rank Ã = n it follows from Theorem 3.17 that x̃ is an extreme
point of Q, so x̃ ∈ P +C, since 0n ∈ C. Now assume that x̃ ∈ P +C for
all x̃ ∈ Q with k ≤ rank Ã ≤ n, and choose x̃ ∈ Q with rank Ã = k− 1.
Then there exists w 6= 0n such that Ãw = 0ñ. If |λ| is sufficiently small
it follows that x̃ + λw ∈ Q. (Why?) If x̃ + λw ∈ Q for all λ ∈ R we
must have Aw = 0n which implies rankA ≤ n − 1, a contradiction.
Suppose that there exists a largest λ+ such that x̃ + λ+w ∈ Q. Then if
Ā(x̃ +λ+w) = b̄ is the equality subsystem of A(x̃ +λ+w) ≤ b we must
have rank Ā ≥ k. (Why?) By the induction hypothesis it then follows
that x̃ + λ+w ∈ P +C. On the other hand, if x̃ + λw ∈ Q for all λ ≥ 0
then Aw ≤ 0m, so w ∈ C. Similarly, if x̃ + λ(−w) ∈ Q for all λ ≥ 0
then −w ∈ C, and if there exists a largest λ− such that x̃+λ−(−w) ∈ Q
then x̃ + λ−(−w) ∈ P + C.

50

Draft from February 22, 2005

Polyhedral theory

Above we got a contradiction if none of λ+ or λ− existed. If only
one of them exists, say λ+, then x̃ + λ+w ∈ P + C and −w ∈ C, and
it follows that x̃ ∈ P + C. Otherwise, if both λ+ and λ− exist then
x̃ + λ+w ∈ P + C and x̃ + λ−(−w) ∈ P + C, and x̃ can be written as
a convex combination of these points, which gives x̃ ∈ P + C. We have
shown that x̃ ∈ P + C for all x̃ ∈ Q with k − 1 ≤ rank Ã ≤ n and the
theorem follows by induction.

Example 3.23 (illustration of the Representation Theorem) In Figure 3.8(a)
we have a bounded polyhedron. The interior point x̃ can be written as
a convex combination of the extreme point x5 and the point v on the
boundary, that is, there is a λ ∈ (0, 1) such that

x̃ = λx5 + (1 − λ)v.

Further, the point v can be written as a convex combination of the
extreme points x2 and x3, that is, there exists a µ ∈ (0, 1) such that

v = µx2 + (1 − µ)x3.

This gives that

x̃ = λx5 + (1 − λ)µx2 + (1 − λ)(1 − µ)x3,

and since λ, (1 − λ)µ, (1 − λ)(1 − µ) ≥ 0 and

λ+ (1 − λ)µ+ (1 − λ)(1 − µ) = 1

we have that x̃ lies in the convex hull of the extreme points x2, x3, and
x5.

In Figure 3.8(b) we have an unbounded polyhedron. The interior
point x̃ can be written as a convex combination of the extreme point x3

and the point v on the boundary, that is, there exists a λ ∈ (0, 1) such
that

x̃ = λx3 + (1 − λ)v.

The point v lies on the halfline {x ∈ R2 | x = x2 + µ(x1 − x2), µ ≥
0 }. All the points on this halfline are feasible, which gives that if the
polyhedron is given by {x ∈ R2 | Ax ≤ b } then

A(x2 + µ(x1 − x2)) = Ax2 + µA(x1 − x2) ≤ b, ∀µ ≥ 0.

But then we must have that A(x1−x2) ≤ 02 since otherwise some com-
ponent of µA(x1 −x2) tends to infinity as µ tends to infinity. Therefore

51

Draft from February 22, 2005

Convex analysis

x1 − x2 lies in the cone C = {x ∈ R2 | Ax ≤ 02 }. Now there exists a
µ ∈ (0, 1) such that

v = x2 + µ(x1 − x2),

and it follows that

x̃ = λx3 + (1 − λ)x2 + (1 − λ)µ(x1 − x2),

so since (1 − λ)µ ≥ 0 and x1 − x2 ∈ C, x̃ is the sum of a point in the
convex hull of the extreme points and a point in the polyhedral cone C.

(a) (b)

x1x1

x2

x2

x3

x3

x4

x4

x5

x̃

v

x̃

v

Figure 3.8: Illustration of the Representation Theorem (a) in the
bounded case, and (b) in the unbounded case.

3.2.4 The Separation Theorem and Farkas’ Lemma

We introduce the important concept of separation and use it to show
that every polytope is a polyhedron.

Theorem 3.24 (Separation Theorem) Suppose that the set C ⊆ Rn is
closed and convex, and that the point y does not lie in C. Then there

52

Draft from February 22, 2005

Polyhedral theory

exist a vector π 6= 0n and α ∈ R such that πTy > α and πTx ≤ α for
all x ∈ C.

We postpone the proof of this theorem since it requires the Weier-
strass Theorem 4.6 and the first order necessary optimality condition
given in Proposition 4.22.b. Instead the proof is presented in Section 4.4.

The Separation Theorem is easy to describe geometrically: If a point
y does not lie in a closed and convex set C, then there exists a hyperplane
that separates y from C.

Example 3.25 (illustration of the Separation Theorem) Consider the closed
and convex set C = {x ∈ R2 | ‖x‖ ≤ 1 } (i.e., C is the unit disc in R2),
and the point y = (1.5, 1.5). Since y /∈ C the Separation Theorem tells
that there exists a line in R2 that separates y from C. This line is how-
ever not unique. In Figure 3.9 we see that the line given by π = (1, 1)T

and α = 2 is a candidate. (The proof of Theorem 3.24 actually constructs
a tangent plane to C.)

x1

x2

2

2

C

y = (1.5, 1.5)T

πTx = α ⇐⇒ x1 + x2 = 2

Figure 3.9: Illustration of the Separation Theorem: the unit disk is
separated from y by the line {x ∈ R2 | x1 + x2 = 2 }.

53

Draft from February 22, 2005

Convex analysis

Theorem 3.26 A set P is a polytope if and only if it is a bounded
polyhedron.

Proof. [⇐=] From the Representation Theorem 3.22 we get that a
bounded polyhedron is the convex hull of its extreme points and hence
by Remark 3.19 a polytope.

[=⇒] Let V = {v1, . . . ,vk} ⊂ Rn and let P be the polytope convV .
In order to prove that P is a polyhedron we must show that P is the solu-
tion set of some system of linear inequalities. The idea of the proof is to
define a bounded polyhedron consisting of the coefficients and right-hand
sides of all valid inequalities for P and then apply the Representation
Theorem to select a finite subset of those valid inequalities.

To carry this out, consider the set Q ⊂ Rn+1 defined as
{ (

a

b

) ∣∣∣∣ a ∈ Rn; b ∈ R; −1n ≤ a ≤ 1n; −1 ≤ b ≤ 1; aTv ≤ b, v ∈ V

}
.

Since V is a finite set, Q is a polyhedron. Further Q is bounded, so by
the Representation Theorem we know that Q is the convex hull of its
extreme points

(
a1

b1

)
, . . . ,

(
am

bm

)
.

We will prove that the linear system

(a1)Tx ≤ b1, . . . , (a
m)Tx ≤ bm, (3.1)

defines P . We first show that P is contained in the solution set of
(3.1). So, suppose that x̃ ∈ P . Then x̃ = λ1v

1 + · · · + λkvk for some

λ1, . . . , λk ≥ 0 such that
∑k

i=1 λi = 1. Thus, for each i = 1, . . . ,m, we
have

(ai)Tx̃ = (ai)T(λ1v
1 + · · · + λkvk) = λ1(a

i)Tv1 + · · · + λk(ai)Tvk

≤ λ1bi + · · · + λkbi = bi,

so x̃ satisfies all inequalities in (3.1).
In order to show that the solution set of (3.1) is contained in P , let x̃

be a solution to (3.1) and suppose that x̃ /∈ P . Then, by the Separation
Theorem 3.24 there exist a vector π 6= 0n and α ∈ R such that πTx̃ > α
and πTx ≤ α for all x ∈ P . By scaling πTx ≤ α by a positive constant
if necessary, we may assume that −1n ≤ π ≤ 1n and −1 ≤ α ≤ 1. That

is, we may assume that

(
π

α

)
∈ Q. So we may write

(
π

α

)
= λ1

(
a1

b1

)
+ · · · + λm

(
am

bm

)
,

54

Draft from February 22, 2005

Polyhedral theory

for some λ1, . . . , λm ≥ 0 such that
∑m

i=1 λi = 1. Therefore,

πTx̃ = λ1(a
1)Tx̃ + · · · + λm(am)Tx̃ ≤ λ1b1 + · · · + λmbm = α.

But this is a contradiction, since πTx̃ > α. So x̃ ∈ P , which completes
the proof.

We introduce the concept of finitely generated cones. In the proof of
Farkas’ Lemma below we will use that finitely generated cones are convex
and closed and in order to show that we prove that finitely generated
cones are polyhedral sets.

Definition 3.27 (finitely generated cone) A finitely generated cone is
one that is generated by a finite set, that is, a cone of the form

cone {v1, . . . ,vm} := {λ1v
1 + · · · + λmvm | λ1, . . . , λm ≥ 0 },

where v1, . . . ,vm ∈ Rn. Note that if A is an m× n matrix, then the set
{y ∈ Rm | y = Ax, x ≥ 0n } is a finitely generated cone.

Recall that a cone that is a polyhedron is called a polyhedral cone.
We show that a finitely generated cone is always a polyhedral cone and
vice versa.

Theorem 3.28 A convex cone in Rn is finitely generated if and only if
it is polyhedral.

Proof. [=⇒] Assume that C is the finitely generated cone

cone {v1, . . . ,vm},

where v1, . . . ,vm ∈ Rn. From Theorem 3.26 we know that polytopes
are polyhedral sets, so conv {0n,v1, . . . ,vm} is the solution set of some
linear inequalities

(a1)Tx ≤ b1, . . . , (a
k)Tx ≤ bk. (3.2)

Since the solution set of these inequalities contains 0n we must have
b1, . . . , bk ≥ 0. We show that C is the polyhedral cone A that equals
the solution set of the inequalities of (3.2) for which bi = 0. Since
v1, . . . ,vm ∈ A we have C ⊆ A. In order to show that A ⊆ C, assume
that w ∈ A. Then λw is in the solution set of (3.2) if λ > 0 is sufficiently
small. Hence there exists a λ > 0 such that

λw ∈ {x ∈ Rn | (a1)Tx ≤ b1, . . . , (a
k)Tx ≤ bk }

= conv {0n,v1, . . . ,vm} ⊆ C,

55

Draft from February 22, 2005

Convex analysis

so w ∈ (1/λ)C = C. Hence A ⊆ C, and C = A.
[⇐=] Suppose that C is a polyhedral cone in Rn. Let P be a poly-

tope in Rn such that 0n ∈ intP (that is, 0n lies in the interior of P).
Then C ∩ P is a bounded polyhedron and hence the representation the-
orem gives that C ∩ P = conv {v1, . . . ,vm}, where v1, . . . ,vm is the
extreme points of C ∩ P . We show that C is the finitely generated cone
cone {v1, . . . ,vm}. Since v1, . . . ,vm ∈ C and C is a polyhedral cone we
get that cone {v1, . . . ,vm} ⊆ C. If c ∈ C, then, since 0n ∈ intP , there
exists a λ > 0 such that λc ∈ P . Thus

λc ∈ C ∩ P = conv {v1, . . . ,vm} ⊆ cone {v1, . . . ,vm},

and so c ∈ (1/λ)cone {v1, . . . ,vm} = cone {v1, . . . ,vm}. Hence it fol-
lows that C ⊆ cone {v1, . . . ,vm}, and C = cone {v1, . . . ,vm}.

Corollary 3.29 Finitely generated cones in Rn are convex and closed.

Proof. Halfspaces, that is, sets of the form {x ∈ Rn | aTx ≤ b } for
some vector a ∈ Rn and b ∈ R, are convex and closed. (Why?) By
the theorem a finitely generated cone is the intersection of finitely many
halfspaces and thus the corollary follows from Proposition 3.3 and the
fact that intersections of closed sets are closed.

We close this section by proving the famous Farkas’ Lemma by using
the Separation Theorem 3.24 and the fact that finitely generated cones
are convex and closed.

Theorem 3.30 (Farkas’ Lemma) Let A ∈ Rm×n and b ∈ Rm. Then,
exactly one of the systems

Ax = b, (I)

x ≥ 0n,

and

ATπ ≤ 0n, (II)

bTπ > 0,

has a feasible solution, and the other system is inconsistent.

Proof. Let C = {y ∈ Rm | y = Ax, x ≥ 0n }. If (I) is infeasible then
b /∈ C. The set C is a finitely generated cone. Hence, by Corollary 3.29,
it follows that C is convex and closed so by the Separation Theorem 3.24

56

Draft from February 22, 2005

Convex functions

there exist a vector π ∈ Rm and α ∈ R such that bTπ > α and yTπ ≤ α
for all y ∈ C, that is,

xTATπ ≤ α, ∀x ≥ 0n. (3.3)

Since 0m ∈ C it follows that α ≥ 0, so bTπ > 0, and if there exists an
x̃ ≥ 0n such that x̃TATπ > 0 then (3.3) cannot hold for any α (if λ ≥ 0
then λx̃ ≥ 0n and (λx̃)TATπ = λx̃TATπ tends to infinity as λ tends to
infinity). Therefore we must have that xTATπ ≤ 0 for all x ≥ 0n, and
this holds if and only if ATπ ≤ 0n, which means that (II) is feasible.

On the other hand, if (I) has a feasible solution, say x̃ ≥ 0n, then
Ax̃ = b, so if there is a solution to (II), say π̃, then x̃TATπ̃ = bTπ̃ > 0.
But then ATπ̃ > 0n (since x̃ ≥ 0n), a contradiction. Hence (II) is in-
feasible.

3.3 Convex functions

Definition 3.31 (convex function) Suppose that S ⊆ Rn. A function
f : Rn → R ∪ {+∞} is convex at x̄ ∈ S if

x ∈ S
λ ∈ (0, 1)
λx̄ + (1 − λ)x ∈ S




 =⇒ f(λx̄ + (1 − λ)x) ≤ λf(x̄) + (1 − λ)f(x).

The function f is convex on S if it is convex at every x̄ ∈ S.

In other words, a convex function is such that a linear interpolation
never is lower than the function itself.1

From the definition follows that a function f : Rn → R ∪ {+∞} is
convex on a convex set S ⊆ Rn if and only if

x1,x2 ∈ S
λ ∈ (0, 1)

}
=⇒ f(λx1 + (1 − λ)x)2 ≤ λf(x1) + (1 − λ)f(x2).

Definition 3.32 (concave function) Suppose that S ⊆ Rn. A function
f : Rn → R ∪ {+∞} is concave at x̄ ∈ S if −f is convex at x̄.

The function f is concave on S if it is concave at every x̄ ∈ S.

1Words like “lower” and “above” should be understood in the sense of the com-
parison between the y-coordinates of the respective function at the same coordinates
in x.

57

Draft from February 22, 2005

Convex analysis

Definition 3.33 (strictly convex (concave) function) A function f : Rn →
R ∪ {+∞} is strictly convex at x̄ ∈ S if

x ∈ S, x 6= x̄

λ ∈ (0, 1)
λx̄ + (1 − λ)x ∈ S




 =⇒ f(λx̄ + (1 − λ)x) < λf(x̄) + (1 − λ)f(x).

The function f strictly convex (concave) on S if it is strictly convex
(concave) at every x̄ ∈ S.

In other words, a strictly convex function is such that a linear inter-
polation is strictly above the function itself.

Figure 3.10 illustrates a strictly convex function.

f(x1)
f

x

f(x2)

f(λx1 + (1 − λ)x2)

λf(x1) + (1 − λ)f(x2)

x1 x2λx1 + (1 − λ)x2

Figure 3.10: A convex function.

Example 3.34 (convex functions) By using the definition of a convex
function, the following can be established:

(a) The function f : Rn → R defined by f(x) := ‖x‖ is convex on
Rn.

(b) Let c ∈ Rn, a ∈ R. The affine function x 7→ f(x) := cTx + a =∑n
j=1 cjxj + a is both convex and concave on Rn. These are also the

only finite functions that are both convex and concave.

Figure 3.11 illustrates a non-convex function.

Proposition 3.35 (sums of convex functions) Suppose that S ⊆ Rn. Let
fk, k ∈ K, with K finite, be a collection of functions fk : Rn → R∪{+∞}.
Let αk ≥ 0, k ∈ K. If each function fk, k ∈ K, is convex at x̄ ∈ S, then
so is the function f : Rn → R∪{+∞} defined by f(x) :=

∑
k∈K αkfk(x).

58

Draft from February 22, 2005

Convex functions

f(x1)

f

x

f(x2)

f(λx1 + (1 − λ)x2)

λf(x1) + (1 − λ)f(x2)

x1 x2λx1 + (1 − λ)x2

Figure 3.11: A non-convex function.

Proof. The proof is left as an exercise.

Proposition 3.36 (convexity of composite functions) Suppose that S ⊆
Rn and P ⊆ R. Let further g : S → R be a function which is convex on
S, and f : P → R be convex and non-decreasing [y ≥ x =⇒ f(y) ≥ f(x)]
on P . Then, the composite function f(g) is convex on the set {x ∈ Rn |
g(x) ∈ P }.

Proof. Let x1,x2 ∈ S ∩ {x ∈ Rn | g(x) ∈ P }, and λ ∈ (0, 1). Then,

f(g(λx1 + (1 − λ)x2)) ≤ f(λg(x1) + (1 − λ)g(x2))

≤ λf(g(x1)) + (1 − λ)f(g(x2)),

where the first inequality follows from the convexity of g and the prop-
erty of f being increasing, and the second inequality from the convexity
of f .

The following example functions are important in the development
of penalty methods in linear and nonlinear optimization; their convexity
is crucial is developing a convergence theory for such algorithms.

Example 3.37 (convex composite functions) Suppose that the function
g : Rn → R is convex.

(a) The function x 7→ − log(−g(x)) is convex on the set {x ∈ Rn |
g(x) < 0 }. (This function will be of interest in the analysis of interior
point methods; see Section 13.1.)

(b) The function x 7→ −1/g(x) is convex on the set {x ∈ Rn | g(x) <
0 }.

59

Draft from February 22, 2005

Convex analysis

[Note: This function is convex, but the above rule for composite
functions cannot be used. Utilize the definition of a convex function
instead.]

(b) The function x 7→ 1/ log(−g(x)) is convex on the set {x ∈ Rn |
g(x) < −1 }.

[Note: This function is convex, but the above rule for composite
functions cannot be used. Utilize the definition of a convex function
instead. The domain of the function must here be limited, because
x 7→ 1/x is convex only for positive x.]

We next characterize the convexity of a function on Rn by the con-
vexity of its epigraph in Rn+1.

[Note: the graph of a function f : Rn → R is the boundary of epi f ,
which still resides in Rn+1. See Figure 3.12 for an example, correspond-
ing to the convex function in Figure 3.10.]

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

epi f

f

x

Figure 3.12: A convex function and its epigraph.

Definition 3.38 (epigraph) The epigraph of a function f : Rn → R ∪
{+∞} is the set

epi f := { (x, α) ∈ Rn+1 | f(x) ≤ α }. (3.4)

The epigraph of the function f restricted to the set S ⊆ Rn is

epiS f := { (x, α) ∈ S × R | f(x) ≤ α }. (3.5)

60

Draft from February 22, 2005

Convex functions

Theorem 3.39 Suppose that S ⊆ Rn is a convex set. Then, the func-
tion f : Rn → R ∪ {+∞} is convex on S if, and only if, its epigraph
restricted to S is a convex set in Rn+1.

Proof. [=⇒] Suppose that f is convex on S. Let (x1, α1), (x
2, α2) ∈

epiS f . Let λ ∈ (0, 1). By the convexity of f on S,

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

≤ λα1 + (1 − λ)α2.

Hence, [λx1 + (1−λ)x2, λα1 + (1−λ)α2] ∈ epiS f , so epiS f is a convex
set in Rn+1.

[⇐=] Suppose that epiS f is convex. Let x1,x2 ∈ S, whence

(x1, f(x1)), (x2, f(x2)) ∈ epiS f.

Let λ ∈ (0, 1). By the convexity of epiS f , it follows that

[λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)] ∈ epiS f,

that is, f(λx1 +(1−λ)x2) ≤ λf(x1)+ (1−λ)f(x2). Hence, f is convex
on S.

When f is in C1 (once differentiable, with continuous partial deriva-
tives) or C2 (twice differentiable, with continuous second partial deriva-
tives), then convexity can be characterized also in terms of these deriva-
tives. The results show how with stronger differentiability properties the
characterizations become more and more useful in practice.

Theorem 3.40 (convexity characterizations in C1) Let f ∈ C1 on an
open convex set S.

(a) f is convex on S ⇐⇒ f(y) ≥ f(x) + ∇f(x)T(y − x), for all
x,y ∈ S.

(b) f is convex on S ⇐⇒ [∇f(x) − ∇f(y)]T(x − y) ≥ 0, for all
x,y ∈ S.

The result in (a) states, in words, that “every tangent plane to the
function surface in Rn+1 lies on, or below, the epigraph of f”, or, that
“a first-order approximation is below f .”

The result in (b) states that ∇f is “monotone on S.”
[Note: when n = 1, the result in (b) states that f is convex if and

only if its derivative f ′ in non-decreasing, that is, that it is monotonically
increasing.]

61

Draft from February 22, 2005

Convex analysis

Proof. (a) [=⇒] Take x1,x2 ∈ S and λ ∈ (0, 1). Then,

λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2)

⇐⇒ [λ > 0]

f(x1) − f(x2) ≥ (1/λ)[f(λx1 + (1 − λ)x2) − f(x2)].

Let λ ↓ 0. Then, the right-hand side of the above inequality tends to the
directional derivative of f at x2 in the direction of (x1 −x2), so that in
the limit it becomes

f(x1) − f(x2) ≥ ∇f(x2)T(x1 − x2).

The result follows.
[⇐=] We have that

f(x1) ≥ f(λx1 + (1 − λ)x2) + (1 − λ)∇f(λx1 + (1 − λ)x2)T(x1 − x2),

f(x2) ≥ f(λx1 + (1 − λ)x2) + λ∇f(λx1 + (1 − λ)x2)T(x2 − x1).

Multiply the inequalities by λ and (1 − λ), respectively, and add them
together to get the result sought.

(b) [=⇒] Using (a), and the two inequalities

f(y) ≥ f(x) + ∇f(x)T(y − x), x,y ∈ S,

f(x) ≥ f(y) + ∇f(y)T(x − y), x,y ∈ S,

added together, yields that [∇f(x)−∇f(y)]T(x−y) ≥ 0, for all x,y ∈ S.
[⇐=] The mean-value theorem states that

f(x2) − f(x1) = ∇f(x)T(x2 − x1),

where x = λx1 + (1 − λ)x2 for some λ ∈ (0, 1). By assumption,
[∇f(x)−∇f(x1)]T(x−x1) ≥ 0, so (1−λ)[∇f(x)−∇f(x1)]T(x2−x1) ≥
0. From this follows that ∇f(x)T(x2 − x1) ≥ ∇f(x1)T(x2 − x1). Used
above, we get that f(x2) ≥ f(x1) +∇f(x1)T(x2 −x1). We are done.

Figure 3.13 illustrates part (a) of Theorem 3.40.
By replacing the inequalities in (a) and (b) in the theorem by strict

inequalities, and adding the requirement that x 6= y holds in the state-
ments, we can establish a characterization also of strictly convex func-
tions. The statement in (a) then says that the tangential hyperplane lies
strictly below the function except at the tangent point, and (b) states
that the gradient mapping is strictly monotone.

Still more can be said in C2:

62

Draft from February 22, 2005

Convex functions

f

f(x̄) + f ′(x̄)(y − x̄) x̄
(
f ′(x̄)
−1

)
x

Figure 3.13: A tangent plane to the graph of a convex function.

Theorem 3.41 (convexity characterizations in C2) Let f be in C2 on an
open, convex set S ⊆ Rn.

(a) f is convex on S ⇐⇒ ∇2f(x) is positive semidefinite for all x ∈ S.
(b) ∇2f(x) is positive definite for all x ∈ S =⇒ f is strictly convex

on S.

[Note: When n = 1 and S is an interval, the above reduce to the
following familiar results: (a) f is convex on S if and only if f ′′(x) ≥ 0
for every x ∈ S; (b) f is strictly convex on S if f ′′(x) > 0 for every
x ∈ S.]

Proof.
(a) [=⇒] Suppose that f is convex and let x̄ ∈ S. We must show

that pT∇2f(x̄)p ≥ 0 for all p ∈ Rn holds.
Since S open, for any given p ∈ Rn, x̄ + αp ∈ S whenever |α| 6= 0

is small enough. We utilize Theorem 3.40(a) as follows: by the twice
differentiability of f ,

f(x̄ + αp) ≥ f(x̄) + α∇f(x̄)Tp, (3.6)

f(x̄ + αp) = f(x̄) + α∇f(x̄)Tp +
1

2
α2pT∇2f(x̄)p + o(α2). (3.7)

Subtracting (3.7) from (3.6), we get

1

2
α2pT∇2f(x̄)p + o(α2) ≥ 0.

Dividing by α2 and letting α ↓ 0 it follows that pT∇2f(x̄)p ≥ 0.
[⇐=] Suppose that the Hessian matrix is positive semi-definite at

each point in S. The proof depends on the following second-order mean-
value theorem: for every x,y ∈ S, there exists ℓ ∈ [0, 1] such that

f(y) = f(x)+∇f(x)T(y−x)+
1

2
(y−x)T∇2f [x+ℓ(y−x)](y−x). (3.8)

63

Draft from February 22, 2005

Convex analysis

By assumption, the last term in (3.8) is non-negative, whence we obtain
the convexity characterization in Theorem 3.40(a).

(b) [=⇒] By the assumptions, the last term in (3.8) is always positive
when y 6= x, whence we obtain the strict convexity characterization in
C1.

It is important to note that the opposite direction in the result (b) is
false. A simple example that establishes this fact is the function defined
by f(x) = x4, S = R; f is strictly convex on R (why?), but its second
derivative at zero is f ′′(0) = 0!

The case of quadratic functions f is interesting to mention in partic-
ular. For quadratic functions, that is, functions of the form

f(x) = (1/2)xTQx − qTx + a,

for some symmetric matrix Q ∈ Rn×n, vector q ∈ Rn and constant
a ∈ R, it holds that ∇2f(x) ≡ Q for every x where f is defined, so the
value ∇2f(x) does not depend on x. In this case, we can state a stronger
result than in Theorem 3.41: the quadratic function f is convex on the
open, convex set S ⊆ Rn if and only if Q is positive semi-definite; f is
strictly convex on S if and only if Q is positive definite. To prove this
result is simple from the above result for general C2 functions, and is
left as an exercise.

What happens when S is not full-dimensional (which is often the
case)? Take, for example, f(x) := x2

1 − x2
2 and S := {x ∈ R2 | x1 ∈

R; x2 = 0 }. Then, f is convex on S but ∇2f(x) is not positive semi-
definite anywhere on S. The below result covers this type of case. Its
proof is left as an exercise.

Theorem 3.42 (convexity characterizations in C2, part II) Let S ⊆ Rn

be a nonempty convex set and f : Rn → R be in C2 on Rn. Let C be
the subspace parallel to the affine hull of S. Then,

f is convex on S ⇐⇒ pT∇2f(x)p ≥ 0 for every x ∈ S and p ∈ C.

In particular, when S has a nonempty interior, f is convex if and only
if ∇2f(x) is positive semi-definite for every x ∈ S.

We have already seen that the convexity of a function is intimately
connected to the convexity of a certain set, namely the epigraph of the
function. The following result shows that a particular type of set, defined
by those vectors that bound a convex function from above, is a convex
set. Later, we will utilize this result to establish the convexity of feasible
sets in some optimization problems.

64

Draft from February 22, 2005

Convex functions

Definition 3.43 (level set) Let g : Rn → R be a function. The level set
of g with respect to the value b ∈ R is the set

levg(b) := { x ∈ Rn | g(x) ≤ b }. (3.9)

Figure 3.14 illustrates a level set of a convex function.

f

levf (b)

b

x

Figure 3.14: A level set of a convex function.

Proposition 3.44 (convex level sets from convex functions) Suppose that
the function g : Rn → R is convex. Then, for every value of b ∈ R, the
level set levg(b) is a convex set. It is moreover closed.

Proof. The result follows immediately from the definitions of a convex
set and a convex function. Let x1,x2 both satisfy the constraint that
g(x) ≤ b holds, and let λ ∈ (0, 1). (If not two such points x1,x2 can
be found, then the result holds vacuously.) Then, by the convexity of g,
g(λx1 + (1 − λ)x2) ≤ λb+ (1 − λ)b = b, so the set levg(b) is convex.

The fact that a convex function which is defined on Rn is continuous
establishes that the set levg(b) is always closed.2 (Why?)

Definition 3.45 (convex problem) Suppose that the setX ⊆ Rn is closed
and convex. Suppose further that f : Rn → R is convex and that the
functions gi : Rn → R, i ∈ I, all are concave. Suppose, finally, that the
functions gi : Rn → R, i ∈ E , all are affine. Then, the problem (1.1) is
called a convex problem.

2That convex functions are continuous will be established in Theorem 4.26.

65

Draft from February 22, 2005

Convex analysis

The name is natural, because the objective function is a convex one,
and the feasible set is closed and convex as well. In order to establish
the latter, we refer first to Proposition 3.44 together with the concavity
Definition 3.32 to establish that the inequality constraints define convex
sets [note that in the problem (1.1) the inequalities are given as ≥-
constraints], and ask the reader to prove that a constraint of the form
aT

i x = bi defines a convex set as well. Finally, we refer to Proposition 3.3
to establish that the intersection of all the convex sets defined by S, I,
and E is convex.

3.4 Application: the projection of a vector

onto a convex set

In Figure 3.15 we illustrate the Euclidean projection of some vectors
onto a convex set.

y

�
�
�
�

�
�
�
�

S

w

ProjS(w)

z

ProjS(z)

Figure 3.15: The projection of two vectors onto a convex set.

Starting with the vector w, we see that its Euclidean projection cor-
responds to the vector in S which is nearest (in Euclidean norm) to w;
the vector w − ProjS(w) clearly is normal to the set S. The point z

has the Euclidean projection ProjS(z), but there are also several other
vectors with the same projection; the figure shows in a special shading
the set of vectors z which all have that same projection onto S. This set
is a cone, which we refer to as the normal cone to S at x = ProjS(z). In
the case of the point ProjS(w) the normal cone reduces to a ray—which
of course is also a cone. (The difference between these two sets is largely
the consequence of the fact that there is only one constraint active at w,
while there are two constraints active at z; when developing the KKT

66

Draft from February 22, 2005

Notes and further reading

conditions in Chapter 5 we shall see how strongly the number of active
constraints influence the appearance of the optimality conditions.)

We will also return to this image already in Section 4.6.4, because
it contains the building blocks of the optimality conditions for an op-
timization problem with an objective function in C1 over a convex set.
For now, we will establish only one property of the projection operation
ProjS , namely that the distance function, distS , defined by

distS(x) := ‖x− ProjS(x)‖, x ∈ Rn, (3.10)

is a convex function on Rn. In particular, then, this function is continu-
ous. (Later, we will establish also that the projection operation ProjS is
a well-defined operation whenever S is nonempty, closed and convex, and
that the operation has particularly nice continuity properties. Before we
can do so, however, we need to establish some results on the existence
of optimal solutions.)

Let x1,x2 ∈ Rn, and λ ∈ (0, 1). Then,

distS(λx1 + (1 − λ)x2) = ‖(λx1 + (1 − λ)x2)

− ProjS(λx1 + (1 − λ)x2)‖
≤ ‖(λx1 + (1 − λ)x2)

− (λProjS(x1) + (1 − λ)ProjS(x2))‖
≤ λ‖x1 − ProjS(x1)‖

+ (1 − λ)‖x2 − ProjS(x2)‖
= λdistS(x1) + (1 − λ)distS(x2),

where the first inequality comes from the fact that λProjS(x1) + (1 −
λ)ProjS(x2) ∈ S, but it does not necessarily define ProjS(λx1 + (1 −
λ)x2) (it may have a longer distance), and the second is the triangle
inequality.

The proof is illustrated in Figure 3.16.

3.5 Notes and further reading

The subject of this chapter—convex analysis—has a long history, going
back about a century. Much of the early work on convex sets and func-
tions, for example, the theory of separation of convex sets, go back to the
work of Minkowski [Min10, Min11]. More modern expositions are found
in [Fen51, Roc70, StW70], which all are classical in the field. More easily
accessible are the modern books [BoL00, BNO03]. Lighter introductions

67

Draft from February 22, 2005

Convex analysis

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

S

x1

x2

ProjS(x1)

ProjS(x2)

Figure 3.16: The distance function is convex. From the intermediate
vector λx1 + (1 − λ)x2 shown the distance to the vector λProjS(x1) +
(1 − λ)ProjS(x2)) [the dotted line segment] clearly is longer than to its
projection on S [shown as a solid line].

are also found in [BSS93, HiL93]. The most influencial of all of these
books is Convex Analysis by R. T. Rockafellar [Roc70].

Carathéodory’s Theorem 3.8 is found in [Car07, Car11]. Farkas’
Lemma in Theorem 3.30 is due to Farkas [Far1902]. Theorem 3.42 is
given as Exercise 1.8 in [BNO03].

The early history of polyhedral convexity is found in [Mot36].

3.6 Exercises

Exercise 3.1 (convexity of polyhedra) Let A ∈ Rm×n and b ∈ Rm.
Show that the polyhedron

P = {x ∈ Rn | Ax ≤ b },

is a convex set.

Exercise 3.2 (polyhedra) Which of the following sets are polyhedra?

a) S = {y1a + y2b | −1 ≤ y1 ≤ 1, − 1 ≤ y2 ≤ 1}, where a, b ∈ Rn

are fixed.

b) S = {x ∈ Rn | x ≥ 0n, xT1n = 1,
∑n

i=1 xiai = b1,
∑n

i=1 xia
2
i =

b2}, where ai ∈ R for i = 1, . . . , n, and b1, b2 ∈ R are fixed.

68

Draft from February 22, 2005

Exercises

c) S = {x ∈ Rn | x ≥ 0n, xTy ≤ 1 for all y such that ‖y‖2 = 1}.

d) S = {x ∈ Rn | x ≥ 0n, xTy ≤ 1 for all y such that
∑n

i=1 |yi| = 1}.

e) S = {x ∈ Rn | ‖x − x0‖2 ≤ ‖x − x1‖2}, where x0,x1 ∈ Rn are
fixed.

f) S = {x ∈ Rn | ‖x − x0‖2 ≤ ‖x − xi‖2, i = 1, . . . , k}, where
x0, . . . ,xk ∈ Rn are fixed.

Exercise 3.3 (extreme points) Consider the polyhedron P defined by

x1 + x2 ≤ 2,

x2 ≤ 1,

x3 ≤ 2,

x2 + x3 ≤ 2.

a) Is x1 = (1, 1, 0)T an extreme point to P?

b) Is x2 = (1, 1, 1)T an extreme point to P?

Exercise 3.4 (existence of extreme points in LPs) Let A ∈ Rm×n be such
that rankA = m, and let b ∈ Rm. Show that if the polyhedron

P = {x ∈ Rn | Ax = b; x ≥ 0n }

has a feasible solution, then it has an extreme point.

Exercise 3.5 (illustration of the Representation Theorem) Let

Q = {x ∈ R2 | −2x1 + x2 ≤ 1; x1 − x2 ≤ 1; −x1 − x2 ≤ −1 },
C = {x ∈ R2 | −2x1 + x2 ≤ 0; x1 − x2 ≤ 0; −x1 − x2 ≤ 0 },

and P be the convex hull of the extreme points of Q. Show that the
feasible point x̃ = (1, 1)T can be written as

x̃ = p + c,

where p ∈ P and c ∈ C.

69

Draft from February 22, 2005

Convex analysis

Exercise 3.6 (separation) Show that there is only one hyperplane in R3

which separates the disjoint closed convex sets A and B defined by the
equations

A = { (0, x2, 1)T | x2 ∈ R }, B = {x ∈ R3 | x ≥ 03, x1x2 ≥ x2
3 }

and that this hyperplane meets both A and B.

Exercise 3.7 (separation) Show that each closed convex set A in Rn is
the intersection of all the closed halfspaces in Rn containing A.

Exercise 3.8 (application of Farkas’ Lemma) In a paper submitted for
publication in an operations research journal, the author considered the
set

P =

{(
x

y

)
∈ Rn+m

∣∣∣∣ Ax + By ≥ c; x ≥ 0n; y ≥ 0m

}
,

where A is an m × n matrix, B a positive semi-definite m ×m matrix
and c ∈ Rm. The author explicitly assumed that the set P is compact
in Rn+m. A reviewer of the paper pointed out that the only compact set
of the above form is the empty set. Prove the reviewer’s assertion.

Exercise 3.9 (convex sets) Let S1 := {x ∈ R2 | x1 + x2 ≤ 1; x1 ≥ 0 },
S2 := {x ∈ R2 | x1 − x2 ≥ 0; x1 ≤ 1 }, and S := S1 ∪ S2. Prove that
S1 and S2 are convex sets and that S is not convex. Hence, the union
of convex sets is not necessarily a convex set.

Exercise 3.10 (convex functions) Determine if the function f defined
by f(x) := 2x2

1 − 3x1x2 +5x2
2 − 2x1 +6x2 is convex, concave, or neither,

on R2.

Exercise 3.11 (convex functions) Let a > 0. Consider the following
functions in one variable:

a) f(x) := lnx, for x > 0;
b) f(x) := − lnx, for x > 0;
c) f(x) := − ln(1 − e−ax), for x > 0;
d) f(x) := ln(1 + eax);
e) f(x) := eax;
f) f(x) := x lnx, for x > 0.
Which of these functions are convex (respectively, strictly convex)?

Exercise 3.12 (convex functions) Consider the following functions: a)
f(x) := ln(ex1 + ex2);

70

Draft from February 22, 2005

Exercises

b) f(x) := ln
∑n

j=1 e
ajxj , where aj , j = 1, . . . , n, are constants;

c) f(x) :=

√√√√
n∑

j=1

x2
j ;

d) f(x) := x2
1/x2, for x2 > 0;

e) f(x) := −√
x1x2, for x1, x2 > 0;

f) f(x) := −




n∏

j=1

xj




1/n

, for xj > 0, j = 1, . . . , n.

Which of these functions are convex (respectively, strictly convex)?

Exercise 3.13 (convex functions) Consider the following function:

f(x, y) := 2x2 − 2xy +
1

2
y2 + 3x− y.

a) Express the function in matrix–vector form.

b) Is the Hessian singular?

c) Is f a convex function?

Exercise 3.14 (convex sets) Consider the following sets:

a) {x ∈ R2 | x2
1 + x2

2 ≤ 1; x2
1 + x2

2 ≥ 1/4 };
b) {x ∈ Rn | xj ≥ 0, j = 1, . . . , n };
c) {x ∈ Rn | x2

1 + x2
2 + · · · + x2

n = 1 };
d) {x ∈ R2 | x1 + x2

2 ≤ 5; x2
1 − x2 ≤ 10; x1 ≥ 0; x2 ≥ 0 };

e) {x ∈ R2 | x1 − x2
2 ≥ 1; x3

1 + x2
2 ≤ 10; 2x1 + x2 ≤ 8; x1 ≥ 1; x2 ≥

0 }.
Investigate whether each of them is convex or not. In the latter case,

provide a counter-example.

Exercise 3.15 (convex sets) Is the set defined by

S := {x ∈ R2 | 2e−x1+x2
2 ≤ 4, −x2

1 + 3x1x2 − 3x2
2 ≥ −1 }

a convex set?

Exercise 3.16 (convex sets) Is the set defined by

S := {x ∈ R2 | x1−x2
2 ≥ 1, x3

1+x2
2 ≤ 10, 2x1+x2 ≤ 8, x1 ≥ 1, x2 ≥ 0 }

a convex set?

71

Draft from February 22, 2005

Convex analysis

Exercise 3.17 (convex problem) Suppose that the function g : Rn → R
is convex on Rn and that d ∈ Rn. Is the problem to

maximize −
n∑

j=1

x2
j ,

subject to − 1

ln(−g(x))
≥ 0,

dTx = 2,

g(x) ≤ −2,

x ≥ 0n

a convex problem?

Exercise 3.18 (convex problem) Is the problem to

maximize x1 lnx1,

subject to x2
1 + x2

2 ≥ 0,

x ≥ 02

a convex problem?

72

Draft from February 22, 2005

Part III

Optimality Conditions

Draft from February 22, 2005 Draft from February 22, 2005

An introduction to
optimality conditions

IV

4.1 Local and global optimality

Consider the problem to

minimize f(x), (4.1a)

subject to x ∈ S, (4.1b)

where S ⊆ Rn is a nonempty set and f : Rn → R ∪ {+∞} is a given
function.

Consider the function given in Figure 4.1.

x

f(x)

1 2 3 4 5 6 7
S

Figure 4.1: A one-dimensional function and its possible optimal points.

For a minimization problem over f in one variable over an interval
S, the interesting points are:

(i) boundary points of S;

Draft from February 22, 2005

An introduction to optimality conditions

(ii) stationary points, that is, where f ′(x) = 0;

(iii) discontinuities in f or f ′.

In the case of the function in Figure 4.1 we have:

(i) 1, 7;

(ii) 2, 3, 4, 5, 6;

(iii) none.

Definition 4.1 (global minimum) Consider the problem (4.1). Let x∗ ∈
S. Then, we say that x∗ is a global minimum of f over S if it attains
the lowest value of f over S.

In other words, x∗ ∈ S is a global minimum of f over S if

f(x∗) ≤ f(x), x ∈ S, (4.2)

holds.

Let Bε(x
∗) := {y ∈ Rn | ‖y − x∗‖ < ε } be the Euclidean ball with

radius ε centered at x∗.

Definition 4.2 (local minimum) Consider the problem (4.1). Let x∗ ∈
S.

(a) We say that x∗ is a local minimum of f over S if there exists a
small enough ball intersected with S around x∗ such that it is a globally
optimal solution in that smaller set.

In other words, x∗ ∈ S is a local minimum of f over S if

∃ε > 0 such that f(x∗) ≤ f(x), x ∈ S ∩Bε(x
∗). (4.3)

(b) We say that x∗ ∈ S is a strict local minimum of f over S if, in
(4.3), the inequality holds strictly for x 6= x∗.

Note that a global minimum in particular is a local minimum. When
is a local minimum a global one? This question is resolved in the case
of convex problems, as the following fundamental theorem shows.

Theorem 4.3 (Fundamental Theorem of global optimality) Consider the
problem (4.1), where S is a convex set and f is convex on S. Then, every
local minimum of f over S is also a global minimum.

Proof. Suppose that x∗ is a local minimum but not a global one, while
x̄ is a global minimum. Then, f(x̄) < f(x∗). Let λ ∈ (0, 1). By the
convexity of S and f , λx̄ + (1 − λ)x∗ ∈ S, and f(λx̄ + (1 − λ)x∗) ≤
λf(x̄) + (1−λ)f(x∗) < f(x∗). Choosing λ > 0 small enough then leads

76

Draft from February 22, 2005

Local and global optimality

to a contradiction to the local optimality of x∗.

There is an intuitive image that can be seen from the proof design:
If x∗ is a local minimum, then f cannot “go down-hill” from x∗ in any
direction, but if x̄ has a lower value, then f has to go down-hill sooner
or later. This cannot be the shape of any convex function.

The example in Figure 4.2 shows a case where, without convexity, a
vector x∗ may be a local minimum of a function f ∈ C1 with respect to
every line segment that passes through x∗, and yet it is not even a local
minimum of f over Rn.

−0.1

0

0.1−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4.2: A three-dimensional graph of the function f(x, y) = (y −
x2)(y − 4x2). The origin is a local minimum with respect to every line
that passes through it, but it is not a local minimum of f .

In fact, this situation may also occur in the convex case when f /∈ C1.
In the simple one-dimensional example in Figure 4.1, finding and

checking the different points of the form (i)–(iii) was easy; there are of
course examples even in R which makes this “algorithm” impossible to
use, and when considering the multi-dimensional case (that is, n > 1)
this is a completely absurd “method” for solving a problem.

In the following we will develop necessary and sufficient conditions
for x∗ to be a local or a global optimal solution to the problem (4.1) for
any dimension n ≥ 1, and which are useful and possible to check. Before

77

Draft from February 22, 2005

An introduction to optimality conditions

we do that, however, we will establish exactly when a globally optimal
solution to the problem (4.1) exists.

4.2 Existence of optimal solutions

We first pave the way for a classic result from calculus: Weierstrass’
Theorem.

Definition 4.4 (weakly coercive, coercive functions) Let S ⊆ Rn be a
nonempty and closed set, and f : S → R be a given function.

(a) We say that f is weakly coercive with respect to the set S if
S is bounded or the sequence {f(xk)} tends to infinity whenever the
sequence {xk} ⊂ S tends to infinity in norm.

In other words, f is weakly coercive if either S is bounded or

lim
‖xk‖→∞

xk∈S

f(xk) = ∞

holds.

(b) We say that f is coercive with respect to the set S if S is bounded
or the sequence {f(xk)/‖xk‖} tends to infinity whenever the sequence
{xk} ⊂ S tends to infinity in norm.

In other words, f is coercive if either S is bounded or

lim
‖xk‖→∞

xk∈S

f(xk)/‖xk‖ = ∞

holds.

The weak coercivity of f : S → R is (for nonempty sets S) equiv-
alent to the property that f has bounded level sets restricted to S (cf.
Definition 3.43). (Why?)

A coercive function clearly grows faster than any linear function.
In fact, for convex functions f , f being coercive is equivalent to x 7→
f(x)−aTx being weakly coercive for every vector a ∈ Rn. This property
is a very useful one for certain analyses in the context of Lagrangian
duality.1

We next introduce two extended notions of continuity.

1For example, in Section 6.4.2 we suppose that the ground set X is compact in
order for the Lagrangian dual function q to be finite. It is possible to replace the
boundedness condition on X with a coercivity condition on f .

78

Draft from February 22, 2005

Existence of optimal solutions

Definition 4.5 (semi-continuity) Consider a function f : S → R, where
S ⊆ Rn is nonempty.

(a) The function f is said to be lower semi-continuous at x̄ ∈ S if
the value f(x̄) is less than or equal to every limit of f as {xk} → x̄.

In other words, f is lower semi-continuous at x̄ ∈ S if

{xk} → x̄ =⇒ f(x̄) ≤ lim inf
k→∞

f(xk).

(b) The function f is said to be upper semi-continuous at x̄ ∈ S if
the value f(x̄) is greater than or equal to every limit of f as {xk} → x̄.

In other words, f is upper semi-continuous at x̄ ∈ S if

{xk} → x̄ =⇒ f(x̄) ≥ lim sup
k→∞

f(xk).

We say that f is lower semi-continuous on S (respectively, upper
semi-continuous on S) if it is lower semi-continuous (respectively, upper
semi-continuous) at every x̄ ∈ S.

Lower semi-continuous functions in one variable have the appearance
shown in Figure 4.3.

x

f

Figure 4.3: A lower semi-continuous function in one variable.

Establish the following important relations:
(a) The inequalities displayed in Definition 4.5 can be replaced by

equalities, since the respective opposite inequlities are trivially satisfied.
(b) The function f mentioned in Definition 4.5 is continuous at x̄ ∈ S

if and only if it is both lower and upper semi-continuous at x̄.

79

Draft from February 22, 2005

An introduction to optimality conditions

(c) Lower semi-continuity of f is equivalent to the closedness of all
its level sets levf (b), b ∈ R (cf. Definition 3.43), as well as the closedness
of its epigraph (cf. Definition 3.38).

Next follows the famous existence theorem credited to Karl Weier-
strass (see, however, Section 4.7).

Theorem 4.6 (Weierstrass’ Theorem) Let S ⊆ Rn be a nonempty and
closed set, and f : S → R be a lower semi-continuous function on S.
If f is weakly coercive with respect to S, then there exists a nonempty,
closed and bounded (thus compact) set of globally optimal solutions to
the problem (4.1).

Proof. We first assume that S is bounded, and proceed by choosing a
sequence {xk} in S such that

lim
k→∞

f(xk) = inf
x∈S

f(x).

(The infimum of f over S is the lowest limit of all sequences of the form
{f(xk)} with {xk} ⊂ S, so such a sequence of xk is what we here are
choosing.)

Due to the boundedness of S, the sequence {xk} must have limit
points, all of which lie in S because of the closedness of S. Let x̄ be an
arbitrary limit point of {xk}, corresponding to the subsequence K ⊆ Z+.
Then, by the lower semi-continuity of f ,

f(x̄) ≤ lim
k∈K

f(xk) = inf
x∈S

f(x).

Since x̄ attains the infimum of f over S, x̄ is a global minimum of f
over S. This limit point of {xk} was arbitrarily chosen; any other choice
(provided more than one exists) has the same (optimal) objective value.

Suppose next that f is weakly coercive, and consider the same se-
quence {xk} in S. Then, by the weak coercivity assumption, either {xk}
is bounded or the sequence {f(xk)} tends to infinity. The non-emptiness
of S implies that infx∈S f(x) < ∞ holds, and hence we conclude that
{xk} is bounded. We can then utilize the same arguments as in the
previous paragraph and conclude that also in this case there exists a
globally optimal solution. We are done.

Before moving on we take a closer look at the proof of this result,
because it is important in order to understand the importance of some
of the assumptions that we make about the optimization models that
we pose. We notice that the closedness of S is really crucial; if it is not
then a sequence generated in S may converge to a point outside of S,

80

Draft from February 22, 2005

Existence of optimal solutions

which means that we would converge to an infeasible and of course also
non-optimal solution. This is the reason why the generic optimization
model (1.1) stated in Chapter 1 does not contain any constraints of the
form

gi(x) < 0, i ∈ SI,
where SI denotes strict inequality. The reason is that such constraints
in general may describe non-closed sets.

Weierstrass’ Theorem 4.6 is next improved for special classes of the
problem (4.1). The main purpose of presenting these results is to show
the role of convexity and to illustrate the special properties of convex
quadratic programs and linear programs. The proofs are rather complex
and are therefore left out.

Theorem 4.7 (existence of solutions, convex polynomials) Suppose that
f : Rn → R is a convex polynomial function. Suppose further that the
set S can be described by inequality constraints of the form gi(x) ≤ 0,
i = 1, . . . ,m, where each function gi is convex and polynomial. The
problem (4.1) then is convex. Moreover, it has a nonempty (as well as
closed and convex) set of globally optimal solutions if and only if f is
lower bounded on S.

In the following result, we let S be a nonempty polyhedron, and
suppose that it is possible to describe it as the following finite (cf. Defi-
nition 3.15) set of linear constraints:

S = {x ∈ Rn | Ax ≤ b; Ex = d }, (4.4)

where A ∈ Rm×n, E ∈ Rℓ×n, b ∈ Rm, and d ∈ Rℓ. The recession
cone to S then is the following set, defining the set of directions that are
feasible at every point in S:2

recS := {p ∈ Rn | Ap ≤ 0m; Ep = 0ℓ }. (4.5)

(For the definition of the set of feasible directions at a given vector x,
see Definition 4.19.)

We also suppose that

f(x) :=
1

2
xTQx + qTx, x ∈ Rn, (4.6)

where Q ∈ Rn×n is a symmetric and positive semi-definite matrix and
q ∈ Rn. We define the recession cone to any convex function f : Rn → R
as follows: the recession cone to f is the recession cone to the level

2Recall the cone C in the Representation Theorem 3.22.

81

Draft from February 22, 2005

An introduction to optimality conditions

set of f (cf. Definition 3.43), defined for any value of b for which the
corresponding level set of f is nonempty. (Check that this cone actually
is independent of the value of b under this only requirement. Also confirm
that if the level set levf (b) is (nonempty and) bounded for some b ∈ R
then it is bounded for every b ∈ R, thanks to the convexity of f .) In the
special case of the convex quadratic function given in (4.6),

recf = {p ∈ Rn | Qp = 0n; qTp ≤ 0 }.

This is the set of directions that nowhere are ascent directions to f .

Corollary 4.8 (the Frank–Wolfe Theorem) Suppose that S is the poly-
hedron described by (4.4) and f is the convex quadratic function given
by (4.6), so that the problem (4.1) is a convex quadratic programming
problem. Then, the following three statements are equivalent.

(a) The problem (4.1) has a nonempty (as well as a closed and convex)
set of globally optimal solutions.

(b) f is lower bounded on S.
(c) For every vector p in the intersection of the recession cone recS

to S and the null space N(Q) of the matrix Q, it holds that qTp ≥ 0.
In other words,

p ∈ recS ∩N(Q) =⇒ qTp ≥ 0

holds.

The statement in (c) shows that the conditions for the existence of
an optimal solution in the case of convex quadratic programs are milder
than in the general convex case. In the latter case, we can state a slight
improvement over the Weierstrass Theorem 4.6 that if, in the problem
(4.1), f is convex on S where the latter is nonempty, closed and convex,
then the problem has a nonempty, convex and compact set of globally
optimal solutions if and only if recS ∩ recf = {0n}. The improvements
in the above results for polyhedral, in particular quadratic, programs
stems from the fact that convex polynomial functions cannot be lower
bounded and yet not have a global minimum.

[Note: Consider the special case of the problem (4.1) where f(x) :=
1/x and S := [1,+∞). It is clear that f is bounded from below on S,
in fact by the value zero which is the infimum of f over S, but it never
attains the value zero on S, and therefore this problem has no optimal
solution. Of course, f is not a polynomial function.]

Corollary 4.9 (a fundamental theorem in linear programming) Suppose,
in the Frank–Wolfe Theorem, that f is linear, that is, that Q = 0n×n.

82

Draft from February 22, 2005

Existence of optimal solutions

Then, the problem (4.1) is identical to a linear programming (LP) prob-
lem. Then, the following three statements are equivalent.

(a) The problem (4.1) has a nonempty (as well as a closed and convex
polyhedral) set of globally optimal solutions.

(b) f is lower bounded on S.
(c) For every vector p in the recession cone recS to S, it holds that

qTp ≥ 0. In other words,

p ∈ recS =⇒ qTp ≥ 0

holds.

Corollary 4.9 will in fact be established later on in Theorem 8.10, by
the use of polyhedral convexity, when we specialize our treatment of non-
linear optimization to that of linear optimization. Since we have already
established the Representation Theorem 3.22, proving Corollary 4.9 for
the case of LP will be easy: since the objective function is linear, every
feasible direction p ∈ recS with qTp < 0 leads to an unbounded solution
from any vector x ∈ S.

Under strict convexity, we can finally establish the following result.

Proposition 4.10 (unique solution under strict convexity) Suppose that
in the problem (4.1) f is strictly convex on S and the set S is convex.
Then, there can be at most one globally optimal solution.

Proof. Suppose, by means of contradiction, that x∗ and x∗∗ are two
different globally optimal solutions. Then, for every λ ∈ (0, 1), we have
that

f(λx ∗ + (1 − λ)x ∗∗) < λf(x∗) + (1 − λ)f(x∗∗) = f(x∗) [= f(x∗∗)].

Since λx∗ + (1 − λ)x∗∗ ∈ S, we have found an entire interval of points
which are strictly better than x∗ or x∗∗. This is impossible, whence we
are done.

We finally characterize a class of optimization problems over poly-
topes whose optimal solution set, if nonempty, includes an extreme point.

Consider the optimization problem to

maximize f(x), (4.7)

subject to x ∈ P,

where f : Rn → R is a convex function and P ⊂ Rn is a nonempty,
bounded polyhedron (that is, a polytope). Then, from the Represen-
tation Theorem 3.22 it follows below that an optimal solution can be

83

Draft from February 22, 2005

An introduction to optimality conditions

found among the extreme points of P . Theorem 8.10 establishes a cor-
responding result for linear programs that does not rely on Weierstrass’
Theorem.

Theorem 4.11 (optimal extreme point) An optimal solution to (4.7) can
be found among the extreme points of P .

Proof. The function f is continuous (since it is convex, cf. Theorem 4.26
below); further, P is a nonempty and compact set. Hence, there exists an
optimal solution x̃ to (4.7) by Weierstrass’ Theorem 4.6. The Represen-
tation Theorem 3.22 implies that x̃ = λ1v

1+· · ·+λkvk for some extreme
points v1, . . . ,vk of P and λ1, . . . , λk ≥ 0 such that

∑k
i=1 λi = 1. But

then (from the convexity of f)

f(x̃) = f(λ1v
1 + · · · + λkvk) ≤ λ1f(v1) + · · · + λkf(vk)

≤ λ1f(x̃) + · · · + λkf(x̃) = f(x̃),

which gives that f(x̃) = f(vi) for some i = 1, . . . , k.

Remark 4.12 Every linear function is convex, so Theorem 4.11 implies,
in particular, that every linear program over a nonempty and bounded
polyhedron has an optimal extreme point.

4.3 Optimality in unconstrained optimiza-

tion

In Theorem 4.3 we have established that locally optimal solutions also
are global in the convex case. What are the necessary and sufficient
conditions for a vector x∗ to be a local optimum? This is an impor-
tant question, because the algorithms that we will investigate for solving
important classes of optimization problems are always devised based on
those conditions that we would like to fulfill. This is a statement that
seems to be true universally: efficient, locally or globally convergent it-
erative algorithms for an optimization problem are directly based on its
necessary and/or sufficient local optimality conditions.

We begin by establishing these conditions for the case of uncon-
strained optimization, where the objective function is in C1. Every proof
is based on the Taylor expansion up to order one or two.

Our problem here is the following:

minimize
x∈Rn

f(x), (4.8)

where f is in C1 on Rn [for short we say: in C1].

84

Draft from February 22, 2005

Optimality in unconstrained optimization

Theorem 4.13 (necessary optimality conditions, C1 case) Suppose that
f : Rn → R is in C1 on Rn. Then,

x∗ is a local minimum of f on Rn =⇒ ∇f(x∗) = 0n.

Note that

∇f(x) =
(∂f(x)

∂xj

)n

j=1
,

so the requirement thus is that ∂f(x∗)
∂xj

= 0, j = 1, . . . , n.

Just as for the case n = 1, we refer to this condition as x∗ being a
stationary point of f .

[Note: For n = 1, Theorem 4.13 reduces to: x∗ ∈ R is a local mini-
mum =⇒ f ′(x∗) = 0.]

Proof. (By contradiction.) Suppose that x∗ is a local minimum, but
that ∇f(x∗) 6= 0n. Let p := −∇f(x∗), and study the Taylor expansion
around x = x∗ in the direction of p:

f(x∗ + αp) = f(x∗) + α∇f(x∗)Tp + o(α),

where o : R → R is such that o(s)/s→ 0 when s ↓ 0. We get that

f(x∗ + αp) = f(x∗) − α‖∇f(x∗)‖2 + o(α)

< f(x∗) for all small enough α > 0,

since ‖∇f(x∗)‖ 6= 0. This completes the proof.

The opposite direction is false. Take, for example, f(x) = x3. Then,
x̄ = 0 is stationary, but it is neither a local minimum or a local maximum.

The proof is instrumental in that it provides a sufficient condition
for a vector p to define a descent direction, that is, a direction such that
a small step along it yields a lower objective value. We first define this
notion properly.

Definition 4.14 (descent direction) Let the function f : Rn → R ∪
{±∞} be given. Let x ∈ Rn be a vector such that f(x) is finite. Let
p ∈ Rn. We say that the vector p ∈ Rn is a descent direction with
respect to f at x if

∃δ > 0 such that f(x + αp) < f(x) for every α ∈ (0, δ]

holds.

85

Draft from February 22, 2005

An introduction to optimality conditions

Proposition 4.15 (sufficient condition for descent) Suppose that f : Rn →
R ∪ {+∞} is in C1 around a point x for which f(x) < +∞, and that
p ∈ Rn. If ∇f(x)Tp < 0 then the vector p defines a direction of descent
with respect to f at x.

Proof. Since f is in C1 around x, we can construct a Taylor expansion
of f , as above:

f(x + αp) = f(x) + α∇f(x)Tp + o(α).

Since ∇f(x)Tp < 0, we obtain that f(x+αp) < f(x) for all sufficiently
small values of α > 0.

Notice that at a point x ∈ Rn there may be other descent directions
p ∈ Rn beside those satisfying that ∇f(x)Tp < 0; in Example 11.2(b) we
show how directions of negative curvature stemming from eigenvectors
corresponding to negative eigenvalues of the Hessian matrix ∇2f(x) can
be utilized.

If f has stronger differentiability properties, then we can say even
more what a local optimum must be like.

Theorem 4.16 (necessary optimality conditions, C2 case) Suppose that
f : Rn → R is in C2 on Rn. Then,

x∗ is a local minimum of f =⇒
{
∇f(x∗) = 0n

∇2f(x∗) is positive semi-definite.

[Note: For n = 1, Theorem 4.16 reduces to: x∗ ∈ R is a local mini-
mum =⇒ f ′(x∗) = 0 and f ′′(x∗) ≥ 0.]

Proof. Consider the Taylor expansion of f up to order two around x∗

and in the direction of a vector p ∈ Rn:

f(x∗ + αp) = f(x∗) + α∇f(x∗)Tp +
α2

2
pT∇2f(x∗)p + o(α2).

Suppose that x∗ satisfies ∇f(x∗) = 0n, but that there is a vector p 6= 0n

with pT∇2f(x∗)p < 0, that is, ∇2f(x∗) is not positive semidefinite.
Then the above yields that f(x∗ + αp) < f(x∗) for all small enough
α > 0, whence x∗ cannot be a local minimum.

Also in this case, the opposite direction is false; the same counter-
example as that after Theorem 4.13 applies.

86

Draft from February 22, 2005

Optimality in unconstrained optimization

In Example 11.2(b) we provide an example descent direction that
has the form provided in the above proof; it is based on p being an
eigenvector corresponding to a negative eigenvalue of ∇2f(x∗).

The next result shows that under some circumstances, we can estab-
lish local optimality for a stationary point.

Theorem 4.17 (sufficient optimality conditions, C2 case) Suppose that
f : Rn → R is in C2 on Rn. Then,

∇f(x∗) = 0n

∇2f(x∗) is positive definite

}
=⇒ x∗ is a strict local minimum of f.

[Note: For n = 1, Theorem 4.17 reduces to: f ′(x∗) = 0 and f ′′(x∗) >
0 =⇒ x∗ ∈ R is a strict local minimum.]

Proof. Suppose that ∇f(x∗) = 0n and ∇2f(x∗) is positive definite.
Take an arbitrary vector p ∈ Rn,p 6= 0n. Then,

f(x∗ + αp) = f(x∗) + α∇f(x ∗)Tp︸ ︷︷ ︸
=0

+
α2

2
pT∇2f(x ∗)p︸ ︷︷ ︸

>0

+o(α2)

> f(x∗), for all small enough α > 0.

As p was arbitrary, it implies that x∗ is a strict local minimum.

We naturally face the following question: When is a stationary point
a global minimum? The answer is given next. (It is instrumental to in-
vestigate the connection between this result and the Fundamental The-
orem 4.3.)

Theorem 4.18 (necessary and sufficient global optimality conditions) Let
f ∈ C1, and let f be convex. Then,

x∗ is a global minimum of f ⇐⇒ ∇f(x∗) = 0n.

Proof. [=⇒] This has already be shown in Theorem 4.13, since a global
minimum is a local minimum.

[⇐=] The convexity of f yields that for every y ∈ Rn,

f(y) ≥ f(x∗) + ∇f(x∗)T(y − x∗)

= f(x∗),

where the equality stems from the property that ∇f(x∗) = 0n, by as-
sumption.

87

Draft from February 22, 2005

An introduction to optimality conditions

4.4 Optimality for optimization over con-
vex sets

We consider a quite general optimization problem of the form:

minimize f(x), (4.9a)

subject to x ∈ S, (4.9b)

where S ⊆ Rn is nonempty, closed and convex, and f : Rn → R∪{+∞}
is in C1 on S.

A noticeable difference to unconstrained optimization is the fact that
whether a vector p ∈ Rn can be used as a direction of movement from
a point x ∈ S depends on the constraints defining S; if x is an interior
point of S then every p ∈ Rn is a feasible direction, otherwise only
certain directions will be feasible. That is, it all depends on whether
there are any active constraints of S at x or not. We will define these
terms in detail next, and then develop necessary and sufficient optimality
conditions based on them. These conditions are natural extensions of
those for the case of unconstrained optimization and reduces to them
when S = Rn. Further, we will develop a way of measuring the distance
to an optimal solution in terms of the value of the objective function f
which is valid for convex problems. As a result of this development, we
will also be able to finally establish the Separation Theorem 3.24, whose
proof has been postponed until now. (See Section 4.6.2 for the proof.)

Definition 4.19 (feasible direction) Suppose that x ∈ S, where S ⊆
Rn, and that p ∈ Rn. Then, the vector p defines a feasible direction at
x if a small enough step in the direction of p does not lead outside of
the set S.

In other words, the vector p defines a feasible direction at x ∈ S if

∃δ > 0 such that x + αp ∈ S for all α ∈ [0, δ]

holds.

Recall that in the discussion following Theorem 4.7 we defined the
set of feasible directions of a polyhedral set, that is, the set of directions
that are feasible at every feasible point. For a general set S it would
hence be the set

{p ∈ Rm | ∀x ∈ S ∃δ > 0 such that x + αp ∈ S for all α ∈ [0, δ] }.

For nonempty, closed and convex sets S, this set is nonempty if and only
if the set S also is unbounded. (Why?)

88

Draft from February 22, 2005

Optimality for optimization over convex sets

Definition 4.20 (active constraints) Suppose that the set S ⊂ Rn is
defined by a finite collection of equality and inequality constraints:

S = {x ∈ Rn | gi(x) = 0, i ∈ E ; gi(x) ≤ 0, i ∈ I },

where gi : Rn → R (i ∈ E ∪ I) are given functions. Suppose that
x ∈ S. The set of active constraints at x is the union of all the equality
constraints and the set of inequality constraints that are satisfied with
equality at x, that is, the set E ∪ I(x), where I(x) := { i ∈ I | gi(x) =
0 }.

Example 4.21 (feasible directions for linear constraints) Suppose, as a spe-
cial case, that the constraints are all linear, that is, that for every
i ∈ E , gi(x) := eT

i x − di (ei ∈ Rn; di ∈ R), and for every i ∈ I,
gi(x) := aT

i x− bi (ai ∈ Rn; bi ∈ R). In other words, in matrix notation,
S = {x ∈ Rn | Ex = d; Ax ≤ b }.

Suppose further that x ∈ S. Then, the set of feasible directions at x

is the set
{p ∈ Rn | Ep = 0ℓ; aT

i p ≤ 0, i ∈ I(x) }.
Just as S, this is a polyhedron. Moreover, it is a polyhedral cone.

Clearly, the set of feasible directions of the polyhedral set S (or, the
recession cone of S) is

recS := {p ∈ Rn | Ep = 0ℓ; Ap ≤ 0m },

as stated in (4.5). Note moreover that the above set recS represents the
cone C in the Representation Theorem 3.22.3

We can now more or less repeat the arguments for the unconstrained
case in order to establish a necessary optimality condition for constrained
optimization problems. This condition will immediately be refined for
convex feasible sets, then later on in Chapter 5 be given a general
statement for the case of explicit constraints in the form of the famous
Karush–Kuhn–Tucker conditions in nonlinear programming.

Proposition 4.22 (necessary optimality conditions, C1 case) Suppose that
S ⊆ Rn and that f : Rn → R∪ {+∞} is in C1 around a point x ∈ S for
which f(x) < +∞.

(a) If x∗ ∈ S is a local minimum of f on S then ∇f(x∗)Tp ≥ 0 holds
for every feasible direction p at x∗.

3While that theorem was stated for sets defined only by linear inequalities, we can
always rewrite the equalities Ex = d as Ex ≤ d, −Ex ≤ −d; the corresponding
feasible directions are then given by Ep ≤ 0

ℓ, −Ep ≤ 0
ℓ, that is, Ep = 0

ℓ.

89

Draft from February 22, 2005

An introduction to optimality conditions

(b) Suppose that S is convex and that f is in C1 on S. If x∗ ∈ S is
a local minimum of f on S then

∇f(x∗)T(x − x∗) ≥ 0, x ∈ S, (4.10)

holds.

Notice that we above in (4.10) say that ∇f(x∗)T(x − x∗) ≥ 0 holds
for every x ∈ S; the quantifier ∀ is not explicitly stated.

Proof. (a) We again utilize the Taylor expansion of f around x∗:

f(x∗ + αp) = f(x∗) + α∇f(x∗)Tp + o(α).

The proof is by contradiction. As was shown in Proposition 4.15, if there
is a direction p for which it holds that ∇f(x∗)Tp < 0, then f(x∗+αp) <
f(x∗) for all sufficiently small values of α > 0. It suffices here to state
that p should also be a feasible direction in order to reach a contradiction
to the local optimality of x∗.

(b) If S is convex then every feasible direction p can be written as a
positive scalar times the vector x − x∗ for some vector x ∈ S. (Why?)
The expression (4.10) then follows from the statement in (a).

The inequality (4.10) is sometimes referred to as a variational in-
equality. We will utilize it for several purposes: (i) to derive equivalent
optimality conditions involving a linear optimization problem as well as
the Euclidean projection operation ProjS introduced in Section 3.4; (ii)
to derive a descent algorithm for the problem (4.9); (iii) to derive a near-
optimality condition for convex optimization problems; and (iv) we will
extend it to non-convex sets in the form of the Karush–Kuhn–Tucker
conditions.

In Theorem 4.13 we established that for unconstrained C1 optimiza-
tion the necessary optimality condition is that ∇f(x∗) = 0n holds. No-
tice that that is exactly what becomes of the variational inequality (4.10)
when S = Rn, because the only way in which that inequality can hold
for every x ∈ Rn is that ∇f(x∗) = 0n holds. Just as we did in the case
of unconstrained optimization, we will call a vector x∗ ∈ S satisfying
(4.10) a stationary point.

We will next provide two statements equivalent to the variational
inequality (4.10). First up, though, we will provide the extension to
Theorem 4.18 to the convex constrained case. Notice the resemblance of
their respective proofs.

Theorem 4.23 (necessary and sufficient global optimality conditions) Suppose
that S ⊆ Rn is nonempty and convex. Let f ∈ C1 on S, and let f be

90

Draft from February 22, 2005

Optimality for optimization over convex sets

convex. Then,

x∗ is a global minimum of f on S ⇐⇒ (4.10) holds.

Proof. [=⇒] This has already been shown in Proposition 4.22(b), since
a global minimum is a local minimum.

[⇐=] The convexity of f yields [cf. Theorem 3.40(a)] that for every
y ∈ S,

f(y) ≥ f(x∗) + ∇f(x∗)T(y − x∗)

≥ f(x∗),

where the second inequality stems from (4.10), by assumption.

First, we will provide the connection to the projection of a vector
onto a convex set, discussed in Section 3.4. We claim that the property
(4.10) is equivalent to

x∗ = ProjS [x∗ −∇f(x∗)], (4.11)

or, more generally,

x∗ = ProjS [x∗ − α∇f(x∗)], α > 0.

In other words, a point is stationary if and only if a step in the direction
of the steepest descent direction followed by a Euclidean projection onto
S means that we have not moved at all. To prove this, we will utilize
Proposition 4.22(b) for the optimization problem corresponding to this
projection. We are interested in finding the point x ∈ S that minimizes
the distance to the vector z := x∗ − ∇f(x∗). We can write this as a
strictly convex optimization problem as follows:

minimize
x∈S

h(x) :=
1

2
‖x − z‖2. (4.12)

The necessary optimality conditions for this problem, as stated in Propo-
sition 4.22(b), is that

∇h(x)T(y − x) ≥ 0, y ∈ S, (4.13)

holds. Here, ∇h(x) = x − z = x − [x∗ − ∇f(x∗)]. Since h is convex,
by Theorem 4.23, we know that the variational inequality (4.13) char-
acterizes x as the globally optimal solution to the projection problem.
We claimed that x = x∗ is the solution to this problem if and only if x∗

91

Draft from February 22, 2005

An introduction to optimality conditions

is stationary in the problem (4.9). But this follows immediately, since
the variational inequality (4.13), for the special choice of h and x = x∗,
becomes

∇f(x∗)T(y − x∗) ≥ 0, y ∈ S,

that is, a statement identical to (4.10). The characterization (4.11) is
interesting in that it states that if x∗ is not stationary, then the projec-
tion operation defined therein then must provide a step away from x∗;
this step will in fact yield a reduced value of f under some additional
conditions on the step length α, and so it defines a descent algorithm for
(4.9); see Exercise 4.5, and the text in Section 12.4.

So far, we have two equivalent characterizations of a stationary point
of f at x∗: (4.10) and (4.11). The following one is based on a linear
optimization problem.

Notice that (4.10) states that ∇f(x∗)Tx ≥ ∇f(x∗)Tx∗ for every
x ∈ S. Since we obtain equality by setting x = x∗ we see that x∗ in
fact is a globally optimal solution to the problem to

minimize
x∈S

∇f(x∗)Tx.

In other words, (4.10) is equivalent to the statement

minimum
x∈S

∇f(x∗)T(x − x∗) = 0. (4.14)

It is quite obvious that if at some point x ∈ S,

minimum
y∈S

∇f(x)T(y − x) < 0,

then the direction of p := y−x is a feasible descent direction with respect
to f at x. Again, we have a building block of a descent algorithm for the
problem (4.9). [The algorithms that immediately spring out from this
characterization are called the Frank–Wolfe and Simplicial decomposi-
tion algorithms, when S is polyhedral; we notice that in the polyhedral
case, the linear minimization problem is an LP problem. Read more
about these algorithms in Sections 12.2 and 12.3.] Now having got three
equivalent stationarity conditions, (4.10), (4.11), and (4.14), we finally
provide a fourth one. This one is intimately associated with the projec-
tion operation, and it introduces an important geometric concept into
the theory of optimality, namely the normal cone to a convex set S.

We studied a particular choice of z above, but let us consider an
extension of Figure 3.15 which provided an image of the Euclidean pro-
jection.

92

Draft from February 22, 2005

Optimality for optimization over convex sets

Notice from the above arguments that if we wish to project the vector
z ∈ Rn onto S, then the resulting (unique) projection is the vector x for
which the following holds:

[x − z]T(y − x) ≥ 0, y ∈ S.

Changing sign for clarity, this is the same as

[z − x]T(y − x) ≤ 0, y ∈ S.

The interpretation of this inequality is that the angle between the two
vectors z−x (the vector that points towards the point being projected)
and the vector y − x (the vector that points towards any vector y ∈ S)
is ≥ 90◦. So, the projection operation has the characterization

[z − ProjS(z)]T(y − ProjS(z)) ≤ 0, y ∈ S. (4.15)

The above is shown in Figure 4.4 for x = x∗ and z = x∗ −∇f(x∗).

�
�
�
�

S

y

x∗ −∇f(x∗)

x∗

NS(x∗)

Figure 4.4: Normal cone characterization of a stationary point.

Here, the point being projected is z = x∗ − ∇f(x∗), as used in the
characterization of stationarity.

What is left to complete the picture is to define the normal cone,
depicted here as NS(x∗) in the lighter shade.

Definition 4.24 (normal cone) Suppose that the set S ⊆ Rn is closed
and convex. Let x ∈ Rn. Then, the normal cone to S at x is the set

NS(x) :=

{
{ v ∈ Rn | vT(y − x) ≤ 0, y ∈ S }, if x ∈ S,

∅, otherwise.
(4.16)

93

Draft from February 22, 2005

An introduction to optimality conditions

According to the definition, we can now define our fourth character-
ization of a stationary point at x∗ as follows:

−∇f(x∗) ∈ NS(x∗). (4.17)

What this condition states geometrically is that the angle between the
negative gradient and any feasible direction is ≥ 90◦, which, of course, is
the same as stating that at x∗ there exist no feasible descent directions.
The four conditions (4.10), (4.11), (4.14), and (4.17) are equivalent, and
so according to Theorem 4.23(b) they all are also both necessary and
sufficient for the global optimality of x∗ as soon as f is convex.

We remark that in the special case when S is an affine subspace (such
as the solution set of a number of linear equations, S := {x ∈ Rn | Ex =
d }), the statement (4.17) means that at a stationary point x∗, ∇f(x∗)
is parallel to the normal of the subspace.

The normal cone inclusion (4.17) will later be extended to more gen-
eral sets, where S is described by a finite collection of possibly non-
convex constraints. The extension will lead us to the famous Karush–
Kuhn–Tucker conditions in Chapter 5. [It turns out to be much more
convenient to extend (4.17) than the other three characterizations of
stationarity.]

We finish this section by proving a proposition on the behaviour of
the gradient of the objective function f on the solution set S∗ to convex
problems of the form (4.1). The below result shows that ∇f enjoys a
stability property, and it also extends the result from the unconstrained
case where the value of ∇f always is zero on the solution set.

Proposition 4.25 (invariance of ∇f on the solution set of convex programs)
Suppose that S ⊆ Rn is convex and that f : Rn → R is convex and in
C1 on S. Then, the value of ∇f(x) is constant on the optimal solution
set S∗.

Further, suppose that x∗ ∈ S∗. Then,

S∗ = {x ∈ S | ∇f(x∗)T(x − x∗) = 0 and ∇f(x) = ∇f(x∗) }.

Proof. Let x∗ ∈ S∗. The definition of the convexity of f shows that

f(x) − f(x∗) ≥ ∇f(x∗)T(x − x∗), x ∈ Rn. (4.18)

Let x̄ ∈ S∗. Then, it follows that ∇f(x∗)T(x̄−x∗) = 0. By substituting
∇f(x∗)Tx∗ with ∇f(x∗)Tx̄ in (4.18) and using that f(x∗) = f(x̄), we
obtain that

f(x) − f(x̄) ≥ ∇f(x∗)T(x − x̄), x ∈ Rn,

94

Draft from February 22, 2005

Near-optimality in convex optimization

which is equivalent to the statement that ∇f(x̄) = ∇f(x∗). We are
done.

4.5 Near-optimality in convex optimization

We will here utilize Theorem 4.23 in order to provide a measure of the
distance to the optimal solution in terms of the value of f at any feasible
point x.

Let x ∈ S, and suppose that f is convex on S. Suppose also that
x∗ ∈ S is an arbitrary globally optimal solution, which we suppose exists.
From the necessary optimality conditions stated in Proposition 4.22(b),
it is clear that unless x solves (4.9) there exists a y ∈ S such that
∇f(x)T(y−x) < 0, and hence p := y−x is a feasible descent direction.

Suppose now that

ȳ ∈ arg minimum
y∈S

z(y) := ∇f(x)T(y − x). (4.19)

Consider the following string of inequalities and equalities:

f(x) + z(ȳ) = f(x) + minimum
y∈S

z(y)

≤ f(x) + z(x∗) ≤ f(x∗) ≤ f(x).

The equality follows by definition; the first inequality stems from the
fact that ȳ solves the linear minimization problem, while the vector x∗

may not; the second inequality follows from the convexity of f on S [cf.
Theorem 3.40(a)]; the final inequality follows from the global optimality
of x∗ and the feasibility of x.

From the above, we obtain a closed interval wherein we know that the
optimal value of the problem (4.9) lies. Let f∗ := minimumx∈S f(x) =
f(x∗). Then, for every x ∈ S,

f∗ ∈ [f(x) + z(ȳ), f(x)]. (4.20)

Clearly, the length of the interval is defined by how far from zero the value
of z(ȳ) is. Suppose then that z(ȳ) ≥ −ε, for some small value ε > 0. (In
an algorithm where a sequence {xk} is constructed such that it converges
to an optimal solution, this will eventually happen for every ε > 0.)
Then, from the above we obtain that f(x∗) ≥ f(x) + z(ȳ) ≥ f(x) − ε;
in short,

f(x∗) ≥ f(x) − ε, or, f(x) ≤ f∗ + ε. (4.21)

We refer to a vector x ∈ S satisfying the inequality (4.21) as an ε-optimal
solution. From the above LP problem we hence have a simple instrument

95

Draft from February 22, 2005

An introduction to optimality conditions

for evaluating the quality of a feasible solution in our problem. Note,
again, that convexity is a crucial property enabling this possibility.

As far as iterative algorithms go, it is quite often the case that for
the problem (4.9) involving a convex feasible set the sequences {xk} of
iterates do not necessarily stay inside the feasible set S. The reason is
that even if the constraints are convex inequalities it is difficult to check
when one reaches the boundary of S. We mention however two cases
where feasible algorithms (that is, those for which {xk} ⊂ S holds) are
viable:

(I) When S is a polyhedral set, then it is only a matter of solving a se-
ries of simple linear systems to check for the maximum step length
along a feasible direction. Among the algorithms that actually
are feasible we count the simplex method for linear programming
(LP) problems, the Frank–Wolfe method which builds on the fact
that the lower bounds and descent directions discussed above rely
on solving such LP problems, and the projection methods which
build on the property investigated in Exercise 4.5. More on these
algorithms will be said in Chapter 12.

(II) When the set S has an interior point, we may replace the con-
straints with an interior penalty function which has an asymptote
whenever approaching the boundary, thus automatically ensuring
that iterates stay (strictly) feasible. More on a class of methods
based on this penalty function is said in Chapter 13.

4.6 Applications

4.6.1 ∗Continuity of convex functions

A remarkable property of any convex function is that without any addi-
tional assumptions it can be shown to be continuous relative to any open
convex set in the intersection of its effective domain and its affine hull.4

We establish a special case below, in which relative interior is replaced
by interior for simplicity.

Theorem 4.26 (continuity of convex functions) Suppose that f : Rn →
R ∪ {+∞} is a convex function, and consider an open convex subset S
of its effective domain. The function f is continuous on S.

Proof. Let x̄ ∈ S. To establish continuity of f at x̄, we must show
that given ε > 0, there exists δ > 0 such that ‖x − x̄‖ ≤ δ implies that

4In other words, it is continuous relative to any relatively open convex subset of
its effective domain.

96

Draft from February 22, 2005

Applications

|f(x) − f(x̄)| ≤ ε. We establish this property in two parts, by showing
that f is both lower and upper semi-continuous at x̄.

[upper semi-continuity] By the openness of S, there exists δ′ > 0 with
‖x − x̄‖ ≤ δ, implying x ∈ S. Construct the value of the scalar γ as
follows:

γ := maximum
i∈{1,2,...,n}

{maximum {f(x̄ + δ′ei) − f(x̄), f(x̄ − δ′ei) − f(x̄)}} ,
(4.22)

where ei is the ith unit vector in Rn. Note that 0 ≤ γ <∞. Let now

δ := minimum

{
δ′

n
,
εδ′

γn

}
. (4.23)

Choose an x with ‖x − x̄‖ ≤ δ. For every i ∈ {1, 2, . . . , n}, if xi ≥ x̄i

then define zi := δ′ei, otherwise zi := −δ′ei. Then,

x − x̄ =
n∑

i=1

αizi,

where αi ≥ 0 for all i. Moreover,

‖x− x̄‖ = δ′‖α‖. (4.24)

From (4.23), and since ‖x − x̄‖ ≤ δ, it follows that αi ≤ 1/n for all i.
Hence, by the convexity of f and since 0 ≤ αin ≤ 1, we get

f(x) = f

(
x̄ +

n∑

i=1

αizi

)
= f

[
1

n

n∑

i=1

(x̄ + αinzi)

]

≤ 1

n

n∑

i=1

f(x̄ + αinzi)

=
1

n

n∑

i=1

f [(1 − αin)x̄ + αin(x̄ + zi)]

≤ 1

n

n∑

i=1

[(1 − αin)f(x̄) + αinf(x̄ + zi)].

Therefore, f(x) − f(x̄) ≤ ∑n
i=1 αi[f(x̄ + zi) − f(x̄)]. From (4.22) it is

obvious that f(x̄+zi)− f(x̄) ≤ γ for each i; and since αi ≥ 0, it follows
that

f(x) − f(x̄) ≤ γ

n∑

i=1

αi. (4.25)

97

Draft from February 22, 2005

An introduction to optimality conditions

Noting (4.23), (4.24), it follows that αi ≤ ε/nγ, and (4.25) implies that
f(x) − f(x̄) ≤ ε. Hence, we have so far shown that ‖x − x̄‖ ≤ δ
implies that f(x) − f(x̄) ≤ ε. By Definition 4.5(b), f hence is upper
semi-continuous at x̄.

[lower semi-continuity] Let y := 2x̄ − x, and note that ‖y − x̄‖ ≤ δ.
Therefore, as above,

f(y) − f(x̄) ≤ ε. (4.26)

But x̄ = 1
2y + 1

2x, and by the convexity of f ,

f(x̄) ≤ 1

2
f(y) +

1

2
f(x)

follows. Combining this inequality with (4.26), it follows that f(x̄) −
f(x) ≤ ε, whence Definition 4.5(b) applies. We are done.

Note that convex functions need not be continuous everywhere; by
the above theorem we know however that points of non-continuity must
occur at the boundary of the effective domain of f . For example, check
the continuity of the following function:

f(x) :=

{
x2, for |x| < 1,

2, for |x| = 1.

4.6.2 The Separation Theorem

The previously established Weierstrass Theorem 4.6 will now be utilized
together with the above variational inequality characterization (4.10)
of stationary points in order to finally establish the Separation Theo-
rem 3.24. For simplicity, we rephrase the theorem.

Theorem 4.27 (Separation Theorem) Suppose that the set S ⊆ Rn is
closed and convex, and that the point y does not lie in S. Then there
exist a vector π 6= 0n and α ∈ R such that πTy > α and πTx ≤ α for
all x ∈ S.

Proof. We may assume that S is nonempty, and define a function
f : Rn → R through f(x) = ‖x − y‖2/2, x ∈ Rn. Now by Weier-
strass’ Theorem 4.6) there exists a minimizer x̃ of f over S, which
by the first order necessary condition [see Proposition 4.22(b)] satisfies
(y− x̃)T(x− x̃) ≤ 0 for all x ∈ S (since −∇f(x̃) = y− x̃). Now setting
π = y − x̃ and α = (y − x̃)Tx̃ gives the result sought.

A slightly different separation theorem will be used in the Lagrangian
duality theory in Chapter 6. We state it without proof.

98

Draft from February 22, 2005

Applications

Theorem 4.28 (separation of convex sets) Each pair of disjoint nonempty
convex sets A and B in Rn can be separated by a hyperplane in Rn, that
is, there exists a vector π ∈ Rn and α ∈ R such that πTx ≤ α for all
x ∈ A and πTy ≥ α for all y ∈ B.

Remark 4.29 The main difference between the Separation Theorems 3.24
and 4.28 is that in Theorem 3.24 there exists a hyperplane that in
fact strictly separates the point y and the closed convex set C, that
is, there exists a vector π ∈ Rn and an α ∈ R such that πTy > α while
πTx < α holds for all x ∈ C. In Theorem 4.28, however, this is not
true. Consider, for example, the sets A = {x ∈ R2 | x2 ≤ 0 } and
B = {x ∈ R2 | x1 > 0; x2 ≥ 1/x1 }. Then, the line {x ∈ R2 | x2 = 0 }
separates A and B, but the sets can not be strictly separated.

4.6.3 The traffic equilibrium problem

The traffic equilibrium problem describes the steady-state of traffic in
a transportation network, wherein each traveler minimizes his/her own
travel costs in order to reach his/her desired destinations, irrespective of
the modes of travel used.5 We develop classic models of traffic equilib-
rium, and show that they are naturally given as variational inequality
formulations; under certain conditions, they are also possible to state
and solve as convex optimization problems.

Wardrop’s [War52] user equilibrium principle states that for every
origin–destination (OD) pair (p, q) ∈ C, the travel costs of the routes
utilized are equal and minimal for each individual user. We denote by
Rpq the set of loop-free routes for OD pair (p, q), by hr the volume
of traffic on route r ∈ Rpq, and by cr the travel cost on the route as
experienced by an individual user. This condition can be written as
follows:

hr > 0 =⇒ cr = πpq, r ∈ Rpq , (p, q) ∈ C, (4.27a)

hr = 0 =⇒ cr ≥ πpq, r ∈ Rpq , (p, q) ∈ C, (4.27b)

where the value of πpq is interpreted as the minimal (that is, equilibrium)
route cost in OD pair (p, q). This does however in general not describe an
equilibrium, unless we introduce a means to describe the cost perception
of the users given the volume of traffic, and the mechanism by which flow

demand is generated. Let therefore c : R
|R|
+ → R|R| be a vector-valued

function of route costs. (Its argument is h.) Further, we assume that

5While travel costs mostly are composed by travel times, modern uses of traffic
equilibrium models also take into account the possible uses of congestion (or, link)
tolls and the differences in the travelers’ values-of-time.

99

Draft from February 22, 2005

An introduction to optimality conditions

the demand is given by the vector-valued function g : R|C| → R
|C|
+ . (Its

argument is π.) Under the condition posed on the non-negativity of the
demands, the following is an equivalent formulation of (4.27) together
with the demand constraints:

0|R| ≤ h ⊥ (c(h) − Γπ) ≥ 0|R|, (4.28a)

ΓTh = g(π), (4.28b)

where a ⊥ b, for two arbitrary vectors a, b ∈ Rn, means that aTb = 0,
and where we introduce the matrix Γ ∈ R|R|×|C| to be the route–OD
pair incidence matrix (i.e., the element γrk is 1 if route r joins OD pair
k = (p, q) ∈ C, and 0 otherwise).

In the two most standard special cases of this model, we can eliminate
the π variables from the formulation. (This vector will instead then
appear as a Lagrange multiplier.) In the first, we consider the inelastic

(fixed) demand model (set g ≡ d̄ ∈ R
|C|
++), whence (4.28) is equivalent

to the variational inequality problem (VIP) to find h ∈ Ĥ such that

−c(h) ∈ NĤ(h), (4.29)

where, for any convex set C ⊆ Rn, NC(x) denotes the normal cone to C

at x, and where flow feasibility is described by the set Ĥ := {h ∈ R
|R|
+ |

ΓTh = d̄ }. In the second case, we assume that the demand function g

is invertible, that is, that there exists a function ω : R|C| → R|C| with
d = g(π) if and only if π = ω(d). We then obtain the equivalent VIP
to find (h,d) ∈ Ĥd such that

[−c(h),ω(d)] ∈ NĤd
(h,d), (4.30)

where Ĥd := { (h,d) ∈ R
|R|
+ × R|C| | ΓTh = d }. To see that they are

equivalent, we can utilize the fact that the VIP is equivalent to the pair
(h∗,d∗) solving the linear programming (LP) problem

minimize
(h,d)

c(h∗)Th − ω(d∗)Td,

subject to ΓTh − d = 0|C|,

h ≥ 0|R|,

to which π is the LP dual solution. (Why?)
Two further specializations are of interest to introduce. The first is

that of additive route costs, which will enable us to work with link-based
models and algorithms. The second is that the travel cost and demand

100

Draft from February 22, 2005

Applications

functions are “symmetric,” so that we can solve for an equilibrium with
algorithms for nonlinear optimization.

Let Λ ∈ {0, 1}|L|×|R| be the link–route incidence matrix, whose ele-
ment λlr equals one if route r ∈ R utilizes link l ∈ L, and zero otherwise.
Route r has an additive route cost cr(h) if it is the sum of the costs of us-
ing all the links defining it. In other words, cr(h) =

∑
l∈L λlrtl(v), where

v ∈ R|L| is the total volume of traffic on the links, and tl : R|L| → R
is the function measuring the travel cost on link l ∈ L given the link
volume v. Also, implicit in this relationship is the assumption that the
pair (h,v) is consistent, in the sense that v equals the sum of the route
flows: v = Λh. The model (4.29) can then equivalently be written as
the link-based model

−t(v) ∈ NF̂ (v), (4.31)

where F̂ := { v ∈ R|L| | ∃h ∈ Ĥ with v = Λh } is the “aggregate” of H .
Correspondingly, the model (4.30) can be written as

[−t(v),ω(d)] ∈ NF̂d
(v,d), (4.32)

where F̂d := { (v,d) ∈ R|L| × R|C| | ∃(h,d) ∈ Hd with v = Λh }.
In the case where t is integrable,6 the model (4.31) defines the first-

order optimality conditions for an optimization problem; assuming, fur-
ther, that t is separable, that is, that tl is a function only of vl, l ∈ L,
the optimization problem has the form

minimize
v

∑

l∈L

∫ vl

0

tl(s) ds, (4.33a)

subject to ΓTh = d̄, (4.33b)

h ≥ 0|R|, (4.33c)

v = Λh. (4.33d)

This is the classic traffic assignment problem.

When demand is elastic and separable, according to (4.32) we have

6If t is continuously differentiable, then integrability is equivalent to the symmetry
of its Jacobian matrix ∇t(v) everywhere. Integrability is a more general property
than this symmetry property, since t need not be always be differentiable.

101

Draft from February 22, 2005

An introduction to optimality conditions

the equivalent optimization problem to

minimize
(v ,d)

∑

l∈L

∫ vl

0

tl(s) ds−
∑

(p,q)∈C

∫ dpq

0

ω(s) ds, (4.34a)

subject to ΓTh − d = 0|C|, (4.34b)

h ≥ 0|R|, (4.34c)

v = Λh. (4.34d)

Since the feasible sets of both problems are polyhedra (in the case
of the problem (4.33) actually a polytope) the optimality conditions
given by the respective variational inequality or by the (equivalent) KKT
conditions are necessary for the local optimality of a pair of link volume
and demands [cf. Proposition 4.22(b)]. In both cases, a possible way to
establish this fact is to introduce the Lagrange multipliers π ∈ R|C| for
the demand feasibility constraints, and eliminate the v variables from
the problem altogether through (4.33d) and (4.34d), respectively.

Suppose, in addition, that each link cost function tl is increasing; this
is a natural assumption considering that congestion on a link increases
with flow. It is also natural to assume that each demand function gpq is
decreasing with the OD travel cost πpq. Together with the invertibility
assumption it means that gpq is strictly decreasing. In both optimization
problems these assumptions imply that their respective problems are
convex [cf. Theorem 3.40(b) and the remark on functions on R following
it], and that the variational inequalities also are sufficient for the global
optimality of the flows and demands.

4.6.4 Euclidean projection

We will finish our discussions on the projection operation, which was
defined in Section 3.4, by establishing an interesting continuity property.

Definition 4.30 (non-expansive operator) Suppose that S ⊆ Rn is closed
and convex. Let f : S → S denote a vector-valued operator from S to S.
We say that f is non-expansive if, as a result of applying the mapping
f , the distance between any two vectors x and y in S does not increase.

In other words, the operator f is non-expansive on S if

‖f(x) − f (y)‖ ≤ ‖x − y‖, x,y ∈ S, (4.35)

holds.

Theorem 4.31 (the projection operation is non-expansive) Let S be a nonempty,
closed and convex set in Rn. For every x ∈ Rn, its projection ProjS(x)

102

Draft from February 22, 2005

Applications

is uniquely defined. The operator ProjS : Rn → S is non-expansive on
Rn, and therefore in particular continuous.

Proof. The uniqueness of the operation is the result of the fact that
the objective function x 7→ ‖x − z‖ (or, x 7→ ‖x − z‖2) is both weakly
coercive and strictly convex on S, so there exists a unique optimal so-
lution to the projection problem for every z ∈ Rn. (Cf. Weierstrass’
Theorem 4.6 and Proposition 4.10, respectively.)

Next, take x1,x2 ∈ Rn. Then, by the characterization (4.15) of the
Euclidean projection,

[ProjS(x2) − ProjS(x1)]T(x1 − ProjS(x2)) ≤ 0,

[ProjS(x1) − ProjS(x2)]T(x2 − ProjS(x1)) ≤ 0.

Summing the two inequalities yields

‖ProjS(x2) − ProjS(x1)‖2 ≤ [ProjS(x2) − ProjS(x1)]T(x2 − x1)

≤ ‖ProjS(x2) − ProjS(x1)‖ · ‖x2 − x1‖,

that is, ‖ProjS(x2) − ProjS(x1)‖ ≤ ‖x2 − x1‖. Since this is true for
every pair (x1,x2) ∈ Rn, we have shown that the operator ProjS is non-
expansive on Rn. In particular, non-expansive functions are continuous.
(The proof of the latter is left as an exercise.)

The theorem is illustrated in Figure 4.5.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

S

x

y

ProjS(x)

ProjS(y)

Figure 4.5: The projection operation is non-expansive.

4.6.5 Fixed point theorems

Fixed point theorems state properties of a problem of the following form:
Suppose the mapping f is defined on a closed, convex set S in Rn and

103

Draft from February 22, 2005

An introduction to optimality conditions

that f(x) ⊆ S for every x ∈ S. Is there an x ∈ S such that f maps x

onto itself (that is, onto x), or, in other words,

∃x ∈ S such that x ∈ f (x)?

Such a point is called a fixed point of f over the set S. If the mapping f

is single-valued rather than set-valued then the question boils down to:

∃x ∈ S such that x = f(x)?

Many questions in optimization and analysis can be reduced to the
analysis of a fixed point problem. For example, an optimization prob-
lem can in some circumstances be reduced to a fixed point problem, in
which case the question of the existence of solutions to the optimization
problem can be answered by studying the fixed point problem. Further,
the optimality conditions analyzed in Section 4.4 can be written as the
solution to a fixed point problem; we can therefore equate the search
for a stationary point with that of finding a fixed point of a particular
function f . This type of analysis is quite useful also when analyzing the
convergence of iterative algorithms for optimization problems.

4.6.5.1 Theory

We begin by studying some classical fixed point theorems, and then we
provide examples of the connections between the results in Section 4.4
with fixed point theory.

Definition 4.32 (contractive operator) Let S be a nonempty, closed and
convex set in Rn. Let f be a mapping from S to S. We say that f is
contractive on S if, as a result of applying the mapping f , the distance
between any two distinct vectors x and y in S decreases.

In other words, the operator f is contractive on S if there exists
α ∈ [0, 1) such that

‖f(x) − f(y)‖ ≤ α‖x − y‖, x,y ∈ S, (4.36)

holds.

Clearly, a contractive operator is non-expansive.

In the below result we utilize the notion of a geometric convergence
rate; while its definition is in fact given in the result below, we also refer
to Sections 6.5.1 and 11.10 for more detailed discussions on convergence
rates.

104

Draft from February 22, 2005

Applications

Theorem 4.33 (fixed point theorems) Let S be a nonempty, closed and
convex set in Rn.

(a) [Banach’s Theorem] Let f be a contraction mapping from S to
S. Then, f has a unique fixed point x∗ ∈ S. Further, for every initial
vector x0 ∈ S, the iteration sequence {xk} defined by the fixed-point
iteration

xk+1 := f(xk), k = 0, 1, . . . , (4.37)

converges geometrically to the unique fixed point x∗. In particular,

‖xk − x∗‖ ≤ αk‖x0 − x∗‖, k = 0, 1,

(b) [Brouwer’s Theorem] Let S further be bounded, and assume merely
that f is continuous. Then, f has a fixed point.

Proof. (a) For any x0 ∈ S, consider the sequence {xk} defined by
(4.37). Then, for any p ≥ 1,

‖xk+p − xk‖ ≤
p∑

i=1

‖xk+i − xk+i−1‖

≤ (αp−1 + · · · + 1)‖xk+1 − xk‖ ≤ [αk/(1 − α)]‖x1 − x0‖.

Hence, {xk} is a Cauchy sequence and thus converges. By continuity,
the limit point is the unique fixed point.

The convergence speed follows from the identification

‖xk − x∗‖ = ‖f(xk−1) − f(x∗)‖ ≤ α‖xk−1 − x∗‖, k = 1, 2,

Applying this relation recursively yields the result.
(b) [Sketch] In short, the proof is to first establish that any C1 func-

tion on the unit ball has a fixed point there. Extending the reason-
ing to merely continuous operators is possible, because of the Stone–
Weierstrass Theorem (which states that for any continuous operator de-
fined on the unit ball there is a sequence of C1 functions defined on the
unit ball that uniformly converges to it). Each of these functions can
be established to have a fixed point, and because of the compactness of
the unit ball, so does the merely continuous limit function. For our final
argument, we can assume that the set S has a nonempty interior. Then
there exists a homeomorphism7 h : S → B, where B is the unit ball.
Since the composite mapping h◦f ◦h−1 is a continuous operator from B

7The given function h is a homeomorphism if it is a continuous operator which is
onto—that is, its range, h(S), is identical to the set B defining its image set—and
has a continuous inverse.

105

Draft from February 22, 2005

An introduction to optimality conditions

to B it has a fixed point y in B; therefore, h−1(y) is a fixed point of f .

The result in (a) is due to Banach [Ban22]; the result in (b) is due
to Brouwer [Bro09, Bro12], and Hadamard [Had10].

A special case in one variable of the result in (b) is illustrated in
Figure 4.6.

x

f(x)

1

1

Figure 4.6: Consider the case S = [0, 1], and a continuous function
f : S → S. Brouwer’s Theorem states that there exists an x∗ ∈ S
with f(x∗) = x∗. This is the same as saying that the continuous curve
starting at (0, f(0)) and ending at (1, f(1)) must pass through the line
y = x inside the square.

4.6.5.2 Applications

Particularly the result of Theorem 4.33(b) is quite remarkably strong.
We provide some sample consequences of it below. In each case, we ask
the reader to find the pair (S,f) defining the corresponding fixed point
problem.� [Mountaineering] You climb a mountain, following a trail, in six

hours (noon to 6 PM). You camp on top overnight. Then at noon
the next day, you start descending. The descent is easier, and you
make much better time. After an hour, you notice that your com-
pass is missing, and you turn around and ascend a short distance,

106

Draft from February 22, 2005

Applications

where you find your compass. You sit on a rock to admire the
view. Then you descend the rest of the way. The entire descent
takes four hours (noon to 4 PM). Along the trail there must then
be a place where you were at the same place at the same time on
both days.� [Maps] Suppose you have two city maps over Gothenburg, which
are not of the same scale. You crumple one of them up into a
loose ball and place it on top of the other map entirely within the
borders of the Gothenburg region on the flat map. Then, there is
a point on the crumpled map (that represents the same place in
Gothenburg on both maps) that is directly over its twin on the flat
map. (A more simple problem is defined by a non-crumpled map
and the city of Gothenburg itself; lay down the map anywhere in
Gothenburg, and at least one point on the map will lie over that
exact spot in real-life Gothenburg.)� [Raking of gravel] Suppose you wish to rake the gravel in your
garden; if the area is, say, circular, then any continuous raking
will leave at least one tiny stone (which one is a function of time)
in the same place.� [Stirring coffee] Stirring the contents of a (convex) coffee cup in a
continuous way, no matter how long you stir, some particle (which
one is a function of time) will stay in the same position as it did
before you began stirring.8� [Meteorology] Even as the wind blows across the Earth there will
be one location where the wind is perfectly vertical (or, perfectly
calm). This fact actually implies the existence of cyclones; not to
mention whorls, or crowns, in your hair no matter how you comb
it. (The latter result also bears its own name: The Hairy Ball
Theorem; cf. [BoL00, pp. 186–187].)

Applying fixed point theorems to our own development of this book,
we take a look at the variational inequality (4.10). Rephrasing it in a
more general form, the variational inequality problem is to find x∗ ∈ S
such that

f(x∗)T(x − x∗) ≥ 0, x ∈ S. (4.38)

In order to turn it into a fixed point problem, we construct the fol-
lowing composite operator from Rn to S:

F := (In − f) ◦ ProjS ,

8Ever wondered why adding lots of sugar does not always help improve the taste
of coffee?

107

Draft from February 22, 2005

An introduction to optimality conditions

or, in other words,

F (x) := ProjS(x − f(x)), x ∈ Rn,

and consider finding a fixed point of F on S. Why is this operator a
correct one? Because it is equivalent to the statement that

ProjS(x − f(x)) = x!

The special case for f = ∇f is found in (4.11). Applying a fixed
point theorem to the above problem then proves that the variational
inequality problem (4.38) has solutions whenever f is continuous and
S is nonempty, convex and compact. (Moreover, we have immediately
found an iterative algorithm for the variational inequality problem: if
the operator x 7→ ProjS(x−αf (x)) is contractive for some α > 0, then
it defines a convergent algorithm.)

At the same time, we saw that the fixed point problem was defined
through the same type of stationarity condition that we derived in Sec-
tion 4.4 for differentiable optimization problems over convex sets. We
have thereby also illustrated that stationarity in an optimization prob-
lem is intimately associated with fixed points of a particular operator.9

As an exercise, we consider the problem to find an x ∈ R such that
f(x) = 0, where f : R → R is twice differentiable. The classic Newton–
Raphson algorithm has an iteration formula of the form

x0 ∈ R; xk+1 = xk − f(xk)

f ′(xk)
, k = 0, 1,

If we assume that there exists a zero at x∗ at which f ′(x∗) > 0, then
by starting close enough to x∗ we can prove that the above iteration
formula defines a contraction, and hence we can establish local conver-
gence. (Why?) Further analyses of Newton methods will be performed
in Chapter 11.

A similar technique can be used to establish that a system of linear
equations with a symmetric matrix is solvable by the classic Jacobi al-
gorithm in numerical analysis if the matrix is diagonally dominant; this
condition is equivalent to the Jacobi algorithm’s algorithm-defining op-
erator being a contraction. (Similar, but stronger, results can also be
obtained for the Gauss–Seidel algorithm; cf. [Kre78, BeT89].)

An elegant application of fixed point theorems is the analysis of ma-
trix games. The famous Minimax Theorem of von Neumann is asso-
ciated with the existence of a saddle point of a function of the form

9The book [Pat98] analyzes a large variety of optimization algorithms by utilizing
this connection.

108

Draft from February 22, 2005

Notes and further reading

(v,w) 7→ L(v,w) := vTAw. Von Neumann’s minimax theorem states
that if V and W both are nonempty, convex and compact, then

minimum
v∈V

maximum
w∈W

vTAw = maximum
w∈W

minimum
v∈V

vTAw.

In order to prove this theorem we can use the above existence theorem
for variational inequalities. Let

x =

(
v

w

)
; f (x) =

(
−ATv

Aw

)
; S = V ×W.

It is a reasonably simple exercise to prove that the variational in-
equality (4.38) with the above identifications is equivalent to the saddle
point conditions, which can also be written as the existence of a pair
(v∗,w∗) ∈ V ×W such that

(v∗)TAw ≤ (v∗)TAw∗ ≤ vTAw∗, (v,w) ∈ V ×W ;

and we are done immediately.
Saddle point results will be returned to in the study of (Lagrangian)

duality in the coming chapters, especially for linear programming (which
was also von Neumann’s special interest).

4.7 Notes and further reading

Most of the material of this chapter is elementary (as is relies mostly
on the Taylor expansion of differentiable functions), and can be found
in most basic books on nonlinear optimization, such as [Man69, Zan69,
Avr76, BSS93, Ber99].

Weierstrass’ Theorem 4.6 is the strongest existence result for optimal
solutions that does not utilize convexity. The result is credited to Karl
Weierstrass, but it was in fact known already by Bernard Bolzano in
1817 (although then only available in manuscript form); it has strong
connections to the theorem of the existence of intermediate values as well
as to that on the existence of limit points of every bounded sequence (now
often referred to as the Bolzano–Weierstrass Theorem), and the notion of
Cauchy sequences, often also credited to Weierstrass and Augustin-Louis
Cauchy, respectively.

The Frank–Wolfe Theorem in Corollary 4.8 is found in [FrW56]. The
stronger result in Theorem 4.7 is found in [Eav71, BlO72]. Proposi-
tion 4.25 on the invariance of the gradient on the solution set is found
in [Man88, BuF91].

The traffic equilibrium models of Section 4.6.3 are described more
fully in [She85, Pat94].

109

Draft from February 22, 2005

An introduction to optimality conditions

Fixed point theorems are developed in greater detail in [GrD03].
Non-cooperative game theory was developed in work by John von Neu-
mann, together with Oskar Morgenstern (see [vNe28, vNM43]), and by
John Nash [Nas50, Nas51].

4.8 Exercises

Exercise 4.1 (redundant constraints) Consider the problem to

minimize f(x),

subject to g(x) ≤ b,

where f : Rn → R and g : Rn → R are continuous functions, and b ∈ R.
Suppose that this problem has a globally optimal solution, x∗, and that
g(x∗) < b holds.

Claim: The vector x∗ is also a globally optimal solution to the un-
constrained problem to

minimize f(x),

subject to x ∈ Rn.

Is the claim true?

Exercise 4.2 (unconstrained optimization, exam 020826) Consider the un-
constrained optimization problem to minimize the function

f(x) :=
3

2
(x2

1 + x2
2) + (1 + a)x1x2 − (x1 + x2) + b

over R2, where a and b are real-valued parameters. Find all values of a
and b such that the problem has a unique optimal solution.

Exercise 4.3 (spectral theory and unconstrained optimization) Let A be
a symmetric n × n matrix. For x ∈ Rn, x 6= 0n, consider the function

ρ(x) := xTAx
xTx , and the related optimization problem to

minimize
x 6=0n

ρ(x). (P)

Determine all the stationary points as well as the global minima in
the minimization problem (P). Interpret the result in terms of linear
algebra.

110

Draft from February 22, 2005

Exercises

Exercise 4.4 (non-convex QP over subspaces) The Frank–Wolfe Theo-
rem 4.8 can be further improved for some special cases of linear con-
straints. Suppose that f(x) := 1

2xTQx − qTx, where Q ∈ Rn×n is a
symmetric matrix and q ∈ Rn. Suppose further that the constraints
are equalities, that is, that the ℓ constraints define the linear system
Ex = d, where E ∈ Rℓ×n and d ∈ Rℓ. Note that the problem may not
be convex, as we have not assumed that Q is positive semi-definite.

For this set-up, establish the following:
(a) Every locally optimal solution is a globally optimal solution.
(b) A locally [hence globally, by (a)] optimal solution exists if and

only if f is lower bounded on S := {x ∈ Rn | Ex = d }.
Exercise 4.5 (descent from projection) Consider the problem (4.9), where
f is in C1 on the convex set S. Let x ∈ S. Let α > 0, and define

p := ProjS [x − α∇f(x)] − x.

Notice that p is a feasible direction at x. Establish that

∇f(x)Tp ≤ − 1

α
‖p‖2

holds. Hence, p is zero if and only if x is stationary [according to the
characterization in (4.11)], and if p is non-zero then it defines a feasible
descent direction with respect to f at x.

Exercise 4.6 (optimality conditions for a special problem) Suppose that
f ∈ C1 on the set S := {x ∈ Rn | xj ≥ 0, j = 1, 2, . . . , n }, and
consider the problem of finding a minimum of f(x) over S. Develop the
necessary optimality conditions for this problem in a compact form.

Exercise 4.7 (optimality conditions for a special problem) Consider the prob-
lem to

maximize f(x) := xa1

1 x
a2

2 · · ·xan

n ,

subject to
n∑

j=1

xj = 1,

xj ≥ 0, j = 1, . . . , n,

where the values of aj (j = 1, . . . , n) are positive. Find a global maxi-
mum and show that it is unique.

Exercise 4.8 (extensions of convexity, exam 040602) We have stressed that
convexity is a crucial property of functions when analyzing optimiza-
tion models in general and studying optimality conditions in particu-
lar. There are, however, certain properties of convex functions that are

111

Draft from February 22, 2005

An introduction to optimality conditions

shared also by classes of non-convex functions. The purpose of this ex-
ercise is to relate the convex functions to two such classes of non-convex
functions by means of some example properties.

Suppose that S ⊆ Rn and that f : Rn → R is continuous on S.
(a) Suppose further that f is in C1 on S. We say that the function

f is pseudo-convex on S if, for every x,y ∈ S,

∇f(x)T(y − x) ≥ 0 =⇒ f(y) ≥ f(x).

Establish the following two statements: (1) if f is a convex function
on S then f is pseudo-convex on S (that is, “convexity implies pseudo-
convexity”); (2) the reverse statement (“pseudo-convexity implies con-
vexity”) is not true.

[Hint: On the statement (2) you may construct an explicit or graph-
ical counter-example.]

[Note: Pseudo-convex functions were introduced by Mangasarian
[Man65].]

(b) A well-known property of a differentiable convex function is its
role in necessary and sufficient conditions for globally optimal solutions.
Suppose now that S is convex. If f is a convex function on Rn which is
in C1 on S then Theorem 4.23 applies. Establish that the equivalence
relation of this theorem still holds if the convexity of f on S is replaced
by the pseudo-convexity of f on S.

(c) Let S be convex. We say that the function f is quasi-convex on
S if its level sets are convex. In other words, f is quasi-convex on S if

levS
f (b) := {x ∈ S | f(x) ≤ b }

is convex for every b ∈ R.
Establish the following two statements for a function f which is in

C1 on S: (1) if f is convex function on S then f is quasi-convex on S
(that is, “convexity implies quasi-convexity”); (2) the reverse statement
(“quasi-convexity implies convexity”) is not true.

[Hint: On the statement (2) you may construct an explicit or graph-
ical counter-example.]

[Note: Pseudo-convex functions were introduced by De Finetti [DeF49].]

Exercise 4.9 (illustrations of fixed point results) (a) Let S := { x ∈ R |
x ≥ 1 } and f(x) := x/2 + 1/x. Show that f is a contraction and find
the smallest value of α.

(b) In analysis, a usual condition for the convergence of an iteration
xk = g(xk−1) is that g be continuously differentiable and

|g′(x)| ≤ α < 1.

112

Draft from February 22, 2005

Exercises

Verify this by the use of Banach’s Theorem 4.33(a).
(c) Show that a fixed-point iteration for calculating the square root

of a given positive number c is

x0 > 0; xk+1 = g(xk) :=
1

2

(
xk +

c

xk

)
, k = 0, 1,

What condition do we get from (b)? Starting at x0 = 1, calculate
approximations x1, x2, x3, x4 of

√
2.

113

Draft from February 22, 2005

An introduction to optimality conditions

114

Draft from February 22, 2005

Optimality conditions V

5.1 Relations between optimality conditions

(OCs) and CQs at a glance

Optimality conditions are introduced as an attempt to construct an eas-
ily verifiable criterion that allows us to examine points in a feasible set,
one after another, and classify them into optimal and non-optimal ones.
Unfortunately, this is impossible in practice, and not only due to the
fact that there are far too many feasible points, but also because it is
impossible to construct such a universal criterion. It is usually possible
to construct either practical (that is, computationally verifiable) condi-
tions that admit some mistakes in the characterization, or perfect ones
which are impossible to use in the computations. It is of course the first
group that is of practical value for us, and it may further be classified
into two distinct subgroups based on the type of mistakes allowed in the
decision-making process. Namely, optimality conditions encountered in
practice are divided into two classes, known as necessary and sufficient
conditions.

Necessary conditions must be satisfied at every locally optimal point;
on the other hand, we cannot guarantee that every point satisfying the
necessary optimality conditions is indeed locally optimal. On the con-
trary, sufficient optimality conditions provide such guarantees; however,
there are some locally optimal points that violate the optimality con-
ditions. Arguably, it is much more important to be able to find a few
candidates for local minima that can be further investigated by other
means, than to eliminate some local (or even global) minima from the
beginning. Therefore, this chapter is dedicated to the development of
necessary optimality conditions. However, for convex optimization prob-
lems these conditions turn out to be sufficient.

Draft from February 22, 2005

Optimality conditions

Now, we can concentrate on what should be meant by easily verifiable
conditions. A human being can immediately state whether a given point
belongs to a simple set or not, by just glancing at a picture of it; for a nu-
merical algorithm, a clear algebraic description of a set in terms of equal-
ities and inequalities is vital. Therefore, we start our development with
geometric optimality conditions (Section 5.3), to gain an understanding
about the relationships between the gradient of the objective function
and the feasible set that must hold at every local minimum point. Given
a specific description of a feasible set in terms of inequalities, the ge-
ometric conditions immediately imply some relationships between the
gradients of the objective functions and the constraints that are binding
at the point under consideration (see Section 5.4); these conditions are
known as the Fritz–John optimality conditions, and are rather weak (i.e.,
they can be satisfied by many points that have nothing in common with
locally optimal points). However, if we assume an additional regularity of
the system of inequalities and equalities that define our feasible set, then
the geometric optimality conditions imply stronger conditions, known as
the Karush–Kuhn–Tucker optimality conditions (see Section 5.5). The
additional regularity assumptions are known under the name constraint
qualifications (CQs), and they vary from very abstract and difficult to
check, but enjoyed by many feasible sets (such as, e.g., Abadie’s CQ,
see Definition 5.23) to more specific, easily verifiable but also somewhat
restrictive in many situations (such as the linear independence CQ (see
Definition 5.41), or the Slater CQ, see Definition 5.38). In Section 5.8
we show that for convex problems the KKT conditions are sufficient for
local, hence global, optimality.

The contents of this chapter are in principle summarized in the flow-
chart in Figure 5.1. Various optimality conditions and constraint qual-
ifications that are discussed in this chapter constitute the nodes of the
flow-chart. Logical relationships between them are denoted with edges,
and the direction of the arrow shows the direction of the logical implica-
tion; each implication is further labeled with the result that establishes
it. We note that the KKT conditions “follow” from both geometric
conditions and constraint qualifications satisfied at a given point; also,
global optimality holds if both the KKT conditions are verified and the
optimization problem is convex.

5.2 A note of caution

In this chapter we will discuss various necessary optimality conditions for
a given point to be a local minimum to a nonlinear programming model.
If the NLP is a convex program, any point satisfying these necessary

116

Draft from February 22, 2005

A note of caution

x∗ locally optimal x∗ globally optimal

Geometric OC◦
F (x∗) ∩ TS(x∗) = ∅ Fritz–John OC (5.8)

Abadie’s CQ
TS(x∗) = G(x∗) ∩H(x∗)

KKT OC (5.17)

Convexity

MFCQ (Definition 5.35) Affine constraints

LICQ (Definition 5.41) Slater CQ (Definition 5.38)

Theorem 5.8

Theorem 5.15

Theorem 5.33

Proposition 5.36

Proposition 5.44

Proposition 5.42
Proposition 5.39

T
h
eo

re
m

5
.4

5

Figure 5.1: Relations between optimality conditions (OCs) and CQs at
a glance.

optimality conditions is not only a local minimum, but actually a global
minimum (see Section 5.8). Arguably, most NLP models that arise in
real world applications tend to be nonconvex, and for such a problem,
a point satisfying the necessary optimality conditions may not even be
a local minimum. Algorithms for NLP are usually designed to converge
to a point satisfying the necessary optimality conditions, and as men-
tioned earlier, one should not blindly accept such a point as an optimum
solution to the problem without checking (e.g., using the second order
necessary optimality conditions, see [BSS93, Section 4.4], or by means
of some local search in the vicinity of the point) that it is at least better
than all the other nearby points. Also, the system of necessary optimal-
ity conditions may have many solutions. Finding alternate solutions of

117

Draft from February 22, 2005

Optimality conditions

this system, and selecting the best among them, usually leads to a good
point to investigate further.

We will illustrate the importance of this with the story of US Air
Force’s controversial B-2 Stealth bomber program in the Reagan era of
the 1980s. There were many design variables such as the various di-
mensions, the distribution of volume between the wing and the fuselage,
flying speed, thrust, fuel consumption, drag, lift, air density, etc., that
could be manipulated for obtaining the best range (i.e., the distance it
can fly starting with full tanks, without refueling). The problem of max-
imizing the range subject to all the constraints was modeled as an NLP
in a secret Air Force study going back to the 1940s. A solution to the
necessary optimality conditions of this problem was found; it specified
values for the design variables that put almost all of the total volume in
the wing, leading to the flying wing design for the B-2 bomber. After
spending billions of dollars, building test planes, etc., it was found that
the design solution implemented works, but that its range was too low in
comparison with other bomber designs being experimented subsequently
in the US and abroad.

A careful review of the model was then carried out. The review indi-
cated that all the formulas used, and the model itself, are perfectly valid.
However, the model was a nonconvex NLP, and the review revealed a
second solution to the system of necessary optimality conditions for it,
besides the one found and implemented as a result of earlier studies. The
second solution makes the wing volume much less than the total volume,
and seems to maximize the range; while the first solution that is imple-
mented for the B-2 bomber seems to actually minimize the range. (The
second solution also looked like an airplane should, while the flying wing
design was counter-intuitive.) In other words, the design implemented
was the aerodynamically worst possible choice of configuration, leading
to a very costly error.

For an account, see the research news item “Skeleton Alleged in the
Stealth Bomber’s Closet,” Science, vol. 244, 12 May 1989 issue, pages
650–651.

5.3 Geometric optimality conditions

In this section we will discuss the optimality conditions for the following
optimization problem [cf. (4.1)]:

minimize f(x),

subject to x ∈ S,
(5.1)

118

Draft from February 22, 2005

Geometric optimality conditions

where S ⊂ Rn is a nonempty closed set and f : Rn → R is a given
differentiable function. Since we do not have any particular description
of the feasible set S in terms of equality or inequality constraints, the
optimality conditions will be based on purely geometrical ideas. Being
quite general, the optimality conditions we will develop in this section
are almost useless when it comes to computations, because they are also
not very easy, even impossible, to verify for an optimization algorithm.
Therefore, in the sections that follow, we will use an algebraic descrip-
tion of the set S and geometric optimality conditions to further develop
classical Fritz–John and Karush–Kuhn–Tucker optimality conditions in
the form of easily verifiable systems of equations and inequalities.

The basic idea behind the optimality conditions is that if the point
x∗ ∈ S is a point of local minimum for f over S, it should not be possible
to draw a curve, or, more generally, a sequence of points, starting at
the point x∗ inside S, such that f decreases along it. Linearizing the
objective function and the constraints along such curves, we eventually
establish relationships between their gradients that are necessary to hold
at points of local minima.

We start by defining the meaning of “possible to draw a curve starting
at x∗ inside S”. Arguably, the simplest curves are the straight lines; the
following definition gives exactly the set of lines that locally around x∗

belong to S.

Definition 5.1 (cone of feasible directions) Let S ⊂ Rn be a nonempty
closed set. The cone of feasible directions for S at x ∈ Rn, known also
as the radial cone, is defined as:

RS(x) := {p ∈ Rn | ∃ δ̃ > 0 such that x + δp ∈ S, 0 ≤ δ ≤ δ̃ }. (5.2)

Thus, this is nothing else but the cone containing all feasible directions
in the sense of Definition 4.19.

This cone is used in some optimization algorithms, but unfortunately
it is too small to develop optimality conditions that are general enough.
Therefore, we consider less intuitive, but bigger and more well-behaving
sets (cf. Proposition 5.3 and the examples that follow).

Definition 5.2 (tangent cone) Let S ⊂ Rn be a nonempty closed set.
The tangent cone for S at x ∈ Rn is defined as

TS(x) := {p ∈ Rn | ∃ {xk} ⊂ S, {λk} ⊂ (0,∞) : lim
k→∞

xk = x,

lim
k→∞

λk(xk − x) = p }.
(5.3)

119

Draft from February 22, 2005

Optimality conditions

Thus, to construct a tangent cone we consider all the sequences {xk}
in S that converge to the given x ∈ Rn, and then calculate all the direc-
tions p ∈ Rn that are tangential to the sequences at x; such tangential
vectors are described as the limits of {λk(xk −x)} for arbitrary positive
sequences {λk}. Note that to generate a nonzero vector p ∈ TS(x) the
sequence {λk} must converge to +∞.

While it is possible that clRS(x) = TS(x), or even that RS(x) =
TS(x), in general we have only the following proposition, and examples
that follow show that the two cones might be very different.

Proposition 5.3 (relationship between the radial and the tangent cones)
The tangent cone is a closed set, and the inclusion clRS(x) ⊂ TS(x)
holds for every x ∈ Rn.

Proof. Consider a sequence {pk} ⊂ TS(x), and assume that pk → p.
Since every pk ∈ TS(x), there exists xk ∈ S and λk > 0, such that
‖xk−x‖ < k−1 and ‖λ(xk−x)−pk‖ < k−1. Then, clearly, xk → x, and,
by the triangle inequality, ‖λ(xk−x)−p‖ ≤ ‖λ(xk−x)−pk‖+‖pk−p‖ →
0, which implies that p ∈ TS(x) and thus the latter set is closed.

In view of the closedness of the tangent cone, it is enough to show the
inclusion RS(x) ⊂ TS(x). Let p ∈ RS(x). Then, for all large integers k
it holds that x + k−1p ∈ S, and, therefore, setting xk = x + k−1p and
λk = k we see that p ∈ TS(x) as defined by Definition 5.2.

Example 5.4 Let S = {x ∈ R2 | −x1 ≤ 0, (x1 − 1)2 + x2
2 ≤ 1 }. Then,

RS(02) = {p ∈ R2 | p1 > 0 }, and TS(02) = {p ∈ R2 | p1 ≥ 0 }, i.e.,
TS(02) = clRS(02) (see Figure 5.2).

Example 5.5 (complementarity constraint) Let S = {x ∈ R2 | −x1 ≤
0,−x2 ≤ 0, x1x2 ≤ 0 }. In this case, S is a (non-convex) cone, and
RS(02) = TS(02) = S (see Figure 5.3).

Example 5.6 Let S = {x ∈ R2 | −x3
1 + x2 ≤ 0, x5

1 − x2 ≤ 0,−x2 ≤ 0 }.
Then, RS(02) = ∅, TS(02) = {p ∈ R2 | p1 ≥ 0, p2 = 0 } (see Figure 5.4).

Example 5.7 Let S = {x ∈ R2 | −x2 ≤ 0, (x1 − 1)2 + x2
2 = 1 }. Then,

RS(02) = ∅, TS(02) = {p ∈ R2 | p1 = 0, p2 ≥ 0 } (see Figure 5.5).

We already know that f decreases along any descent direction (cf. Def-
inition 4.14), and that for a vector p ∈ Rn it is sufficient to verify the
inequality ∇f(x∗)Tp < 0 to be a descent direction for f at x∗ ∈ Rn

(see Proposition 4.15). Even though this condition is not necessary, it

120

Draft from February 22, 2005

Geometric optimality conditions

1 2

1

−1

S

1 2

1

−1

S

TS(0
2)

(a) (b)

Figure 5.2: (a) The set S obtained as the intersection of two constraints;
(b) the tangent cone TS(02) (see Example 5.4).

is very easy to check in practice and therefore we will use it to develop
optimality conditions. Therefore, it would be convenient to define a cone
of such directions (which may be empty if ∇f(x∗) happens to be 0n):

◦
F (x∗) = {p ∈ Rn | ∇f(x∗)Tp < 0 }. (5.4)

Now we have the necessary notation to state and prove the main
theorem of this section.

Theorem 5.8 (geometric necessary optimality conditions) Consider the op-
timization problem (5.1). Then, for x∗ ∈ S to be a local minimum of f

over S it is necessary that
◦
F (x∗)∩TS(x∗) = ∅, where

◦
F (x∗) and TS(x∗)

are defined by (5.4) and Definition 5.2, respectively.

Proof. Assume that p ∈ TS(x∗), i.e., ∃ {xk} ⊂ S, and {λk} ⊂ (0,∞)
such that limk→∞ xk = x∗ and limk→∞ λk(xk−x∗) = p. Using the first
order Taylor expansion (2.1) we get:

f(xk) − f(x∗) = ∇f(x∗)T(xk − x∗) + o(‖xk − x∗‖) ≥ 0,

where the last inequality holds for all enough large k by the local opti-
mality of x∗. Multiplying by λk > 0 and taking limit we get

0 ≤ lim
k→∞

[
λk∇f(x∗)T(xk − x∗) + ‖λk(xk − x∗)‖o(‖xk − x∗‖)

‖xk − x∗‖

]

= ∇f(x∗)Tp + ‖p‖ · 0,

121

Draft from February 22, 2005

Optimality conditions

1 2

1

2

Figure 5.3: S = RS(02) = TS(02) (see Example 5.5).

and thus p 6∈
◦
F (x∗).

Combining Proposition 5.3 and Theorem 5.8 we get that for x∗ ∈ S to

be a local minimum of f over S it is necessary that
◦
F (x∗)∩RS(x∗) = ∅;

but this statement is weaker than Theorem 5.8.

Example 5.9 Consider the differentiable (linear) function f : R2 → R

defined by f(x) = x1. Then, ∇f = (1, 0)T, and
◦
F (02) = {x ∈ R2 |

x1 < 0 }. It is easy to see from geometric considerations that x∗ = 02

is a local (in fact, even global) minimum in either problem (5.1) with
S given by Examples 5.4–5.7, and equally easy it is to check that the

geometric necessary optimality condition
◦
F (02)∩ TS(02) = ∅ is satisfied

in all these examples (which is no surprise, in view of Theorem 5.8).

5.4 The Fritz–John conditions

Theorem 5.8 gives a very elegant criterion for checking whether a given
point x∗ ∈ S is a candidate for a local minimum for the problem (5.1),
but there is a catch: the set TS(x∗) is close to impossible to compute
for general sets S! Therefore, in this section we will use the algebraic
characterization of the set S to compute other cones that we hope could
approximate TS(x∗) in many practical situations.

Namely, we assume that the set S is defined as the solution set of a
system of differentiable inequality constraints defined by the functions

122

Draft from February 22, 2005

The Fritz–John conditions

1

1

1

1

(a) (b)

Figure 5.4: (a) The set S; (b) the tangent cone TS(02) (see Example 5.6).

1 2

1

1 2

1

(a) (b)

Figure 5.5: (a) The set S; (b) the tangent cone TS(02) (see Example 5.7).

gi ∈ C1(Rn), i = 1, . . . ,m:

S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m }. (5.5)

We can always assume this structure, because any equality constraint
h(x) = 0 may be written in the form h(x) ≤ 0∧−h(x) ≤ 0. Treating the
equality constraints in this way we obtain the Fritz–John conditions, that
however are somewhat too weak to be practical; on the positive side, it
significantly simplifies the notation and does not affect the development
of the KKT-conditions. Therefore, we keep this assumption for some
time, and state the KKT system that specifically distinguishes between
the inequality and equality constraints in Section 5.6. We will use the
symbol I(x) to denote the index set of binding, or active, inequality
constraints at x ∈ Rn (see Definition 4.20), and |I(x)| to denote the
cardinality of this set, i.e., the number of active inequality constraints

123

Draft from February 22, 2005

Optimality conditions

at x ∈ Rn.
In order to compute approximations to the tangent cone TS(x), sim-

ilarly to Example 4.21 we consider cones associated with the active con-
straints at a given point:

◦
G(x) = {p ∈ Rn | ∇gi(x)Tp < 0, i ∈ I(x) }, (5.6)

and

G(x) = {p ∈ Rn | ∇gi(x)Tp ≤ 0, i ∈ I(x) }. (5.7)

The following proposition verifies that
◦
G(x) is an “inner approxima-

tion” for RS(x) (and, therefore, for TS(x) as well, see Proposition 5.3),
and G(x) is an outer approximation for TS(x).

Lemma 5.10 For every x∗ ∈ Rn it holds that
◦
G(x∗) ⊂ RS(x∗), and

TS(x∗) ⊂ G(x∗).

Proof. Let p ∈
◦
G(x∗). For every i 6∈ I(x∗) the function gi is continuous

and gi(x
∗) < 0; therefore gi(x

∗ + δp) < 0 for all small δ > 0. Moreover,
by Proposition 4.15, p is a direction of descent for every gi at x∗, i ∈
I(x∗), which means that gi(x

∗ + δp) < gi(x
∗) = 0 for all such i and all

small δ > 0. Thus, p ∈ RS(x), and, hence,
◦
G(x∗) ⊂ RS(x).

Now, let p ∈ TS(x), i.e., ∃ {xk} ⊂ S, and {λk} ⊂ (0,∞) such that
limk→∞ xk = x∗ and limk→∞ λk(xk − x∗) = p. Exactly as in the proof
of Theorem 5.8, we use the first order Taylor expansion (2.1) of the
functions gi, i ∈ I(x∗), to get:

0 ≥ gi(xk) = gi(xk) − gi(x
∗) = ∇gi(x

∗)T(xk − x∗) + o(‖xk − x∗‖),

where the first inequality is by the feasibility of xk. Multiplying by
λk > 0 and taking limit we get, for i ∈ I(x∗),

0 ≥ lim
k→∞

[
λk∇gi(x

∗)T(xk − x∗) + ‖λk(xk − x∗)‖o(‖xk − x∗‖)
‖xk − x∗‖

]

= ∇gi(x
∗)Tp + ‖p‖ · 0,

and thus p ∈ G(x∗).

Example 5.11 (Example 5.4 continued) In this example the set S is de-
fined by the two inequality constraints g1(x) = −x1 ≤ 0 and g2(x) =

124

Draft from February 22, 2005

The Fritz–John conditions

(x1−1)2+x2
2−1 ≤ 0. Let us calculate

◦
G(02) andG(02). Both constraints

are satisfied with equality at the given point, so that I(x) = {1, 2}.
Then, ∇g1(02) = (−1, 0)T, ∇g2(02) = (−2, 0)T, and thus

◦
G(02) = {x ∈

R2 | x1 > 0 } = RS(02), G(02) = {x ∈ R2 | x1 ≥ 0 } = TS(02) in this
case.

Example 5.12 (Example 5.5 continued) S is defined by the three in-
equality constraints g1(x) = −x1 ≤ 0, g2(x) = −x2 ≤ 0, g3(x) = x1x2 ≤
0, which are all binding at x∗ = 02; ∇g1(02) = (−1, 0)T, ∇g2(02) =

(0,−1)T, and ∇g3(02) = (0, 0)T. Therefore,
◦
G(02) = ∅ (RS(02), and

G(02) = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0 }) TS(02).

Example 5.13 (Example 5.6 continued) S is defined by the three in-
equality constraints g1(x) = −x3

1 + x2 ≤ 0, g2(x) = x5
1 − x2 ≤ 0,

g3(x) = −x2 ≤ 0, which are all binding at x∗ = 02; ∇g1(02) = (0, 1)T,

∇g2(02) = (0,−1)T, and ∇g3(02) = (0,−1)T. Therefore,
◦
G(02) = ∅ =

RS(02), and G(02) = {x ∈ R2 | x2 = 0 }) TS(02).

Example 5.14 (Example 5.7 continued) In this example, the set S is
defined by the inequality constraint g1(x) = −x2 ≤ 0, and one equality
constraint h1(x) = (x1 − 1)2 + x2

2 − 1 = 0; we split the latter into
two inequality constraints g2(x) = h1(x) ≤ 0, and g3(x) = −h1(x) ≤
0. Thus, we end up with three binding inequality constraints at x∗ =
02; ∇g1(02) = (0,−1)T, ∇g2(02) = (−2, 0)T, and ∇g3(02) = (2, 0)T.

Therefore,
◦
G(02) = ∅ = RS(02), and G(02) = {x ∈ R2 | x1 = 0, x2 ≥

0 } = TS(02).

Now we are ready to establish the Fritz–John optimality conditions.

Theorem 5.15 (Fritz–John necessary optimality conditions) Let the set
S be defined by (5.5). Then, for x∗ ∈ S to be a local minimum of f over
S it is necessary that there exist multipliers µ0 ∈ R, µ ∈ Rm, such that

µ0∇f(x∗) +
m∑

i=1

µi∇gi(x
∗) = 0n, (5.8a)

µigi(x
∗) = 0, i = 1, . . . ,m, (5.8b)

µ0, µi ≥ 0, i = 1, . . . ,m, (5.8c)

(µ0,µ
T)T 6= 0m+1. (5.8d)

125

Draft from February 22, 2005

Optimality conditions

Proof. Combining the results of Lemma 5.10 with the geometric opti-
mality conditions provided by Theorem 5.8, we conclude that there is
no direction p ∈ Rn such that ∇f(x∗)Tp < 0 and ∇gi(x

∗)Tp < 0, i ∈
I(x∗). Define the matrix A with columns ∇f(x∗), ∇gi(x

∗), i ∈ I(x∗);
then the system ATp < 01+|I(x∗)| is unsolvable. By Farkas’ Lemma
(cf. Theorem 3.30) there exists a nonzero vector λ ∈ R1+|I(x∗)| such
that λ ≥ 01+|I(x∗)| and Aλ = 0n. Now, let (µ0,µ

T
I(x∗))

T = λ, and set

µi = 0 for i 6∈ I(x∗). It is an easy exercise now to verify that so defined
µ0 and µ satisfy the conditions (5.8).

Remark 5.16 (terminology) The solutions (µ0,µ) to the system (5.8)
are known as Lagrange multipliers (or just multipliers) associated with
a given candidate x∗ ∈ Rn for a local minimum. Note, that every mul-
tiplier (except µ0) corresponds to some constraint in the algebraic rep-
resentation of S. The conditions (5.8a) and (5.8c) are known as the
dual feasibility, and (5.8b) as the complementarity constraints, respec-
tively; this terminology will become more clear in Chapter 6. Owing
to the complementarity constraints, the multipliers µi corresponding to
inactive inequality constraints i 6∈ I(x∗) must be zero. In general, the
Lagrange multiplier µi bears the important information about how sen-
sitive a particular local minimum is with respect to small changes in the
constraint gi.

In the following examples, as before, we assume that f(x) = x1, so
that ∇f = (1, 0)T and x∗ = 02 is the point of local minimum.

Example 5.17 (Example 5.4 continued) The Fritz–John system (5.8) at
the point x∗ = 02 in this case reduces to:





µ0

(
1
0

)
+

(
−1 −2
0 0

)
µ = 02,

(µ0,µ
T)T 	 03,

where µ ∈ R2 is a vector of Lagrange multipliers for the inequality
constraints. We do not write the complementarity constraints (5.8b),
because in our case all three constraints are active, and therefore the
equation (5.8b) is automatically satisfied for all µ. The solutions to this
system are described as pairs (µ0,µ), with µ = (µ1, 2

−1(µ0 − µ1))
T,

for every µ0 > 0, 0 ≤ µ1 ≤ µ0. There are infinitely many Lagrange
multipliers, that even form an unbounded set, but µ0 must always be
positive.

126

Draft from February 22, 2005

The Fritz–John conditions

Example 5.18 (Example 5.5 continued) Similarly to the previous ex-
ample, the Fritz–John system (5.8) at the point x∗ = 02 in this case
reduces to: 



µ0

(
1
0

)
+

(
−1 0 0
0 −1 0

)
µ = 02,

(µ0,µ
T)T 	 04,

where µ ∈ R3 is a vector of Lagrange multipliers for the inequality
constraints. The solution to the Fritz–John system is every pair (µ0,µ)
with µ = (µ0, 0, µ3)

T for every µ0 ≥ 0, µ3 ≥ 0 such that either of them
is strictly bigger than zero. That is, there are infinitely many Lagrange
multipliers, that even form an unbounded set, and it is possible for µ0

to assume the value zero.

Example 5.19 (Example 5.6 continued) The Fritz–John system (5.8) at
the point x∗ = 02 in this case reduces to:





µ0

(
1
0

)
+

(
0 0 0
1 −1 −1

)
µ = 02,

(µ0,µ
T)T 	 04,

where µ ∈ R3 is a vector of Lagrange multipliers for the inequality
constraints. Thus, µ0 = 0, µ = (µ1, µ2, µ1 − µ2)

T for every µ1 > 0,
0 ≤ µ2 ≤ µ1. That is, there are infinitely many Lagrange multipliers,
that even form an unbounded set, and µ0 must assume the value zero.

Example 5.20 (Example 5.7 continued) The Fritz–John system (5.8) at
the point x∗ = 02 in this case reduces to:




µ0

(
1
0

)
+

(
0 −2 2
−1 0 0

)
µ = 02,

(µ0,µ
T)T 	 04,

where µ ∈ R3 is a vector of Lagrange multipliers for the inequality
constraints. The solution to the Fritz–John system is every pair (µ0,µ)
with µ = (0, µ2, µ2 − 2−1µ0)

T for every µ2 > 0, 0 ≤ µ0 ≤ 2µ2. That
is, there are infinitely many Lagrange multipliers, that even form an
unbounded set, and it is possible for µ0 to assume the value zero.

The fact that µ0 may be zero in the system (5.8) essentially means
that the objective function f plays no role in the optimality conditions.
This is of course a rather unexpected and unwanted situation, and the

127

Draft from February 22, 2005

Optimality conditions

rest of the chapter is in principle dedicated to describing how one can
avoid it.

Since the cone of feasible directions RS(x) may be a bad approxi-

mation of the tangent cone TS(x), so may
◦
G(x) owing to Lemma 5.10.

Therefore, in the most general case we cannot improve on the condi-
tions (5.8); however, it is possible to improve upon (5.8) if we assume

that the set S is “regular” in some sense, i.e., that either
◦
G(x) or G(x)

is a tight enough approximation of TS(x). Requirements of this type
are called constraint qualifications, and they will be discussed in more
detail in Section 5.7. However, to get a feeling of what can be achieved
with a regular constraint sets S, we show that the multiplier µ0 in the
system (5.8) cannot vanish (i.e., KKT conditions hold, see Section 5.5) if

the constraint qualification
◦
G(x∗) 6= ∅ holds (which is quite a restrictive

one, in view of Example 5.22; however, see the similar, but much weaker,
assumption MFCQ in Section 5.7 dedicated to constraint qualifications).

Proposition 5.21 (KKT optimality conditions – preview) Assume the con-

ditions of Theorem 5.8, and assume that
◦
G(x∗) 6= ∅. Then, the multiplier

µ0 in (5.8) cannot be zero; dividing all equations by µ0 we may assume
that it equals one.

Proof. Assume that µ0 = 0 in (5.8), and define the matrix A with
columns ∇gi(x

∗), i ∈ I(x∗). Since Aµ = 0n, µ ≥ 0|I(x∗)|, and
µ 6= 0|I(x∗)|, the system ATp < 0|I(x∗)| is unsolvable (see Farkas’

Lemma, Theorem 3.30), i.e.,
◦
G(x∗) = ∅.

Example 5.22 Out of the four Examples 5.4–5.7, only the first one

verifies the condition
◦
G(x∗) 6= ∅ assumed in Proposition 5.21, while as

we see later (and as Examples 5.17–5.20 may suggest), three out of four
problems admit solutions to the corresponding KKT systems.

5.5 The Karush–Kuhn–Tucker conditions

In this section we develop the famous and classic Karush–Kuhn–Tucker
optimality conditions for constrained optimization problems with in-
equality constraints, which are essentially the Fritz–John conditions (5.8)
with the additional requirement µ0 6= 0. We establish these conditions
as before, for inequality constrained problems (5.5) (which we do with-
out any loss of generality or sharpness of the theory), and then discuss

128

Draft from February 22, 2005

The Karush–Kuhn–Tucker conditions

the possible modifications of the conditions if one wants to specifically
distinguish between equality and inequality constraints in Section 5.6.
Abadie’s constraint qualification (see Definition 5.23) which we impose
is very abstract and extremely general (this is almost the weakest con-
dition one can require); of course it is impossible to check it when it
comes to practical problems. Therefore, in Section 5.7 we list some com-
putationally verifiable assumptions that all imply Abadie’s constraint
qualification.

We start with a formal definition.

Definition 5.23 (Abadie’s constraint qualification) We say that at the
point x ∈ S Abadie’s constraint qualification holds if TS(x) = G(x),
where TS(x) is defined by Definition 5.2 and G(x) by (5.7).

Example 5.24 Out of the four Examples 5.4–5.7, the first and the last
satisfy Abadie’s constraint qualification (see Examples 5.11–5.14).

Then, we are ready to prove the main theorem in this chapter.

Theorem 5.25 (Karush–Kuhn–Tucker optimality conditions) Assume that
at a given point x∗ ∈ S Abadie’s constraint qualification holds. Then,
for x∗ ∈ S to be a local minimum of f over S it is necessary that there
exists µ ∈ Rm, such that

∇f(x∗) +

m∑

i=1

µi∇gi(x
∗) = 0n, (5.9a)

µigi(x
∗) = 0, i = 1, . . . ,m, (5.9b)

µ ≥ 0m, (5.9c)

the system bearing the name of Karush–Kuhn–Tucker optimality condi-
tions.

Proof. By Theorem 5.8 we have that
◦
F (x∗) ∩ TS(x∗) = ∅, which due

to our assumptions implies that
◦
F (x∗) ∩G(x∗) = ∅.

As in the proof of Theorem 5.15, construct a matrix A with columns
∇gi(x

∗), i ∈ I(x∗). Then, the system ATp ≤ 0|I(x∗)| and −∇f(x∗)Tp >
0 has no solutions. By Farkas’ Lemma (cf. Theorem 3.30), the system
Aξ = −∇f(x∗), ξ ≥ 0|I(x∗)| has a solution. Thus, define µI(x∗) = ξ,
and µi = 0, for i 6∈ I(x∗). Then, then so defined µ verifies the KKT
conditions (5.9).

129

Draft from February 22, 2005

Optimality conditions

Remark 5.26 (terminology) Similar to the case of the Fritz–John nec-
essary optimality conditions, the solutions µ to the system (5.9) are
known as Lagrange multipliers (or just multipliers) associated with a
given candidate x∗ ∈ Rn for a local minimum. The conditions (5.9a)
and (5.9c) are known as the dual feasibility, and (5.9b) as the comple-
mentarity constraints, respectively; this terminology will become more
clear in Chapter 6. Owing to the complementarity constraints, the mul-
tipliers µi corresponding to inactive inequality constraints i 6∈ I(x∗)
must be zero. In general, the Lagrange multiplier µi bears the impor-
tant information about how sensitive a particular local minimum is with
respect to small changes in the constraint gi.

Remark 5.27 (geometric interpretation) The system of equations and
inequalities defining (5.9) can (and should) be interpreted geometrically
as −∇f(x∗) ∈ NS(x∗) (see Figure 5.6), the latter cone being the normal
cone to S at x∗ ∈ S (see Definition 4.24); according to the figure, the
normal cone to S at x∗ is furthermore spanned by the gradients of the
active constraints at x∗.

Notice the specific roles played by the different parts of the sys-
tem (5.9) in this respect: the complementarity conditions (5.9b) force
µi to be equal to 0 for the inactive constraints, whence the summation
in the left-hand side of the linear system (5.9a) involves the active con-
straints only. Further, the sign conditions in (5.9c) ensures that each
vector µi∇gi(x

∗), i ∈ I(x∗), is an outward normal to S at x∗.

Remark 5.28 Note that in the unconstrained case the KKT system (5.9)
reduces to the single requirement ∇f(x∗) = 0n, which we have already
encountered in Theorem 4.13.

It is possible to further develop the KKT-theory (with some technical
complications) for two times differentiable functions as it has been done
for the unconstrained case in Theorem 4.16. We refer the interested
reader to [BSS93, Section 4.4].

Example 5.29 (Example 5.4 continued) In this example Abadie’s con-
straint qualification is fulfilled, therefore the KKT-system must be solv-
able. Indeed, the system






(
1
0

)
+

(
−1 −2
0 0

)
µ = 02,

µ ≥ 02,

possesses solutions µ = (µ1, 2
−1(1 − µ1))

T for every 0 ≤ µ1 ≤ 1. There-
fore, there are infinitely many multipliers, that all belong to a bounded
set.

130

Draft from February 22, 2005

The Karush–Kuhn–Tucker conditions

x)∆

1g =0

3g =0

(x)f∆−

g1(x)∆

2g =0

x

g2(

S

Figure 5.6: Geometrical interpretation of the KKT system.

Example 5.30 (Example 5.5 continued) This is one of the rare cases
when Abadie’s constraint qualification is violated, and nevertheless the
KKT system happens to be solvable:






(
1
0

)
+

(
−1 0 0
0 −1 0

)
µ = 02,

µ ≥ 03,

admits solutions µ = (1, 0, µ3)
T for every µ3 ≥ 0. That is, the set of

Lagrange multipliers is still unbounded in this case.

Example 5.31 (Example 5.6 continued) Since, for this example, in the
Fritz–John system the multiplier µ0 is necessarily zero, the KKT system
admits no solutions:






(
1
0

)
+

(
0 0 0
1 −1 −1

)
µ = 02,

µ ≥ 03,

131

Draft from February 22, 2005

Optimality conditions

is clearly inconsistent. In this example the very basic Abadie’s con-
straint qualifications is violated, and therefore the lack of KKT multi-
pliers should not be a big surprise.

Example 5.32 (Example 5.7 continued) This example also satisfies Abadie’s
constraint qualification, therefore the KKT-system is necessarily solv-
able: 





(
1
0

)
+

(
0 −2 2
−1 0 0

)
µ = 02,

µ ≥ 03,

admits the solutions µ = (0, µ2, µ2 − 2−1)T, for all µ2 ≥ 2−1. The set of
Lagrange multipliers is unbounded in this case, but this is because we
have split the original equality constraint into two inequalities. In Sec-
tion 5.6 we formulate the KKT-system that keeps the original equality-
representation of the set, and thus reduce the number of multipliers to
just one!

5.6 Proper treatment of equality constraints

Now we consider both inequality and equality constraints, i.e., we assume
that the feasible set S is given by

S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ }, (5.10)

instead of (5.5), where gi ∈ C1(Rn), i = 1, . . . ,m, and hj ∈ C1(Rn), j =
1, . . . , ℓ. As it was done in Section 5.4, we write S using only inequality
constraints, by defining the functions g̃i ∈ C1(Rn), i = 1, . . . ,m + 2ℓ,
via:

g̃i =





gi, i = 1, . . . ,m,

hi−m, i = m+ 1, . . . ,m+ ℓ,

−hi−m−ℓ, i = m+ ℓ+ 1, . . . ,m+ 2ℓ,

(5.11)

so that
S = {x ∈ Rn | g̃i(x) ≤ 0, i = 1, . . . ,m+ 2ℓ }. (5.12)

Now, let G̃(x) be defined by (5.7) for the inequality representation (5.12)
of S. We will use the old notation G(x) for the cone defined only by the
gradients of the functions defining the inequality constraints active at x

in the representation (5.10), and in addition define the null space of the
matrix defined by the gradients of the functions defining the equality
constraints:

H(x) = {p ∈ Rn | ∇hi(x)Tp = 0, i = 1, . . . , ℓ }.. (5.13)

132

Draft from February 22, 2005

Proper treatment of equality constraints

Since all inequality constraint functions g̃i, i = m + 1, . . . ,m + 2ℓ, are
necessarily active at every x ∈ S, it holds that

G̃(x) = G(x) ∩H(x), (5.14)

and thus Abadie’s constraint qualification (see Definition 5.23) for the
set (5.10) may be equivalently written as

TS(x) = G(x) ∩H(x). (5.15)

Assuming that the latter constraint qualification holds we can write the
KKT-system (5.9) for x∗ ∈ S, corresponding to the inequality represen-
tation (5.12) (see Theorem 5.25):

m∑

i=1

µi∇gi(x
∗) +

m+ℓ∑

i=m+1

µi∇hi−m(x∗) −
m+2ℓ∑

i=m+ℓ+1

µi∇hi−m−ℓ(x
∗)

+∇f(x∗) = 0n, (5.16a)

µigi(x
∗) = 0, i = 1, . . . ,m, (5.16b)

µihi−m(x∗) = 0, i = m+ 1, . . . ,m+ ℓ,
(5.16c)

−µihi−m−ℓ(x
∗) = 0, i = m+ ℓ+ 1, . . . ,m+ 2ℓ,

(5.16d)

µ ≥ 0m+2ℓ. (5.16e)

Define the pair of vectors (µ̃, λ̃) ∈ Rm×Rℓ as µ̃i = µi, i = 1, . . . ,m; λ̃j =
µm+j − µm+ℓ+j, j = 1, . . . , ℓ. We also note that the equations (5.16c)
and (5.16d) are superfluous, because x∗ ∈ S implies that hj(x

∗) = 0,

j = 1, . . . ,m. Therefore, we get the following system for (µ̃, λ̃), known
as the KKT necessary optimality conditions for the sets represented by
differentiable equality and inequality constraints:

∇f(x∗) +

m∑

i=1

µ̃i∇gi(x
∗) +

ℓ∑

j=1

λ̃j∇hj(x
∗) = 0n, (5.17a)

µ̃igi(x
∗) = 0, i = 1, . . . ,m, (5.17b)

µ̃ ≥ 0m. (5.17c)

Thus, we have established the following theorem.

Theorem 5.33 (KKT optimality conditions for inequality and equality constraints)
Assume that at a given point x∗ ∈ S Abadie’s constraint qualifica-
tion (5.15) holds, where S is given by (5.10). Then, for this point to

133

Draft from February 22, 2005

Optimality conditions

be a local minimum of a differentiable function f over S it is neces-
sary that there exists a pair of vectors (µ̃, λ̃) ∈ Rm × Rℓ, such that the
system (5.17) is satisfied.

Example 5.34 (Example 5.32 revisited) Let us write the system of KKT-
conditions for the original representation of the set with one inequality
and one equality constraint (see Example 5.14). As has already been
mentioned, Abadie’s constraint qualification is satisfied, therefore the
KKT-system is necessarily solvable:





(
1
0

)
+ µ1

(
0
−1

)
+ λ1

(
−2
0

)
= 02,

µ1 ≥ 0,

which admits the unique solution µ1 = 0, λ1 = 1/2.

5.7 Constraint qualifications

In this section we discuss conditions on the functions involved in the
representation (5.10) of a given feasible set S, that all imply Abadie’s
constraint qualification (5.15).

5.7.1 Mangasarian–Fromovitz CQ (MFCQ)

Definition 5.35 (Mangasarian–Fromovitz CQ) We say that at the point
x ∈ S, where S is given by (5.10), the Mangasarian–Fromovitz CQ
holds if the gradients ∇hj(x) of the functions hj , j = 1, . . . , ℓ, defining
the equality constraints, are linearly independent, and the intersection
◦
G(x) ∩ H(x) is not empty (see Proposition 5.21 for the proof of KKT
conditions in the case of inequality-constrained problem).

We state the following result without a “real” proof, but we outline
the ideas.

Proposition 5.36 The MFCQ implies Abadie’s CQ.

Proof.[sketch] Since the gradients ∇hj(x), j = 1, . . . , ℓ, are linearly

independent, it can be shown that cl(
◦
G(x) ∩ H(x)) ⊂ TS(x) (in the

absence of equality constraints, it follows directly from Lemma 5.10).
Furthermore, from Lemma 5.10 applied to the inequality represen-

tation of S, i.e., to G̃(x) defined by (5.14), we know that TS(x) ⊂
(G(x) ∩H(x)).

134

Draft from February 22, 2005

Constraint qualifications

Finally, since
◦
G(x) ∩ H(x) 6= ∅, it can be shown that cl(

◦
G(x) ∩

H(x)) = G(x) ∩H(x).

Example 5.37 Since MFCQ implies Abadie’s constraint qualification,
Example 5.5 and 5.6 must necessarily violate it. On the other hand, both
Examples 5.4 and 5.7 verify it (since they also satisfy stronger constraint
qualifications, see Example 5.40 and 5.43).

5.7.2 Slater CQ

Definition 5.38 (Slater CQ) We say that the system of constraints de-
scribing the feasible set S via (5.10) satisfies the Slater CQ, if the func-
tions gi, i = 1, . . . ,m, defining the inequality constraints are convex,
the functions hj , j = 1, . . . , ℓ, defining the equality constraints are affine
with linearly independent gradients ∇hj(x), j = 1, . . . , ℓ, and, finally,
that there exists x̄ ∈ S such that gi(x̄) < 0, for all i ∈ {1, . . . ,m}.

Proposition 5.39 The Slater CQ implies the MFCQ.

Proof. Suppose the Slater CQ holds at x∗ ∈ S. By the convexity of the
inequality constraints we get:

0 > gi(x̄) = gi(x̄) − gi(x
∗) ≥ ∇gi(x

∗)T(x̄ − x∗),

for all i ∈ I(x∗). Furthermore, since the equality constraints are affine,
we have that

0 = hj(x̄) − hj(x
∗) = ∇hj(x

∗)T(x̄ − x∗),

j = 1, . . . , ℓ. Then, x̄ − x∗ ∈ G(x∗) ∩H(x∗).

Example 5.40 Only Example 5.4 verifies Slater CQ (which in particu-
lar explains why it satisfies MFCQ as well, see Example 5.37).

5.7.3 Linear independence CQ (LICQ)

Definition 5.41 (LICQ) We say that at the point x ∈ S, where S is
given by (5.10), the linear independence CQ holds if the gradients ∇gi(x)
of the functions gi, i ∈ I(x), defining the active inequality constraints,
as well as the gradients ∇hj(x) of the functions hj, j = 1, . . . , ℓ, defining
the equality constraints, are linearly independent.

Proposition 5.42 The LICQ implies the MFCQ.

135

Draft from February 22, 2005

Optimality conditions

Proof.[sketch] Assume that
◦
G(x∗)∩H(x∗) = ∅, i.e., the system GTp <

0|I(x∗)| and HTp = 0ℓ is unsolvable, where G and H are the ma-
trices having the gradients of the active inequality and equality con-
straints, respectively, as their columns. Using a separation result similar
to Farkas’ Lemma (cf. Theorem 3.30) it can be shown that the system
Gµ +Hλ = 0n, µ ≥ 0|I(x∗)| has a nonzero solution (µ,λ) ∈ R|I(x∗)|+ℓ,
which contradicts the linear independence assumption on the gradients.

In fact, the solution (µ,λ) to the KKT system (5.17), if one exists,
is necessarily unique in this case, and therefore LICQ is a rather strong
assumption in many practical situations.

Example 5.43 Only Example 5.7 in the original description using both
inequality and equality constraints verifies the LICQ (which in particular
explains why it satisfies the MFCQ, see Example 5.37, and why the
Lagrange multipliers are unique in this case, see Example 5.34).

5.7.4 Affine constraints

Assume that both the functions gi, i = 1, . . . ,m, defining the inequal-
ity constraints and the functions hj , j = 1, . . . , ℓ, defining the equality
constraints in the representation (5.10), are affine. Then, the radial
cone RS(x) (see Definition 5.1) is equal to G(x) ∩ H(x) (see Exam-
ple 4.21). Owing to the inclusions RS(x) ⊂ TS(x) (Proposition 5.3) and

TS(x) ⊂ G̃(x) = G(x)∩H(x) (Lemma 5.10), where G̃(x) was defined in
Section 5.6 (cf. (5.12) and the discussion thereafter), Abadie’s CQ (5.15)
holds in this case.

Thus, the following claim is established.

Proposition 5.44 If all (inequality and equality) constraints are affine,
then Abadie’s CQ is satisfied.

5.8 Sufficiency of KKT–conditions under con-
vexity

In general, the KKT necessary conditions do not imply local optimality,
as has been mentioned before (see, e.g., an example right after the proof
of Theorem 4.13). However, if the optimization problem (5.1) is convex,
then the KKT conditions are sufficient for global optimality.

Theorem 5.45 (sufficiency of the KKT conditions for convex problems)
Assume that the problem (5.1) with the feasible set S given by (5.10)

136

Draft from February 22, 2005

Sufficiency of KKT–conditions under convexity

is convex, i.e., the objective function f as well as the functions gi,
i = 1, . . . ,m, are convex, and the functions hj, j = 1, . . . , ℓ, are affine.
Assume further that for x∗ ∈ S the KKT conditions (5.17) are satisfied.
Then, x∗ is a globally optimal solution of the problem (5.1).

Proof. Choose an arbitrary x ∈ S. Then, by the convexity of the
functions gi, i = 1, . . . ,m, it holds that

−∇gi(x
∗)T(x − x∗) ≥ gi(x

∗) − gi(x) = −gi(x) ≥ 0, (5.18)

for all i ∈ I(x∗), and using the affinity of the functions hj , j = 1, . . . , ℓ,
we get that

−∇hj(x
∗)T(x − x∗) = hj(x

∗) − hj(x) = 0, (5.19)

for all j = 1, . . . , ℓ. Using the convexity of the objective function, equa-
tions (5.17a) and (5.17b), non-negativity of the Lagrange multipliers µi,
i ∈ I(x∗), and equations (5.18) and (5.19) we obtain the inequality

f(x) − f(x∗) ≥ ∇f(x∗)T(x − x∗)

= −
∑

i∈I(x∗)

µi∇gi(x
∗)T(x − x∗) −

ℓ∑

j=1

λj∇hj(x
∗)T(x − x∗) ≥ 0.

Since the point x ∈ S was arbitrary, this shows the global optimality of
x∗ in (5.1).

Theorem 5.45 combined with the necessity of the KKT conditions
under appropriate CQ leads to the following statement.

Corollary 5.46 Assume that the problem (5.1) is convex and verifies
the Slater CQ (Definition 5.38). Then, for x∗ ∈ S to be a globally
optimal solution of (5.1) it is both necessary and sufficient to verify the
system (5.17).

Not surprisingly, without the Slater constraint qualification the KKT
conditions remain only sufficient (i.e., they are unnecessarily strong), as
the following example demonstrates.

Example 5.47 Consider the optimization problem to

minimize x1,

subject to

{
x2

1 + x2 ≤ 0,

−x2 ≤ 0,

137

Draft from February 22, 2005

Optimality conditions

which is convex but has only one feasible point 02 ∈ R2. At this unique
point both the inequality constraints are active, and thus the Slater CQ
is violated, which however does not contradict the global optimality of
02. It is easy to check that the KKT system






(
1
0

)
+

(
0 0
1 −1

)
µ = 02,

µ ≥ 02,

is unsolvable, and therefore the KKT conditions are not necessary with-
out a CQ even for convex problems.

5.9 Applications and examples

Example 5.48 Consider a symmetric square matrix A ∈ Rn×n, and
the optimization problem

minimize −xTAx,

subject to xTx ≤ 1.

The only constraint of this problem is convex; furthermore, (0n)T0n =
0 < 1, and thus Slater’s CQ (Definition 5.38) is verified. Therefore, the
KKT conditions are necessary for the local optimality in this problem.
We will find all the possible KKT points, and then choose a globally
optimal point among them.

∇(−xTAx) = −2Ax (A is symmetric), and ∇(xTx) = 2x. Thus,
the KKT system is as follows: xTx ≤ 1 and

−2Ax + 2µx = 0n,

µ ≥ 0,

µ(xTx − 1) = 0.

From the first two equations we immediately see that either x = 0n,
or the pair (µ,x) is respectively a nonnegative eigenvalue and a corre-
sponding eigenvector of A. In the former case, from the complementarity
condition we deduce that µ = 0.

Thus, we can characterize the KKT-points of the problem into the
following groups:

1. Let µ1, . . . , µk be all the positive eigenvalues of A (if any), and
define Xi = {x ∈ Rn | xTx = 1,Ax = µix } to be the set of
corresponding eigenvectors of length 1, i = 1, . . . , k. Then, (x, µi)

138

Draft from February 22, 2005

Applications and examples

is a KKT-point with the corresponding multiplier for every x ∈ Xi,
i = 1, . . . , k. Moreover, −xTAx = −µix

Tx = −µi < 0, for every
x ∈ Xi, i = 1, . . . , k.

2. Define also X0 = {x ∈ Rn | xTx ≤ 1,Ax = 0n }. Then, the
pair (x, 0) is a KKT-point with the corresponding multiplier for
every x ∈ X0. We note that if the matrix A is nonsingular, then
X0 = {0n}. In any case, −xTAx = 0 for every x ∈ X0.

Therefore, if the matrix A has any positive eigenvalue, then the global
minima points of the problem we consider are the eigenvectors of length
one, corresponding to the largest positive eigenvalue; otherwise, every
vector that satisfies Ax = 0n is globally optimal.

Example 5.49 Similarly to the previous example, consider the follow-
ing equality-constrained minimization problem associated with a sym-
metric matrix A ∈ Rn×n:

minimize −xTAx,

subject to xTx = 1.

The gradient of the only equality constraint equals 2x, and since 0n is
infeasible, LICQ is satisfied by this problem (Definition 5.41), and the
KKT conditions are necessary for local optimality. In this case, the KKT
system is extremely simple: xTx = 1 and

−2Ax + 2λx = 0n.

Let λ1 < λ2 < · · · < λk denote all distinct eigenvalues of A, and define
as before Xi = {x ∈ Rn | xTx = 1,Ax = λix } to be the set of corre-
sponding eigenvectors of length 1, i = 1, . . . , k. Then, (x, λi) is a KKT-
point with the corresponding multiplier for every x ∈ Xi, i = 1, . . . , k.
Furthermore, since −xTAx = −λi for every x ∈ Xi, i = 1, . . . , k, it
holds that every x ∈ Xk, that is, every eigenvector corresponding to the
largest eigenvalue, is globally optimal.

Considering two problems corresponding to A and −A, we may de-
duce that ‖A‖ = max1≤i≤n{ |λi| }, a very well known fact in linear
algebra.

Example 5.50 Consider the problem of finding the projection of a given
point x∗ onto the hyperplane {x ∈ Rn | Ax = b }, where A ∈ Rk×n,
b ∈ Rk. Thus, we consider the following minimization problem with
affine constraints (so that the KKT conditions are necessary for the

139

Draft from February 22, 2005

Optimality conditions

local optimality, see Section 5.7.4):

minimize
1

2
(x − x∗)T(x − x∗),

subject to Ax = b.

The KKT-system in this case is written as follows:

Ax = b,

(x − x∗) + ATλ = 0n,

for some λ ∈ Rk. Pre-multiplying the last equation with A, and using
the fact that Ax = b we get:

AATλ = Ax∗ − b.

Substituting an arbitrary solution of this equation into the KKT-system,
we calculate x via

x = x∗ − ATλ.

It can be shown that the vector ATλ is constant for every Lagrange mul-
tiplier λ, so using this formula we obtain the globally optimal solution
to our minimization problem.

Now assume that the columns of AT are linearly independent, i.e.,
LICQ holds. Then, the matrix AAT is nonsingular, and the multiplier
λ is therefore unique:

λ = (AAT)−1(Ax∗ − b).

Substituting this into the KKT-system, we finally obtain the well-known
formula for calculating the projection:

x = x∗ − AT(AAT)−1(Ax∗ − b).

5.10 Notes and further reading

One cannot overemphasize the importance of Karush–Kuhn–Tucker type
optimality conditions for any development in optimization. We essen-
tially follow the ideas presented in [BSS93, Chapters 4 and 5]; an alter-
native presentation may be found in [Ber99, Chapter 3]. The original
papers by Fritz John [Joh48], and Kuhn and Tucker [KuT51] might also
be interesting.

140

Draft from February 22, 2005

Exercises

Various forms of constraint qualifications play especially important
role in studies of parametric optimization problems [Fia83, BoS00]. Orig-
inal presentation of constraint qualifications, some of which we consid-
ered in this chapter, may be found in the works of Arrow, Hurwitz, and
Uzawa [AHU61], Abadie [Aba67], Mangasarian and Fromowitz [MaF67],
Guignard [Gui69], Zangwill [Zan69], and Evans [Eva70].

5.11 Exercises

Exercise 5.1 Consider the following problem:

minimize f(x) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2,

subject to x2
1 + x2

2 ≤ 5,

3x1 + x2 ≤ 6.

Verify whether the point x0 = (2, 1)T is a KKT point for this problem.
Is this an optimal solution? Which CQ are satisfied at the point x0?

Exercise 5.2 (optimality conditions, exam 020529) (a) Consider the fol-
lowing optimization problem:

minimize x2,

subject to sin(x) ≤ −1.
(5.20)

Find every locally and every globally optimal solution to this problem.
Write down the KKT conditions. Are they necessary/sufficient for this
problem?

(b) Do the locally/globally optimal solutions to the problem (5.20)
satisfy the FJ optimality conditions?

(c) Question the usefulness of the FJ optimality conditions by finding
a point (x, y), which satisfies these conditions for the problem:

minimize y,

subject to

{
x2 + y2 ≤ 1,

x3 ≥ y4,

but, nevertheless, is neither the local nor the global minimum for this
problem.

Exercise 5.3 Consider the following linear programming problem:

minimize cTx,

subject to Ax ≥ b.

141

Draft from February 22, 2005

Optimality conditions

State the KKT-conditions for this problem. Verify that at every KKT-
point x the following equality is verified:

cTx = bTλ,

where λ is a vector of KKT-multipliers.

Exercise 5.4 (optimality conditions, exam 020826) (a) Consider the non-
linear programming problem with equality constraints:

minimize f(x),

subject to






h1(x) = 0,

...

hm(x) = 0,

(5.21)

where f , h1, . . . , hm are continuously differentiable functions.
Show that the problem (5.21) is equivalent to the following problem

with one inequality constraint:

minimize f(x),

subject to

m∑

i=1

(
hi(x)

)2 ≤ 0.
(5.22)

Show (by giving a formal argument or an illustrative example) that
the KKT conditions for the latter problem are not necessary for local
optimality.

Can Slater’s CQ or LICQ be satisfied for the problem (5.22)?
(b) Consider the unconstrained minimization problem

minimize max
{
f1(x), f2(x)

}
,

where f1 : Rn → R, f2 : Rn → R are in C1.
Show that if x∗ is a local minimum for this problem, then there exist

µ1, µ2 ∈ R such that

µ1 ≥ 0, µ2 ≥ 0, µ1∇f1(x∗) + µ2∇f2(x∗) = 0, µ1 + µ2 = 1,

and µi = 0 if fi(x
∗) < max

{
f1(x

∗), f2(x∗)
}
, i = 1, 2.

Exercise 5.5 Consider the following optimization problem:

minimize
1

2
xTx,

subject to Ax = b.

Assume that the matrix A has full row rank. Find the globally optimal
solution to this problem.

142

Draft from February 22, 2005

Exercises

Exercise 5.6 Consider the following optimization problem:

minimize

n∑

j=1

cjxj ,

subject to





n∑

j=1

x2
j ≤ 1,

−xj ≤ 0, j = 1, . . . , n.

(5.23)

Assume that min {c1, . . . , cn} < 0, and let us introduce KKT multipliers
λ ≥ 0 and µj ≥ 0, j = 1, . . . , n for the inequality constraints.

(a) Show that the equalities

x∗j = min{0, cj}/(2λ∗), j = 1, . . . , n,

λ∗ =
1

2




n∑

j=1

[min {0, cj}]2



1/2

,

µ∗
j = max{0, cj}, j = 1, . . . , n,

define a KKT point for (5.23).

(b) Show that there is only one locally optimal solution to the prob-
lem (5.23).

Exercise 5.7 (optimality conditions, exam 040308) Consider the follow-
ing optimization problem:

minimize f(x, y) =
1

2
(x− 2)2 +

1

2
(y − 1)2,

subject to





x− y ≥ 0,

y ≥ 0,

y(x− y) = 0,

(5.24)

where x, y ∈ R.

(a) Find all points of global and local minima (you may do this graph-
ically), as well as all KKT-points. Is this a convex problem? Are the
KKT optimality conditions necessary and/or sufficient for local optimal-
ity in this problem?

(b) Demonstrate that LICQ is violated at every feasible point of the
problem (5.24). Show that instead of solving the problem (5.24) we can
solve two convex optimization problems that furthermore verify some
constraint qualification, and then choose the best point out of the two.

143

Draft from February 22, 2005

Optimality conditions

(c) Generalize the procedure from the previous part to more general
optimization problems:

minimize g(x),

subject to





aT
i x ≥ bi, i = 1, . . . , n,

xi ≥ 0, i = 1, . . . , n,

xi(a
T
i x − bi) = 0, i = 1, . . . , n,

where x = (x1, . . . , xn)T ∈ Rn, ai ∈ Rn, bi ∈ R, i = 1, . . . , n, and
g : Rn → R is a convex differentiable function.

Exercise 5.8 Determine the values of the parameter c for which the
point (x, y) = (4, 3) is an optimal solution to the following problem:

minimize cx+ y,

subject to

{
x2 + y2 ≤ 25,

x− y ≤ 1,

where x, y ∈ R.

Exercise 5.9 Consider the following optimization problem:

minimize f(x) =
n∑

j=1

x2
j

cj
,

subject to





n∑

j=1

xj = D,

xj ≥ 0, j = 1, . . . , n,

where cj > 0, j = 1, . . . , n, and D > 0. Find the unique globally optimal
solution to this problem.

144

Draft from February 22, 2005

Lagrangian duality VI

This chapter collects some basic results on Lagrangian duality, in par-
ticular as it applies to convex programs with no duality gap.

6.1 The relaxation theorem

Given the problem to find

f∗ := infimum
x

f(x), (6.1a)

subject to x ∈ S, (6.1b)

where f : Rn → R is a given function and S ⊆ Rn, we define a relaxation
to (6.1) to be a problem of the following form: to find

f∗
R := infimum

x
fR(x), (6.2a)

subject to x ∈ SR, (6.2b)

where fR : Rn → R is a function with the property that fR ≤ f on S,
and where SR ⊇ S. For this pair of problems, we have the following
basic result.

Theorem 6.1 (Relaxation Theorem) (a) [relaxation] f∗
R ≤ f∗.

(b) [infeasibility] If (6.2) is infeasible, then so is (6.1).
(c) [optimal relaxation] If the problem (6.2) has an optimal solution,

x∗
R, for which it holds that

x∗
R ∈ S and fR(x∗

R) = f(x∗
R), (6.3)

then x∗
R is an optimal solution to (6.1) as well.

Draft from February 22, 2005

Lagrangian duality

Proof. The result in (a) is obvious, as every solution feasible in (6.1)
is both feasible in (6.2) and has a lower objective value in the latter
problem.

The result in (b) follows for similar reasons.
For the result in (c), we note that

f(x∗
R) = fR(x∗

R) ≤ fR(x) ≤ f(x), x ∈ S,

from which the result follows.

This basic result will be utilized both in this chapter and later on
to motivate why Lagrangian relaxation, objective function linearization
and penalization are relaxations, and to derive optimality conditions and
algorithms based on them.

6.2 Lagrangian duality

In this section we formulate the Lagrangian dual problem and establish
its convexity. The Weak Duality Theorem is also established, and we
introduce the terms “Lagrange multiplier” and “duality gap.”

6.2.1 Lagrangian relaxation and the dual problem

Consider the optimization problem to find

f∗ := infimum
x

f(x), (6.4a)

subject to x ∈ X, (6.4b)

gi(x) ≤ 0, i = 1, . . . ,m, (6.4c)

where f : Rn → R and gi : Rn → R (i = 1, 2, . . . ,m) are given functions,
and X ⊆ Rn.

For this problem, we assume that

−∞ < f∗ <∞, (6.5)

that is, that f is bounded from below and that the problem has at least
one feasible solution.

For an arbitrary vector µ ∈ Rm, we define the Lagrange function

L(x,µ) := f(x) +

m∑

i=1

µigi(x) = f(x) + µTg(x). (6.6)

We call the vector µ∗ ∈ Rm a Lagrange multiplier if it is non-negative
and if f∗ = infx∈X L(x,µ∗) holds.

146

Draft from February 22, 2005

Lagrangian duality

Theorem 6.2 (Lagrange multipliers and global optima) Let µ∗ be a La-
grange multiplier. Then, x∗ is an optimal solution to (6.4) if and only
if x∗ is feasible in (6.4) and

x∗ ∈ arg min
x∈X

L(x,µ∗), and µ∗
i gi(x

∗) = 0, i = 1, . . . ,m.

(6.7)

Proof. If x∗ is an optimal solution to (6.4), then it is in particular
feasible, and

f∗ = f(x∗) ≥ L(x∗,µ∗) ≥ infimum
x∈X

L(x,µ∗),

where the first inequality stems from the feasibility of x∗ and the defini-
tion of a Lagrange multiplier. The second part of that definition implies
that f∗ = infx∈X L(x,µ∗), so that equality holds throughout in the
above line of inequalities. Hence, (6.7) follows.

Conversely, if x∗ is feasible and (6.7) holds, then by the use of the
definition of a Lagrange multiplier,

f(x∗) = L(x∗,µ∗) = minimum
x∈X

L(x,µ∗) = f∗,

so x∗ is a global optimum.

Let
q(µ) := infimum

x∈X
L(x,µ) (6.8)

be the Lagrangian dual function, defined by the infimum value of the
Lagrange function over X ; the Lagrangian dual problem is to

maximize
µ

q(µ), (6.9a)

subject to µ ≥ 0m. (6.9b)

For some µ, q(µ) = −∞ is possible; if this is true for all µ ≥ 0m,
then

q∗ := supremum
µ≥0m

q(µ)

equals −∞.
The effective domain of q is

Dq := { µ ∈ Rm | q(µ) > −∞} .

Theorem 6.3 (convex dual problem) The effective domain Dq of q is
convex, and q is concave on Dq.

147

Draft from February 22, 2005

Lagrangian duality

Proof. Let x ∈ Rn, µ, µ̄ ∈ Rm, and α ∈ [0, 1]. We have that

L(x, αµ + (1 − α)µ̄) = αL(x,µ) + (1 − α)L(x, µ̄).

Take the infimum over x ∈ X on both sides; then,

inf
x∈X

L(x, αµ + (1 − α)µ̄) = inf
x∈X

{αL(x,µ) + (1 − α)L(x, µ̄)}

≥ inf
x∈X

αL(x,µ) + inf
x∈X

(1 − α)L(x, µ̄)

= α inf
x∈X

L(x,µ) + (1 − α) inf
x∈X

L(x, µ̄),

due to the fact that α ∈ [0, 1], and that the sum of infimum values may
be smaller than the infimum of the sum, since in the former case we have
the possibility to choose different optimal solutions in the two problems.
Hence,

q(αµ + (1 − α)µ̄) ≥ αq(µ) + (1 − α)q(µ̄)

holds. This inequality has two implications: if µ and µ̄ belong to Dq,
then so does αµ + (1 − α)µ̄, so Dq is convex, and further, q is concave
on Dq.

That the Lagrangian dual problem always is convex (we indeed max-
imize a concave function!) is very good news, because it means that it
can be solved efficiently. What remains of course is to show how a La-
grangian dual optimal solution can be used to generate a primal optimal
solution.

Next, we establish that every feasible point in the Lagrangian dual
problem always underestimates the objective function value of every fea-
sible point in the primal problem; hence, also their optimal values have
this relationship.

Theorem 6.4 (Weak Duality Theorem) Let x and µ be feasible in (6.4)
and (6.9), respectively. Then,

q(µ) ≤ f(x).

In particular,
q∗ ≤ f∗

holds.
If q(µ) = f(x), then the pair (x,µ) is optimal in its respective prob-

lem.

Proof. For all µ ≥ 0m and x ∈ X with g(x) ≤ 0m,

q(µ) = infimum
z∈X

L(z,µ) ≤ f(x) + µTg(x) ≤ f(x),

148

Draft from February 22, 2005

Lagrangian duality

so
q∗ = supremum

µ≥0m

q(µ) ≤ infimum
x∈X:g(x)≤0m

f(x) = f∗.

The result follows.

Weak duality is also a consequence of the Relaxation Theorem: For
any µ ≥ 0m, let

S := X ∩ {x ∈ Rn | g(x) ≤ 0m }, (6.10a)

SR := X, (6.10b)

fR := L(µ, ·). (6.10c)

Then, the weak duality statement is the result in Theorem 6.1(a), whence
Lagrangian relaxation is a relaxation in terms of the definition in Sec-
tion 6.1.

If our initial assumption (6.5) is false, then what does weak duality
imply? Suppose that f∗ = −∞. Then, weak duality implies that q(µ) =
−∞ for all µ ≥ 0m, that is, the dual problem is infeasible. Suppose
then that X 6= ∅ but that X ∩ {x ∈ Rn | g(x) ≤ 0m } is empty. Then,
f∗ = ∞, by convention. The dual function satisfies q(µ) < ∞ for all
µ ≥ 0m, but it is possible that q∗ = −∞, −∞ < q∗ < ∞, or q∗ = ∞
(see [Ber99, Figure 5.1.8]). For linear programs, ∞ < q∗ < ∞ implies
∞ < f∗ <∞, see below.

If q∗ = f∗, we say that there is no duality gap. If there exists
a Lagrange multiplier vector, then by the weak duality theorem, this
implies that there is no duality gap. The converse is not true in general:
there may be cases where no Lagrange multiplier exists even when there
is no duality gap; in that case though, the Lagrangian dual problem
cannot have an optimal solution, as implied by the following result.

Proposition 6.5 (duality gap and the existence of Lagrange multipliers)
(a) If there is no duality gap, then the set of Lagrange multipliers equals
the set of optimal dual solutions (which however may be empty).

(b) If there is a duality gap, then there are no Lagrange multipliers.

Proof. By definition, a vector µ∗ ≥ 0m is a Lagrange multiplier if and
only if f∗ = q(µ∗) ≤ q∗, the equality following from the definition of
q(µ∗) and the inequality from the definition of q∗ as the supremum of
q(µ) over Rm

+ . By weak duality, this relation holds if and only if there
is no duality gap and µ∗ is an optimal dual solution.

Before moving on, we remark on the statement of the problem (6.4).
There are several ways in which the original set of constraints of the

149

Draft from February 22, 2005

Lagrangian duality

problem can be placed either within the definition of the ground set X
(which is kept intact), or within the explicit constraints defined by the
functions gi (which are Lagrangian relaxed). How to distinguish between
the two, that is, how to decide whether a constraint should be kept or
be Lagrangian relaxed, depends on several factors. For example, keeping
more constraints within X may result in a smaller duality gap, and with
fewer multipliers also result in a simpler Lagrangian dual problem. On
the other hand, the Lagrangian subproblem defining the dual function
simultaneously becomes more complex and difficult to solve. There are
no immediate rules to follow, but experimentation and experience.

6.2.2 Global optimality conditions

The following result characterizes every optimal primal and dual solu-
tion. It is applicable only in the presence of Lagrange multipliers; in
other words, the system (6.11) is consistent if and only if there exists a
Lagrange multiplier and there is no duality gap.

Theorem 6.6 (global optimality conditions in the absence of a duality gap)
The vector (x∗,µ∗) is a pair of optimal primal solution and Lagrange
multiplier if and only if

µ∗ ≥ 0m, (Dual feasibility) (6.11a)

x∗ ∈ arg min
x∈X

L(x,µ∗), (Lagrangian optimality) (6.11b)

x∗ ∈ X, g(x∗) ≤ 0m, (Primal feasibility) (6.11c)

µ∗
i gi(x

∗) = 0, i = 1, . . . ,m. (Complementary slackness) (6.11d)

Proof. Suppose that (6.11) is satisfied. We apply the Relaxation
Theorem 6.1, as follows. Consider the identification in (6.10), with
µ = µ∗ ≥ 0m and xR = x∗. We then note the following equivalences:

1. The relaxed solution, xR, is a Lagrangian optimal solution. (La-
grangian optimality is fulfilled.)

2. That xR ∈ S means that it is feasible in the primal problem.
(Primal feasibility is fulfilled.)

3. That f∗ = f∗
R means that (µ∗)Tg(x∗) = 0. (Complementary

slackness is fulfilled.)

To conclude, if the conditions in (6.11) are satisfied, then Theorem 6.1
implies that the vector (x∗,µ∗) is a pair of optimal primal solution and
Lagrange multiplier.

150

Draft from February 22, 2005

Lagrangian duality

Conversely, if (x∗,µ∗) is a pair of optimal primal solution and La-
grange multiplier, then they are obviously primal and dual feasible, re-
spectively. The last two equations in (6.11) follow from Theorem 6.2.

Theorem 6.7 (global optimality and saddle points) The vector (x∗,µ∗)
is a pair of optimal primal solution and Lagrange multiplier if and only
if x∗ ∈ X , µ∗ ≥ 0m, and (x∗,µ∗) is a saddle point of the Lagrangian
function on X × Rm

+ , that is,

L(x∗,µ) ≤ L(x∗,µ∗) ≤ L(x,µ∗), (x,µ) ∈ X × Rm
+ , (6.12)

holds.

Proof. We establish that (6.11) and (6.12) are equivalent. The result
then follows from Theorem 6.6. The first inequality in (6.12) is equivalent
to

−g(x∗)T(µ − µ∗) ≥ 0, µ ∈ Rm
+ , (6.13)

for the given µ∗ ∈ Rm
+ . This variational inequality is equivalent to

stating that
0m ≥ g(x∗) ⊥ µ∗ ≥ 0m, (6.14)

where ⊥ denotes orthogonality: that is, for any vectors a, b ∈ Rn, a ⊥ b

means that aTb = 0. Because of the sign restrictions posed on µ and
g, that is, the vectors a and b, the relation a ⊥ b actually means that
not only does it hold that aTb = 0 but in fact ai · bi = 0 must hold for
all i = 1, . . . , n.1 This complementarity system is, again, for the given
µ∗ ∈ Rm

+ , the same as (6.11a), (6.11c) and (6.11d). The second inequal-
ity in (6.12) is equivalent to (6.11b).

The above two results also state that the set of primal–dual solutions
(x∗,µ∗) is a Cartesian product set, that is, that every primal optimal
solution x∗ can be obtained through the system (6.11b) given any dual
optimal solution µ∗, and vice versa.

1We establish the equivalence between (6.13) and (6.14) as follows. (Notice that
the result is an extension to that of the optimality condition of the line search problem
from 1 variable to m variables, except for the fact that the first is for a minimization
problem while we here are dealing with a maximization problem; the proof is in fact
a natural extension of that given in a footnote in Section 11.3.1.)

First, suppose that (6.14) is fulfilled. Then, −g(x∗)T(� − �∗) = −g(x∗)T� ≥ 0,
for all � ≥ 0

m, that is, (6.13) is fulfilled. Conversely, suppose that (6.13) is fulfilled.
Setting � = 0

m yields that g(x∗)T�∗ ≥ 0. On the other hand, the choice � = 2�∗

yields that −g(x∗)T�∗ ≥ 0. Hence, g(x∗)T�∗ = 0 holds. Last, let � = �∗ + ei,
where ei is the ith unit vector in Rm. Then, −g(x∗)T(�−�∗) = −gi(x∗) ≥ 0. Since
this is true for all i ∈ {1, 2, . . . , m} we have obtained that −g(x∗) ≥ 0

m, that is,g(x∗) ≤ 0
m. We are done.

151

Draft from February 22, 2005

Lagrangian duality

We note that structurally similar results to the above two proposi-
tions which are valid for the general problem (6.4) with any size of the
duality gap can be found in [LaP05].2

We note finally a practical connection between the KKT system (5.9)
and the above system (6.11). The practical use of the KKT system is
normally to investigate whether a primal vector x—obtained perhaps
from a solver for our problem—is a candidate for a locally optimal so-
lution; in other words, we have access to x and generate a vector µ of
Lagrange multipliers in the investigation of the KKT system (5.9). In
contrast, the system (6.11) is normally investigated in the reverse order;
we formulate and solve the Lagrangian dual problem, thereby obtaining
an optimal dual vector µ. Starting from that vector, we investigate the
global optimality conditions stated in (6.11) to obtain, if possible, an
optimal primal vector x. In the section to follow, we show when this is
possible, and provide strong connections between the systems (5.9) and
(6.11) in the convex and differentiable case.

6.2.3 Strong duality for convex programs

So far the results have been rather non-technical to achieve: the con-
vexity of the Lagrangian dual problem comes with very few assumptions
on the original, primal problem, and the characterization of the primal–
dual set of optimal solutions is simple and also quite easily established.
In order to establish strong duality, that is, to establish sufficient con-
ditions under which there is no duality gap, however takes much more.
In particular, as is the case with the KKT conditions we need regularity
conditions (that is, constraint qualifications), and we also need to utilize
separation theorems such as Theorem 4.28. Most importantly, however,
is that strong duality is deeply associated with the convexity of the orig-
inal problem, and it is in particular under convexity that the primal and
dual optimal solutions are linked through the global optimality condi-
tions provided in the previous section. We begin by concentrating on the
inequality constrained case, proving this result in detail. We will also
specialize the result to quadratic and linear optimization problems.

Consider the inequality constrained convex program (6.4), where f :
Rn → R and gi (i = 1, . . . ,m) are convex functions and X ⊆ Rn is
a convex set. For this problem, we introduce the following regularity

2The system (6.11) is there appended with two relaxation parameters which mea-
sure, respectively, the near-optimality of x∗ in the Lagrangian subproblem [that is,
the ε-optimality in (6.11b)], and the violation of the complementarity conditions
(6.11d). The saddle point condition (6.12) is similarly perturbed, and at an optimal
solution, the sum of these two parameters equals the duality gap.

152

Draft from February 22, 2005

Lagrangian duality

condition, due to Slater (cf. Definition 5.38): that

∃x ∈ X with g(x) < 0m. (6.15)

Theorem 6.8 (Strong Duality, inequality constrained convex programs) Suppose
that (6.5) and Slater’s constraint qualification (6.15) hold for the convex
problem (6.4).

(a) There is no duality gap and there exists at least one Lagrange
multiplier µ∗. Moreover, the set of Lagrange multipliers is bounded and
convex.

(b) If the infimum in (6.4) is attained at some x∗, then the pair
(x∗,µ∗) satisfies the global optimality conditions (6.11).

(c) If further f and g are differentiable at x∗, then the condition
(6.11b) can equivalently be written as the variational inequality

∇xL(x∗,µ∗)T(x − x∗) ≥ 0, x ∈ X. (6.16)

If, in addition, X is open (such as is the case when X = Rn), then this
reduces to the condition that

∇xL(x∗,µ∗) = ∇f(x∗) +

m∑

i=1

µ∗
i∇gi(x

∗) = 0n, (6.17)

and the global optimality conditions (6.11) reduce to the Karush–Kuhn–
Tucker conditions stated in Theorem 5.25.

Proof. (a) We begin by establishing the existence of a Lagrange multi-
plier (and the presence of a zero duality gap).3

First, we consider the following subset of Rm+1:

A := {(z1, . . . , zm, w)T |∃x∈ X with gi(x)≤zi, i = 1, . . . ,m; f(x)≤w}.

It is elementary to show that A is convex.
Next, we observe that ((0m)T, f∗)T is not an interior point of A;

otherwise, for some ε > 0 the point ((0m)T, f∗ − ε)T ∈ A holds, which
would contradict the definition of f∗. Therefore, by the (possibly non-
proper) separation result in Theorem 4.28, we can find a hyperplane
passing through ((0m)T, f∗)T such that A lies in one of the two corre-
sponding half-spaces. In particular, there then exists a vector (µT, β)T 6=
((0m)T, 0)T such that

βf∗ ≤ βw + µTz, (zT, w)T ∈ A. (6.18)

3This result is Proposition [Ber99, 5.3.1], whose proof we also utilize.

153

Draft from February 22, 2005

Lagrangian duality

This implies that
β ≥ 0; µ ≥ 0m, (6.19)

since we have for each (zT, w)T ∈ A that (zT, w+γ)T ∈ A and (z1, . . . , zi−1, zi+
γ, zi+1, . . . , zm, w)T ∈ A for all γ > 0 and i = 1, . . . ,m.

We claim that β > 0 in fact holds. Indeed, if it was not the case, then
β = 0 and (6.18) then implies that µTz ≥ 0 for every pair (zT, w)T ∈
A. But since (g(x̄)T, 0)T ∈ A [where x̄ is such that it satisfies the
Slater condition (6.15)], we would obtain that 0 ≤ ∑m

i=1 µigi(x̄) which
in view of µ ≥ 0m [cf. (6.19)] and the assumption that x̄ satisfies the
Slater condition (6.15) implies that µ = 0m. This means, however, that
(µT, β)T = ((0m)T, 0)T, arriving at a contradiction. We may therefore
claim that β > 0. We further, without any loss of generality, assume
that β = 1.

Thus, since (g(x)T, f(x))T ∈ A for every x ∈ X , (6.18) yields that

f∗ ≤ f(x) + µTg(x), x ∈ X.

Taking the infimum over x ∈ X and using the fact that µ ≥ 0m we
obtain

f∗ ≤ infimum
x∈X

{f(x) + µTg(x)} = q(µ) ≤ supremum
µ≥0m

q(µ) = q∗.

Using the Weak Duality Theorem 6.4 it follows that µ is a Lagrange
multiplier vector, and there is no duality gap. This part of the proof is
now done.

Take any vector x̄ ∈ X satisfying (6.15). By the definition of a
Lagrange multiplier, f∗ ≤ L(x̄,µ∗) holds, which implies that

m∑

i=1

µ∗
i ≤ [f(x̄) − f∗]

mini=1,...,m{−gi(x̄)} .

By the non-negativity of µ∗, boundedness follows. As by Proposition 6.5(a)
the set of Lagrange multipliers is the same as the set of optimal solutions
to the dual problem (6.9), convexity follows from the identification of the
dual solution set with the set of vectors µ ∈ Rm

+ for which

q(µ) ≥ q∗

holds. This is the upper level set for q at the level q∗; this set is convex,
by the concavity of q (cf. Theorem 6.3 and Proposition 3.44).

(b) The result follows from Theorem 6.6.
(c) The first part follows from Theorem 4.23, as the Lagrangian func-

tion L(·,µ∗) is convex. The second part follows by identification.

154

Draft from February 22, 2005

Lagrangian duality

Consider next the extension of the inequality constrained convex pro-
gram (6.4) in which we seek to find

f∗ := infimum
x

f(x), (6.20a)

subject to x ∈ X, (6.20b)

gi(x) ≤ 0, i = 1, . . . ,m, (6.20c)

εT
j x − dj = 0, j = 1, . . . , ℓ, (6.20d)

under the same conditions as stated following (6.4), and where εj ∈ Rn

(j = 1, . . . , ℓ). For this problem, we replace the Slater condition (6.15)
with the following (cf. [BSS93, Theorem 6.2.4]):

∃x ∈ X with g(x) < 0m and 0m ∈ int {Ex − d | x ∈ X }, (6.21)

where E is the m× n matrix with rows εT
j and d = (dj)j∈{1,...,ℓ} ∈ Rm.

Note that in the statement (6.21), the “int” can be stricken whenever
X is polyhedral, so that the latter part simply states that Ex = d.

For this problem, the Lagrangian dual problem is to find

q∗ := supremum
(µ,λ)

q(µ,λ), (6.22a)

subject to µ ≥ 0m, (6.22b)

where

q(µ,λ) := infimum
x

L(x,µ,λ) = f(x) + µTg(x) + λT(Ex − d),

(6.23a)

subject to x ∈ X. (6.23b)

Theorem 6.9 (Strong Duality, general convex programs) Suppose that in
addition to (6.5), Slater’s constraint qualification (6.21) holds for the
problem (6.4).

(a) There is no duality gap and there exists at least one Lagrange
multiplier pair (µ∗,λ∗).

(b) If the infimum in (6.20) is attained at some x∗, then the triple
(x∗,µ∗,λ∗) satisfies the global optimality conditions

µ∗ ≥ 0m, (Dual feasibility) (6.24a)

x∗ ∈ arg min
x∈X

L(x,µ∗,λ∗), (Lagrangian optimality) (6.24b)

x∗ ∈ X, g(x∗) ≤ 0m, Ex∗ = d, (Primal feasibility) (6.24c)

µ∗
i gi(x

∗) = 0, i = 1, . . . ,m. (Complementary slackness) (6.24d)

155

Draft from February 22, 2005

Lagrangian duality

(c) If further f and g are differentiable at x∗, then the condition
(6.24b) can equivalently be written as

∇xL(x∗,µ∗,λ∗)T(x − x∗) ≥ 0, x ∈ X. (6.25)

If, in addition, X is open (such as is the case when X = Rn), then this
reduces to the condition that

∇xL(x∗,µ∗,λ∗) = ∇f(x∗) +
m∑

i=1

µ∗
i ∇gi(x

∗) +
ℓ∑

j=1

λ∗jεj = 0n, (6.26)

and the global optimality conditions (6.24) reduce to the Karush–Kuhn–
Tucker conditions stated in Theorem 5.33.

Proof. The proof is similar to that of Theorem 6.8.

We finally consider a special case where automatically a regularity
condition holds.

Consider the linearly constrained convex program to find

f∗ := infimum
x

f(x), (6.27a)

subject to x ∈ X, (6.27b)

aT
i x − bi ≤ 0, i = 1, . . . ,m, (6.27c)

εT
j x − dj = 0, j = 1, . . . , ℓ, (6.27d)

where f : Rn → R is convex and X ⊆ Rn is polyhedral.

Theorem 6.10 (Strong Duality, linear constraints) If (6.5) holds for the
problem (6.27), then there is no duality gap and there exists at least one
Lagrange multiplier.

Proof. Again, the proof is similar to that of Theorem 6.8, except that
no additional regularity conditions are needed.4

The existence of a multiplier [which by Proposition 6.5 and the ab-
sence of a duality gap implies the existence of an optimal solution to the
dual problem (6.9)] does not imply the existence of an optimal solution
to the primal problem (6.27) without any additional assumptions (take
the minimization of f(x) := 1/x over x ≥ 1 for example). However,
when f is either weakly coercive, quadratic or linear, the existence re-
sults are stronger; see the primal existence results in Theorems 4.6, 4.7,
and 6.11 below, for example.

4For a detailed proof, see [Ber99, Proposition 5.2.1]. (The special case where f is
moreover differentiable is covered in [Ber99, Proposition 3.4.2].)

156

Draft from February 22, 2005

Lagrangian duality

For convex programs, the Lagrange multipliers defined in this sec-
tion, and those that appear in the Karush–Kuhn–Tucker conditions, are
identical. We establish this result for two classes of convex programs
below.

Next, we specialize the above to linear and quadratic programs.

6.2.4 Strong duality for linear and quadratic pro-
grams

The following result will be established and analyzed in detail in Chap-
ter 10 on linear programming duality (cf. Theorem 10.6), but can in fact
also be established similarly to above. Its proof will however be relegated
to that of Theorem 10.6.

Theorem 6.11 (Strong Duality, linear programs) Assume, in addition to
the conditions of Theorem 6.10, that f is linear, so that (6.27) is a linear
program. Then, the primal and dual problems have optimal solutions
and there is no duality gap.

Proof. The result follows by applying Farkas’ Lemma 3.30 and the
Weak Duality Theorem 6.4, or by analyzing an optimal Simplex tableau.
Detailed proofs are found in [BSS93, Theorem 2.7.3] or [Ber99, Proposi-
tion 5.2.2], for example.

The above result states a strong duality result for a general linear
program. The dual problem is however not explicit. We next develop
an explicit Lagrangian dual problem for a linear program. Again, more
details on this problem will be covered later.

Consider the linear program to

minimize
x

cTx, (6.28a)

subject to Ax = b, (6.28b)

x ≥ 0n, (6.28c)

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. If we let X := Rn
+, then the

Lagrangian dual problem is to

maximize
λ∈Rm

bTλ, (6.29a)

subject to ATλ ≤ c. (6.29b)

The reason why we can write it in this form is that

q(λ) := infimum
x≥0n

{
cTx + λT(b − Ax)

}
= bTλ + infimum

x≥0n
(c−ATλ)Tx,

157

Draft from February 22, 2005

Lagrangian duality

so that

q(λ) =

{
bTλ, if ATλ ≤ c,

−∞, otherwise.

(The infimum is attained at zero if and only if these inequalities are
satisfied; otherwise, the inner problem is unbounded below.)

Further, why is it that λ here is not restricted in sign? Suppose we
were to split the system Ax = b into an inequality system of the form

Ax ≤ b,

−Ax ≤ −b.

Let (
µ+

µ−

)

be the corresponding vector of multipliers, and take the Lagrangian dual
for this formulation. Then, we would have a Lagrange function of the
form

(x,µ+,µ−) 7→ L(x,µ+,µ−) := cTx + (µ+ − µ−)T(b − Ax),

and since µ+−µ− can take on any value in Rm we can simply replace it
with the unrestricted vector λ ∈ Rm. This is what has been done above,
and it motivates why the multiplier for an equality constraint never is
sign restricted; the same was the case, as we saw in Section 5.6, for the
multipliers in the KKT conditions.

As applied to this problem, Theorem 6.11 states that if both the
primal or dual problems have feasible solutions, then they both have
optimal solutions, satisfying strong duality (cTx∗ = bTλ∗). On the
other hand, if any of the two problems has an unbounded solution, then
the other problem is infeasible.

Consider next the quadratic programming problem to

minimize
x

{
1

2
xTQx + cTx

}
, (6.30a)

subject to Ax ≤ b, (6.30b)

where Q is a positive definite n×n matrix. We develop an explicit dual
problem under this assumption on Q.

Lagrangian relaxing the inequality constraints, we obtain that the
inner problem in x is solved by letting

x = −Q−1(c + ATµ). (6.31)

158

Draft from February 22, 2005

Illustrative examples

Substituting this expression into the Lagrangian function yields the La-
grangian dual problem to

maximize
µ

{
−1

2
µTAQ−1ATµ − (b + AQ−1c)Tµ − 1

2
cTQ−1c

}
,

(6.32a)

subject to µ ≥ 0m, (6.32b)

Strong duality follows for this convex primal–dual pair of quadratic
programs, in much the same way as for linear programming.

Proposition 6.12 (Strong Duality, quadratic programs) For the primal–
dual pair of convex quadratic programs (6.30), (6.32), the following
holds:

(a) If both problems have feasible solutions, then both problems also
have optimal solutions, and the primal problem (6.30) also has a unique
optimal solution, given by (6.31) for any optimal Lagrange multiplier,
and in the two problems the optimal values are equal.

(b) If either of the two problems has an unbounded solution, then
the other one is infeasible.

(c) Suppose that Q is positive semi-definite, and that (6.5) holds.
Then, both the problem (6.30) and its Lagrangian dual have nonempty,
closed and convex sets of optimal solutions, and their optimal values are
equal.

In the result (a) it is important to note that the Lagrangian dual
problem (6.32) is not necessarily strictly convex; the matrix AQ−1A

need not be positive definite, especially so when A does not have full
rank. The result (c) extends the strong duality result from linear pro-
gramming, since Q in (c) can be the zero matrix. In the case of (c) we of
course cannot write the Lagrangian dual problem in the form of (6.32)
because Q is not invertible.

6.3 Illustrative examples

6.3.1 Two numerical examples

Example 6.13 (an explicit, differentiable dual problem) Consider the prob-
lem to

minimize
x

f(x) := x2
1 + x2

2,

subject to x1 + x2 ≥ 4,

xj ≥ 0, j = 1, 2.

159

Draft from February 22, 2005

Lagrangian duality

We consider the first constraint to be the complicated one, and hence
define g(x) := −x1 − x2 + 4 and let X := { (x1, x2) | xj ≥ 0, j = 1, 2 }.

Then, the Lagrangian dual function is

q(µ) = minimum
x∈X

L(x, µ) := f(x) − µ(x1 + x2 − 4)

= 4µ+ minimum
x∈X

{x2
1 + x2

2 − µx1 − µx2}

= 4µ+ minimum
x1≥0

{x2
1 − µx1} + minimum

x2≥0
{x2

2 − µx2}, µ ≥ 0.

For a fixed µ ≥ 0, the minimum is attained at x1(µ) = µ
2 , x2(µ) = µ

2 .
Substituting this expression into q(µ), we obtain that q(µ) = f(x(µ))−

µ(x1(µ) + x2(µ) − 4) = 4µ− µ2

2 .
Note that q is strictly concave, and it is differentiable everywhere (due

to the fact that f, g are differentiable and x(µ) is unique), by Danskin’s
Theorem 6.16(d).

We then have that q′(µ) = 4 − µ = 0 ⇐⇒ µ = 4. As µ = 4 ≥ 0, it
is the optimum in the dual problem! µ∗ = 4; x∗ = (x1(µ

∗), x2(µ
∗))T =

(2, 2)T.
Also: f(x∗) = q(µ∗) = 8.

This is an example where the dual function is differentiable, and
therefore we can utilize Proposition 6.25(c). In this case, the optimum
x∗ is also unique, so it is automatically given as x∗ = x(µ).

Example 6.14 (an implicit, non-differentiable dual problem) Consider the
linear programming problem to

minimize
x

f(x) := −x1 − x2,

subject to 2x1 + 2x2 ≤ 3,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 1.

Check that the optimal solution is that x∗ = (3/2, 0)T, f(x∗) =
−3/2.

Consider Lagrangian relaxing the first constraint, obtaining

L(x, µ) = −x1 − x2 + µ(2x1 + 4x2 − 3);

q(µ) = −3µ+ minimum
0≤x1≤2

{(−1 + 2µ)x1} + minimum
0≤x2≤1

{(−1 + 4µ)x2}

=






−3 + 5µ, 0 ≤ µ ≤ 1/4,
−2 + µ, 1/4 ≤ µ ≤ 1/2,

− 3µ, 1/2 ≤ µ.

160

Draft from February 22, 2005

∗Differentiability properties of the dual function

Check that µ∗ = 1/2, and hence that q(µ∗) = −3/2. For linear
programs, we have strong duality, but how do we obtain the optimal
primal solution from µ∗? It is clear that q is non-differentiable at µ∗.
Let us utilize the characterization given in the system (6.11).

First, at µ∗, it is clear that X(µ∗) is the set {
(
2α
0

)
| 0 ≤ α ≤ 1 }.

Among the subproblem solutions, we next have to find one that is primal
feasible as well as complementary.

Primal feasibility means that 2 · 2α+ 2 · 0 ≤ 3 ⇐⇒ α ≤ 3/4.

Further, complementarity means that µ∗ · (2x∗1 + 4x∗2 − 3) = 0 ⇐⇒
α = 3/4, since µ∗ 6= 0. We conclude that the only primal vector x

that satisfies the system (6.11) together with the dual optimal solution
µ∗ = 1/2 is x∗ = (3/2, 0)T. Check finally that f∗ = q∗.

In the first example, the Lagrangian dual function is differentiable
since x(µ) is unique. The second one shows that otherwise, there may
be kinks in the function q where there are alternative solutions x(µ); as a
result, to obtain a primal optimal solution becomes more complex. The
Dantzig–Wolfe algorithm, for example, represents a means by which to
automatize the process that we have just shown; the algorithm generates
extreme points of X(µ) algorithmically, and constructs the best feasible
convex combination thereof, obtaining a primal–dual optimal solution in
a finite number of iterations for linear programs.

6.4 ∗Differentiability properties of the dual
function

We have established that the Lagrangian dual problem (6.9) is a convex
one, and further that under some circumstances we can generate a dual
optimal solution that has the same objective value q∗ as the optimal
value of the original problem f∗. We now turn to study the Lagrangian
dual problem in detail, and in particular how it can be solved efficiently.
First, we will establish when the dual function q is differentiable. We will
see that differentiability holds only in some special cases, in which we
can recognize the workings of the so-called Lagrange multiplier method.
In practice, the function q will be non-differentiable, and then this clas-
sic method will fail. This means that we must devise a more general
numerical method which is not based on gradients but rather subgradi-
ents. This type of algorithm is the topic of the next section, while we
here begin by studying the topic of subgradients of convex functions in
general.

161

Draft from February 22, 2005

Lagrangian duality

6.4.1 Sub-differentiability of convex functions

Throughout this section we suppose that f : Rn → R is a convex func-
tion, and study its sub-differentiability properties. We will later on apply
our findings to the Lagrangian dual function q, or, rather, its negative
−q. We first remark that a finite convex function is automatically con-
tinuous (cf. Theorem 4.26), in fact even Lipschitz continuous on every
bounded subset of Rn.

Definition 6.15 (subgradient) Let f : Rn → R be a convex function.
We say that a vector p ∈ Rn is a subgradient of f at x ∈ Rn if

f(y) ≥ f(x) + pT(y − x), y ∈ Rn. (6.33)

The set of such vectors p defines the subdifferential of f at x, and is
denoted ∂f(x).

Notice the connection to the characterization of a convex function in
C1 in Theorem 3.40(a). The difference between them is that p is not
unique at a non-differentiable point. (Just as the gradient has a role in
supporting hyperplanes to the graph of a convex function in C1, the role
of the subgradients is the same; at a non-differentiable point there are
more then one supporting hyperplane to the graph of f .)

We illustrate this in Figure 6.1.

f

x

Figure 6.1: Three possible slopes of the convex function f at x.

Notice also that a global minimum x∗ of f over Rn is characterized
by the inclusion that 0n ∈ ∂f(x∗), and recognize, again, the similarity
to the C1 case.

162

Draft from February 22, 2005

∗Differentiability properties of the dual function

We list some additional basic results for convex functions next. Proofs
will not be given here, we refer to the convex analysis text by Rockafel-
lar [Roc70].

Proposition 6.16 (properties of a convex function) Let f : Rn → R be
a convex function.

(a) [boundedness of ∂f(x)] For every x ∈ Rn, ∂f(x) is a nonempty,
convex, and compact set. If X is bounded then ∪x∈X ∂f(x) is bounded.

(b) [closedness of ∂f] The subdifferential mapping x 7→7→ ∂f(x) is
closed; in other words, if {xk} is a sequence of vectors in Rn converging
to x, and pk ∈ ∂f(xk) holds for every k, then the sequence {pk} of
subgradients is bounded and every limit point thereof belongs to ∂f(x).

(c) [directional derivative and differentiability] For every x ∈ Rn, the
directional derivative of f at x in the direction of d ∈ Rn satisfies

f ′(x; d) = maximum
p∈∂f(x)

pTd. (6.34)

In particular, f is differentiable at x with gradient ∇f(x) if and only
if it has ∇f(x) as its unique subgradient at x; in that case, f ′(x; d) =
∇f(x)Td.

(d) [Danskin’s Theorem—directional derivatives of a convex max func-
tion] Let Z be a compact subset of Rm, and let φ : Rn × Z → R be
continuous and such that φ(·, z) : Rn → R is convex for each z ∈ Z. Let
the function f : Rn → R be given by

f(x) := maximum
z∈Z

φ(x, z), x ∈ Rn. (6.35)

The function f then is convex on Rn and has a directional derivative at
x in the direction of d equal to

f ′(x; d) := maximum
z∈Z(x)

φ′(x, z; d), (6.36)

where φ′(x, z; d) is the directional derivative of φ(·, z) at x in the direc-
tion of d, and Z(x) := { z ∈ Rm | φ(x, z) = f(x) }.

In particular, if Z(x) contains a single point z̄ and φ(·, z̄) is differen-
tiable at x, then f is differentiable at x, and ∇f(x) = ∇xφ(x, z̄), where

∇xφ(x, z̄) is the vector with components ∂φ(x ,z̄)
∂xi

, i = 1, . . . , n.
If further φ(·, z) is differentiable for all z ∈ Z and ∇xφ(x, ·) is con-

tinuous on Z for each x, then

∂f(x) = conv {∇xφ(x, z) | z ∈ Z(x) }, x ∈ Rn,

holds.

163

Draft from February 22, 2005

Lagrangian duality

Proof. (a) This is a special case of [Roc70, Theorem 24.7].
(b) This is [Roc70, Theorem 24.5].
(c) This is [Roc70, Theorem 23.4 and 25.1].
(d) This is [Ber99, Proposition B.25].

Figure 6.2 illustrates the subdifferential of a convex function.

1

2

3

4

5

f

x

∂f(x)

Figure 6.2: The subdifferential of a convex function f at x.

6.4.2 Differentiability of the Lagrangian dual func-
tion

We consider the inequality constrained problem (6.4), where we make
the following standing assumption:

f, gi (i = 1, . . . ,m) are continuous; X is nonempty and compact.
(6.37)

Under this assumption, the set of solutions to the Lagrangian subprob-
lem,

X(µ) := arg minimum
x∈X

L(x,µ), µ ∈ Rm, (6.38)

is nonempty and compact for any choice of dual vector µ. We first de-
velop the sub-differentiability properties of the associated dual function
q, stated in (6.8). The first result strengthens Theorem 6.3(a) under
these additional assumptions.

164

Draft from February 22, 2005

∗Differentiability properties of the dual function

Proposition 6.17 (sub-differentiability of the dual function) Suppose that,
in the problem (6.4), (6.37) holds.

(a) The dual function (6.8) is finite, continuous and concave on Rm. If
its supremum over Rm

+ is attained, then the optimal solution set therefore
is closed and convex.

(b) The mapping µ 7→7→ X(µ) is closed on Rm. If X(µ̄) is the singleton
set {x̄} for some µ̄ ∈ Rm, and for some sequence Rm ⊃ {µk} → µ̄,
xk ∈ X(µk) for all k, then {xk} → x̄.

(c) Let µ ∈ Rm. If x ∈ X(µ), then g(x) is a subgradient to q at µ,
that is, g(x) ∈ ∂q(µ).

(d) Let µ ∈ Rm. Then,

∂q(µ) = conv { g(x) | x ∈ X(µ) }.

The set ∂q(µ) is convex and compact. Moreover, if U is a bounded
set, then ∪µ∈U ∂q(µ) is also bounded.

(e) The directional derivative of q at µ ∈ Rm in the direction of
d ∈ Rm is

q′(µ; d) = minimum
γ∈∂q(µ)

dTγ.

Proof. (a) Theorem 6.3(a) stated the concavity of q on its effective
domain. Weierstrass’ Theorem 4.6 states that q is finite on Rm, which is
then also its effective domain. The continuity of q follows from that of
any finite concave function, as we have already stated.5 The closedness
property of the solution set complements that of Theorem 6.8(a), and
is a direct consequence of the continuity of q (the upper level set then
automatically is a closed set).

(b) Let {µk} be a sequence of vectors in Rm, and let xk ∈ X(µk) be
arbitrary. Let x be arbitrary in X , and let further x̄ ∈ X be an arbitrary
limit point of {xk} (at least exists from the compactness of X). From
the property that for all k,

L(xk,µk) ≤ L(x,µk),

follows by the continuity of L that, in the limit of k in the subsequence
in which {xk} converges to x̄,

L(x̄, µ̄) ≤ L(x, µ̄),

so that x̄ ∈ X(µ̄), as desired. The special case of a singleton set X(µ̄)
follows.

5See [Roc70, Theorem 10.1 and its Corollary 10.1.1].

165

Draft from February 22, 2005

Lagrangian duality

(c) Let µ̄ ∈ Rm be arbitrary. We have that

q(µ̄) = infimum
y∈X

L(y, µ̄) ≤ f(x) + µ̄Tg(x)

= f(x) + (µ̄ − µ)Tg(x) + µTg(x) = q(µ) + (µ̄ − µ)Tg(x),

which implies that g(x) ∈ ∂q(µ).
(d) The inclusion ∂q(µ) ⊆ conv { g(x) | x ∈ X(µ) } follows from (c)

and the convexity of ∂q(µ). The opposite inclusion follows by applying
the Separation Theorem 3.24.6

(e) See Danskin’s Theorem in Proposition 6.16(d).

The result in (c) is an independent proof of the concavity of q on Rm.
The result (d) is particularly interesting, because by Carathéodory’s

Theorem 3.8 it says that every subgradient of q at any point µ is the
convex combination of a finite number (in fact, at most m+1) of vectors
of the form g(xs) with xs ∈ X(µ). Computationally, this has been
utilized to devise efficient (proximal) bundle methods for the Lagrangian
dual problem as well as to devise methods to recover primal optimal
solutions.

Next, we establish the differentiability of the dual function under
additional assumptions.

Proposition 6.18 (differentiability of the dual function) Suppose that, in
the problem (6.4), (6.37) holds.

(a) Let µ ∈ Rm. The dual function q is differentiable at µ if and
only if { g(x) | x ∈ X(µ) } is a singleton set, that is, if the value of the
vector of constraint functions is invariant over the set of solutions X(µ)
to the Lagrangian subproblem. Then, we have that

∇q(µ) = g(x),

for every x ∈ X(µ).
(b) The result in (a) holds in particular if the Lagrangian subproblem

has a unique solution, that is, X(µ) is a singleton set. In particular, this
property is satisfied if further X is a convex set, f is strictly convex on
X , and gi (i = 1, . . . ,m) are convex, in which case q is even in C1.

Proof. (a) The concave function q is differentiable at the point µ (where
it is finite) if and only if its subdifferential ∂q(µ) there is a singleton, cf.
Proposition 6.16(c).

(b) Under either one of the assumptions stated, X(µ) is a singleton,
whence the result follows from (a). Uniqueness follows from the con-
vexity of the feasible set and strict convexity of the objective function,

6See [BSS93, Theorem 6.3.7] for a detailed proof.

166

Draft from February 22, 2005

Subgradient optimization methods

according to Proposition 4.10.

Proposition 6.19 (twice differentiability of the dual function) Suppose that,
in the problem (6.4), X = Rn, and f and gi (i = 1, . . . ,m) are convex
functions in C2. Suppose that, at µ ∈ Rm, the solution x to the La-
grangian subproblem not only is unique, but also that the partial Hessian
of the Lagrangian is positive definite at the pair (x,µ), that is,

∇2
xxL(x,µ) is positive definite.

Then, the dual function q is twice differentiable at µ, with

∇2q(µ) = −g(x)T[∇2
xxL(x,µ)]−1g(x).

Proof. The result follows from the Implicit Function Theorem, which
is stated in Chapter 2, applied to the Lagrangian subproblem.7

6.5 Subgradient optimization methods

We begin by establishing the convergence of classic subgradient opti-
mization methods as applied to a general convex optimization problem.

6.5.1 Convex problems

Consider the convex optimization problem to

minimize
x

f(x), (6.39a)

subject to x ∈ X, (6.39b)

where f : Rn → R is convex and the set X ⊆ Rn is nonempty, closed
and convex.

The subgradient projection algorithm is as follows: select x0 ∈ X ,
and for k = 0, 1, . . . generate

gk ∈ ∂f(xk), (6.40)

xk+1 = ProjX (xk − αkgk), (6.41)

where the sequence {αk} is generated from one of the following three
rules.

7See [Ber99, Pages 596–598] for a detailed analysis.

167

Draft from February 22, 2005

Lagrangian duality

The first rule is termed the divergent series step length rule, and
requires that

αk > 0, k = 0, 1, . . . ; lim
k→∞

αk = 0;

∞∑

k=0

αk = +∞. (6.42)

The second rule adds to the requirements in (6.42) the square-summable
restriction

∞∑

k=0

α2
k < +∞. (6.43)

The conditions in (6.42) allow for convergence to any point from
any starting point, since the total step is infinite, but convergence is
therefore also quite slow; the additional condition in (6.43) means that
the fastest among these sequences are selected. An instance of the step
length formulas which satisfies both (6.42) and (6.43) is the following:

αk = β/(k + 1), k = 0, 1, . . . ,

where β > 0.
The third step length rule is

σ ≤ αk ≤ 2[f(xk) − f∗]/‖gk‖2 − σ, (6.44)

where f∗ is the optimal value of (6.39). We refer to this step length for-
mula as the Polyak step, after the Russian mathematician Boris Polyak
who invented the subgradient method in the 1960s together with Er-
mol’ev and Shor.

How is convergence established for subgradient optimization meth-
ods? As shall be demonstrated in Chapters 11 and 12 convergence of
algorithms for problems with a differentiable objective function is typi-
cally based on generating descent directions, and step length rules that
result in the sequence {xk} of iterates being strictly descending in the
value of f . For the non-differentiable problem at hand, generating de-
scent directions is a difficult task, since it is not true that the negative of
an arbitrarily chosen subgradient of f at a non-optimal vector x defines
a descent direction.

In bundle methods one gathers information from more than one sub-
gradient (hence the term bundle) around a current iteration point so
that a descent direction can be generated, followed by an inexact line
search. We concentrate here on the simpler methodology of subgradient
optimization methods, in which we apply the formula (6.51) where the
step length αk is chosen based on very simple rules.

168

Draft from February 22, 2005

Subgradient optimization methods

We establish below that if the step length is small enough, an it-
eration of the subgradient projection method leads to a vector that is
closer to the set of optimal solutions. This technical result also motivates
the construction of the Polyak step length rule, and hence shows that
convergence of subgradient methods are based on the reduction of the
Euclidean distance to the optimal solutions rather than on the objective
function f .

Proposition 6.20 (decreasing distance to the optimal set) Suppose that
xk ∈ X is not optimal in (6.39), and that xk+1 is given by (6.41) for
some step length αk > 0.

Then, for every optimal solution x∗ in (6.39),

‖xk+1 − x∗‖ < ‖xk − x∗‖

holds for every step length αk in the interval

αk ∈ (0, 2[f(xk) − f∗]/‖gk‖2). (6.45)

Proof. We have that

‖xk+1 − x∗‖2 = ‖ProjX (xk − αkgk) − x∗‖2

= ‖ProjX (xk − αkgk) − ProjX (x∗)‖2

≤ ‖xk − αkgk − x∗‖2

= ‖xk − x∗‖2 − 2αk(xk − x∗)Tgk + α2
k‖gk‖2

≤ ‖xk − x∗‖2 − 2αk[f(xk) − f∗] + α2
k‖gk‖2

< ‖xk − x∗‖2,

where we have utilized the property that the Euclidean projection is non-
expansive (Theorem 4.31), the subgradient inequality (6.33) for convex
functions, and the bounds on αk given by (6.45).

Our first convergence result is based on the divergent series step
length formula (6.42), and establishes convergence to the optimal solu-
tion set X∗ under an assumption on its boundedness. With the other
two step length formulas, this condition will be possible to remove.

Recall the definition (3.10) of the minimum distance from a vector to
a closed and convex set; our interest is in the distance from an arbitrary
vector x ∈ Rn to the solution set X∗:

distX∗ (x) := minimum
y∈X∗

‖y − x‖.

169

Draft from February 22, 2005

Lagrangian duality

Theorem 6.21 (convergence of subgradient optimization methods, I) Let
{xk} be generated by the method (6.41), (6.42). If X∗ is bounded and
the sequence {gk} is bounded, then {f(xk)} → f∗ and {distX∗(xk)} → 0
holds.

Proof. We show that the iterates will eventually belong to an arbitrarily
small neighbourhood of the set of optimal solutions to (6.39).

Let δ > 0 and Bδ = {x ∈ Rn | ‖x‖ ≤ δ }. Since f is convex, X is
nonempty, closed and convex, andX∗ is bounded, it follows from [Roc70,
Theorem 27.2], applied to the lower semi-continuous, proper8 and convex
function f + χX)9 that there exists an ε = ε(δ) > 0 such that the level
set {x ∈ X | f(x) ≤ f∗ + ε } ⊆ X∗ + Bδ/2; this level set is denoted by
Xε. Moreover, since for all k, ‖gk‖ ≤ sups{‖gs‖} < ∞, and {αk} → 0,
there exists an N(δ) such that αk‖gk‖2 ≤ ε and αk‖gk‖ ≤ δ/2 for all
k ≥ N(δ).

The sequel of the proof is based on induction and is organized as
follows. In the first part, we show that there exists a finite k(δ) ≥ N(δ)
such that xk(δ) ∈ X∗ + Bδ. In the second part, we establish that if xk

belongs to X∗ + Bδ for some k ≥ N(δ) then so does xk+1, by showing
that either distX∗(xk+1) < distX∗(xk) holds, or xk ∈ Xε so that xk+1 ∈
X∗ +Bδ since the step taken is not longer than δ/2.

Let x∗ ∈ X∗ be arbitrary. In every iteration k we then have

‖x∗ − xk+1‖2
= ‖x∗ − ProjX (xk − αkgk)‖2

(6.46a)

≤ ‖x∗ − xk + αkgk‖2 (6.46b)

= ‖x∗ − xk‖2
+ αk

(
2gT

k (x∗ − xk) + αk ‖gk‖2
)
, (6.46c)

where the inequality follows from the projection property. Now, suppose
that

2 gT
s (x∗ − xs) + αs ‖gs‖2

< −ε (6.47)

for all s ≥ N(δ). Then, using (6.46) repeatedly, we obtain that for any
k ≥ N(δ),

‖x∗ − xk+1‖2
<
∥∥x∗ − xN(δ)

∥∥2 − ε

k∑

s=N(δ)

αs,

8A proper function is a function which is finite at least at some vector and nowhere
attains the value −∞. See also Section 1.4.

9For any set S ⊂ Rn the function χS is the indicator function of the set S, that
is, χS(x) = 0 if x ∈ S; and χS(x) = +∞ if x 6∈ S.

170

Draft from February 22, 2005

Subgradient optimization methods

and from (6.51) it follows that the right-hand side of this inequality tends
to minus infinity as k → ∞, which clearly is impossible. Therefore,

2 gT
k (x∗ − xk) + αk ‖gk‖2 ≥ −ε (6.48)

for at least one k ≥ N(δ), say k = k(δ). From the definition of N(δ), it
follows that gT

k(δ)(x
∗−xk(δ)) ≥ −ε. From the definition of a subgradient

(cf. Definition 6.15) we have that f(x∗) − f(xk(δ)) ≥ gT
t(δ)(x

∗ − xk(δ)),

since x∗,xk(δ) ∈ X . Hence, f(xk(δ)) ≤ f∗ + ε, that is, xk(δ) ∈ Xε ⊆
X∗ +Bδ/2 ⊂ X∗ +Bδ.

Now, suppose that xk ∈ X∗ + Bδ for some k ≥ N(δ). If (6.47)
holds, then, using (6.46), we have that ‖x∗−xk+1‖ < ‖x∗−xk‖ for any
x∗ ∈ x∗. Hence,

distX∗(xk+1) ≤ ‖ProjX∗ (xk) − xk+1‖ < ‖ProjX∗ (xk) − xk‖
= distX∗(xk) ≤ δ.

Thus, xk+1 ∈ X∗+Bδ. Otherwise, (6.48) must hold and, using the same
arguments as above, we obtain that f(xk) ≤ f∗ + ε, i.e., xk ∈ Xε ⊆
x∗ +Bδ/2. As

‖xk+1 − xk‖ = ‖ProjX (xk − αkgk) − xk‖ ≤ ‖xk − αkgk − xk‖

= αk ‖gk‖ ≤ δ

2

whenever k ≥ N(δ), it follows that xk+1 ∈ X∗+Bδ/2 +Bδ/2 = X∗+Bδ.
By induction with respect to k ≥ k(δ), it follows that xk ∈ X∗ +Bδ

for all k ≥ k(δ). Since this holds for arbitrarily small values of δ > 0
and f is continuous, the theorem follows.

We next introduce the additional requirement (6.43); the resulting
algorithm’s convergence behaviour is now much more favourable, and
the proof is at the same time less technical.

Theorem 6.22 (convergence of subgradient optimization methods, II) Let
{xk} be generated by the method (6.41), (6.42), (6.43). IfX∗ is nonempty
and the sequence {gk} is bounded, then {f(xk)} → f∗ and {xk} → x∗ ∈
X∗ holds.

Proof. Let x∗ ∈ X∗ and k ≥ 1. Repeated application of (6.46) yields
that

‖x∗ − xk‖2 ≤ ‖x∗ − x0‖2
+ 2

k−1∑

s=0

αsg
T
s (x∗ − xs) +

k−1∑

s=0

α2
s ‖gs‖2

.(6.49)

171

Draft from February 22, 2005

Lagrangian duality

Since x∗ ∈ X∗ and gs ∈ ∂f(xs) for all s ≥ 0 we obtain that

f(xs) ≥ f∗ ≥ f(xs) + gT
s (x∗ − xs) , s ≥ 0, (6.50)

and hence that gT
s (x∗ − xs) ≤ 0 for all s ≥ 0. Define c := supk{‖gk‖}

and p =
∑∞

k=0 α
2
k, so that ‖gs‖ ≤ c for any s ≥ 0 and

∑k−1
s=0 α

2
s < p.

From (6.49) we then conclude that ‖x∗ − xk‖2 < ‖x∗ − x0‖2 + pc2 for
any k ≥ 1, and thus that the sequence {xk} is bounded.

Assume now that there is no subsequence {xki} of {xk} with {gT
ki

(x∗−
xki

)} → 0. Then there must exist an ε > 0 with gT
s (x∗ − xs) ≤ −ε for

all sufficiently large values of s. From (6.49) and the conditions on the
step lengths it follows that {‖x∗−xs‖} → −∞, which clearly is impossi-
ble. The sequence {xk} must therefore contain a subsequence {xki

} such
that {gT

ki
(x∗ − xki

)} → 0. From (6.50) it follows that {f(xki
)} → f∗.

The boundedness of {xk} implies the existence of an accumulation point
of the subsequence {xki

}, say x∞. From the continuity of f it follows
that x∞ ∈ X∗.

To show that x∞ is the only accumulation point of {xk}, let δ > 0
and find an M(δ) such that ‖x∞ − xM(δ)‖2 ≤ δ/2 and

∑∞
s=M(δ) α

2
s ≤

δ/(2c2). Consider any k > M(δ). Analogously to the derivation of
(6.49), and using (6.50), we then obtain that

‖x∞ − xk‖2 ≤
∥∥x∞ − xM(δ)

∥∥2
+

k−1∑

s=M(δ)

α2
s‖gs‖2 <

δ

2
+

δ

2c2
c2 = δ.

Since this holds for arbitrarily small values of δ > 0, we are done.

We note that it is possible to remove the boundedness condition on
{gk} at the simple price of scaling the length of the search direction; we
preferred to keep the simplicity of the algorithms, however. Note further
that this condition is immediately ensured to be fulfilled whenever we
know before-hand that the sequence {xk} is bounded, such as is the case
when X itself is bounded.

Convergence of this type of method is quite slow. In fact, the step
length rule (6.42) prevents fast convergence to be possible. We say that
the sequence {xk} converges to x∗ with a geometric rate if there exists
M > 0 and q ∈ (0, 1) with

‖xk − x∗‖ ≤Mqk, k = 0, 1,

Suppose that this speed is possible together with the step length rule
(6.42). For all k, the above yields

αk = ‖xk+1 − xk‖ ≤ ‖xk+1 − x∗‖ + ‖xk − x∗‖ ≤M(q + 1)qk;

172

Draft from February 22, 2005

Subgradient optimization methods

summing these inequalities up implies

∞∑

k=0

αk ≤M(q + 1)/(1 − q),

which contradicts the divergent series condition (6.42).
We finally present the convergence properties of the subgradient pro-

jection method using the Polyak step; it is even stronger than the result
of Theorem 6.22.

Theorem 6.23 (convergence of subgradient optimization methods, III) Let
{xk} be generated by the method (6.41), (6.44). If X∗ is nonempty then
{f(xk)} → f∗ and {xk} → x∗ ∈ X∗ holds.

Proof. From Proposition 6.20 follows that the sequence {{‖xk−x∗‖} is
strictly decreasing for every x∗ ∈ X∗, and therefore has a limit. By con-
struction of the step length, in which the step lengths are bounded away
from zero and 2[f(xk)− f∗]/‖gk‖2, it follows from the proof of Proposi-
tion 6.20 that {[f(xk)− f∗]/‖gk‖2} → 0 must hold. Since {gk} must be
bounded due to the boundedness of {xk}, we have that {f(xk)} → f∗.
Further, {xk} is bounded, and due to the continuity properties of f every
limit point must then belong to X∗.

It remains to show that there can be only one limit point. This
property follows from the monotone decrease of the distance ‖xk −x∗‖.
In detail, the proof is as follows. Suppose two subsequences of {xk}
exist, such that they converge to two different vectors in X∗:

{xmi
} → x∗

1; {xli} → x∗
2; x∗

1 6= x∗
2.

We must then have {‖xli − x∗
1‖} → ρ1 > 0, while {‖xmi

− x∗
2‖} →

ρ2 > 0. Since the two vectors are optimal and the distance to X∗

is descending, {‖xk − x∗
1‖} → ρ1, while {‖xk − x∗

2‖} → ρ2 holds; in
particular, {‖xmi

− x∗
1‖} → ρ1, while {‖xli − x∗

2‖} → ρ2. For clarity,
assume that ρ1 ≤ ρ2 holds. Then,

‖xmi
− x∗

1‖2 = ‖xmi
− x∗

2 + x∗
2 − x∗

1‖2 → ρ∗2 + ‖x∗
2 − x∗

1‖ > ρ2
1,

which is impossible since ‖xmi
− x∗

1‖ → ρ1.

Contrary to the slow convergence of the subgradient projection algo-
rithms that rely on the divergent series step length rule, those based on
the Polyak step length (6.44) are geometrically convergent under addi-
tional assumptions on the function f . For example, geometric conver-
gence follows rather easily from the condition that f has a set of weak

173

Draft from February 22, 2005

Lagrangian duality

sharp minima: there exists m ≥ 0 such that

f(x) − f∗ ≥ mdistX∗(x), x ∈ X.

(It can be shown that this condition holds, for example, for every LP
problem which has a bounded optimal solution.) The argument is that
there exists a large enough L > 0 (due to the boundedness of {‖gk‖})
such that

‖xk+1 − x∗‖2 ≤
(

1 − σ(2 − σ)m

L2

)

︸ ︷︷ ︸
=q2<1

‖xk − x∗‖2.

6.5.2 Application to the Lagrangian dual problem

We remind ourselves that the Lagrangian dual problem is a concave
maximization problem, and that the appearance of the dual function is
similar to that of the following example:

Let h(x) := minimum {h1(x), h2(x)}, where h1(x) := 4 − |x| and
h2(x) := 4 − (x− 2)2. Then,

h(x) =

{
4 − x, 1 ≤ x ≤ 4,
4 − (x− 2)2, x ≤ 1, x ≥ 4;

cf. Figure 6.3.

Figure 6.3: A min-function with two pieces.

The function h is non-differentiable at x = 1 and x = 4, since its
graph has non-unique supporting hyperplanes there:

∂h(x) =






{−1}, 1 < x < 4
{4 − 2x}, x < 1, x > 4
[−1, 2] , x = 1
[−4,−1] , x = 4;

174

Draft from February 22, 2005

Subgradient optimization methods

the subdifferential is here either a singleton (at differentiable points) or
an interval (at non-differentiable points).

Note that the subdifferential includes zero at x∗ = 1, whence it de-
fines the (unique) maximum.

Now, let g ∈ ∂q(µ̄), and let U∗ be the set of optimal solutions to
(6.9). Then,

U∗ ⊆ {µ ∈ Rm | gT(µ − µ̄) ≥ 0 }.

In other words, g defines a half-space that contains the set of optimal
solutions. We therefore know that if the step length is small enough we
get closer to the set of optimal solutions. Consider Figure 6.4 however:
the subgradient depicted is not an ascent direction! As we saw in the
previous section, convergence must be based on other arguments, like the
decreasing distance to U∗ alluded to above, and in the previous section.

1

2

3

4

5

q

g

µ

∂q(µ)

Figure 6.4: The half-space defined by the subgradient g of q at µ. Note
that the subgradient is not an ascent direction.

We consider the Lagrangian dual problem (6.9). We suppose, as in
the previous section, that X is compact so that the infimum in (6.8)
is attained for every µ ≥ 0m (which is the set over which we wish to
maximize q) and q is real-valued over Rm

+ .

In the case of our special concave maximization problem, the iteration

175

Draft from February 22, 2005

Lagrangian duality

has the form

µk+1 = Proj
R

m
+

[µk + αkgk] (6.51a)

= [µk + αkgk]+ (6.51b)

= (maximum {0, (µk)i + αk(gk)i})m
i=1, (6.51c)

where gk ∈ ∂q(µk) is arbitrarily chosen; we would typically use gk =
g(xk), where xk ∈ argminimumx∈X L(x,µk). The projection operation
onto the first orthant is, as we can see, very simple.

Replacing the Polyak step (6.44) with the corresponding dual form

σ ≤ αk ≤ 2[q∗ − q(µk)]/‖gk‖2 − σ, k = 1, 2, . . . , (6.52)

convergence will now be a simple consequence of the above theorems.
The conditions (6.37) and that the feasible set of (6.4) is nonempty

ensure that the problem (6.4) has an optimal solution; in particular,
(6.5) then holds. Further, if we introduce the Slater condition (6.15), we
are ensured that there is no duality gap, and that the dual problem (6.9)
has a compact set U∗ of optimal solutions. Under these assumptions, we
have the following results for subgradient optimization methods.

Theorem 6.24 (convergence of subgradient optimization methods) Suppose
that the problem (6.4) is feasible, and that (6.37) and (6.15) hold.

(a) Let {µk} be generated by the method (6.51), under the divergent
step length rule (6.42). Then, {q(µk)} → q∗, and {distU∗(µk)} → 0.

(b) Let {µk} be generated by the method (6.51), under the divergent
step length rule (6.42), (6.43). Then, {µk} converges to an optimal
solution to (6.9).

(c) Let {µk} be generated by the method (6.51), under the Polyak
step length rule (6.52), where σ is a small positive number. Then, {µk}
converges to an optimal solution to (6.9).

Proof. The results follow from Theorems 6.21, 6.22, and 6.23. Note
that in the first two cases, boundedness conditions were assumed for X∗

and the sequence of subgradients. The corresponding conditions for the
Lagrangian dual problem are fulfilled under the CQs imposed, since they
imply that the search for an optimal solution is done over a compact set;
cf. Theorem 6.8(a) and its proof.

6.6 ∗Obtaining a primal solution

It remains for us to show how an optimal dual solution µ∗ can be trans-
lated into an optimal primal solution x∗. Obviously, convexity and

176

Draft from February 22, 2005

∗Obtaining a primal solution

strong duality will be needed in general, if we are to be able to utilize
the primal–dual optimality characterization in Theorem 6.6. It turns
out that the generation of a primal optimum is automatic if q is differen-
tiable at µ∗, something which we can refer to as the Lagrange multiplier
method. Unfortunately, in many cases, such as for most non-strictly
convex optimization problems (like linear programming), this will not
be the case, and then the translation work becomes more complex.

We start with the ideal case.

6.6.1 Differentiability at the optimal solution

The following results summarize the optimality conditions for the La-
grangian dual problem (6.9), and their consequences for the availability
of a primal optimal solution in the absence of a duality gap.

Proposition 6.25 (optimality conditions for the dual problem) Suppose that,
in the problem (6.4), the condition (6.37) holds. Suppose further that
the Lagrangian dual problem has an optimal solution, µ∗.

(a) The dual optimal solution is characterized by the inclusion

0m ∈ −∂q(µ∗) +NR
m
+

(µ∗). (6.53)

In other words, there then exists γ∗ ∈ ∂q(µ∗)—an optimality-characterizing
subgradient of q at µ∗—such that

0m ≤ µ∗ ⊥ γ∗ ≤ 0m. (6.54)

There exist a finite set of solutions xi ∈ X(µ∗) (i = 1, . . . , k) where
k ≤ m+ 1 such that

γ∗ =

k∑

i=1

αig(xi);

k∑

i=1

αi = 1; αi ≥ 0, i = 1, . . . , k. (6.55)

Hence, we have that

k∑

i=1

αiµ
∗
i gi(x

i) = 0, j = 1, . . . ,m. (6.56)

(b) If there is a duality gap, then q is non-differentiable at µ∗.
(c) If q is differentiable at µ∗, then there is no duality gap. Further,

any vector in X(µ∗) then solves the primal problem (6.4).

Proof. (a) The first result is a direct statement of the optimality condi-
tions of the convex and sub-differentiable program (6.9); the complemen-
tarity conditions in (6.54) are an equivalent statement of the inclusion
in (6.53).

177

Draft from February 22, 2005

Lagrangian duality

The second result is an application of Carathéodory’s Theorem 3.8
to the compact and convex set ∂q(µ∗).

(b) The result is established once (c) is, since they are equivalent.
(c) Let x̄ be any vector in X(µ∗) for which ∇q(µ∗) = g(x̄) holds, cf.

Proposition 6.18(a). We obtain from (6.54) that

0m ≤ µ∗ ⊥ g(x̄) ≤ 0m.

Hence, the pair (µ, x̄) fulfills all the conditions stated in (6.11), so that,
by Theorem 6.6, x̄ is an optimal solution to (6.4).

Many interesting problems do not comply with the conditions in
(c); for example, linear programming is one where the Lagrangian dual
problem often is non-differentiable at every dual optimal solution.10

This is sometimes called the non-coordinability phenomenon (cf. [Las70,
DiJ79]). It was in order to cope with this phenomenon that Dantzig–
Wolfe decomposition ([DaW60, Las70]) and other column generation al-
gorithms, Benders decomposition ([Ben62, Las70]) and generalized linear
programming were developed; noticing that the convex combination of
a finite number of candidate primal solutions are sufficient to verify an
optimal primal–dual solution [cf. (6.56)], methodologies were developed
to generate those vectors algorithmically. See also [LPS99] for overviews
on the subject of generating primal optimal solutions from dual optimal
ones, and [BSS93, Theorem 6.5.2] for an LP procedure that provides
primal feasible solutions for convex programs.

Note that the equation (6.56) in (a) reduces to the complementar-
ity condition that µ∗

i gi(x̄) = 0 holds, for the averaged solution, x̄ :=∑k
i=1 αix

i, whenever all the functions gi are affine.

6.6.2 Everett’s Theorem

The next result shows that the solution to the Lagrangian subproblem
solves a perturbed version of the original problem. We state the result
for the general problem to find

f∗ := infimum
x

f(x), (6.57a)

subject to x ∈ X, (6.57b)

gi(x) ≤ 0, i = 1, . . . ,m, (6.57c)

hj(x) = 0, j = 1, . . . , ℓ, (6.57d)

10In other words, even if a Lagrange multiplier vector is known, the Lagrangian
subproblem may not identify a primal optimal solution.

178

Draft from February 22, 2005

∗Obtaining a primal solution

where f : Rn → R, gi : Rn → R (i = 1, 2, . . . ,m), and hj : Rn → R
(j = 1, 2, . . . , ℓ) are given functions, and X ⊆ Rn.

Theorem 6.26 (Everett’s Theorem) Let (µ,λ) ∈ Rm
+ × Rℓ. Consider

the Lagrangian subproblem to

minimize
x∈X

{
f(x) + µTg(x) + λTh(x)

}
. (6.58)

Suppose that x̄ is an optimal solution to this problem, and let I(µ) ⊆
{1, . . . ,m} denote the set of indices i for which µi > 0.

(a) x̄ is an optimal solution to the perturbed primal problem to

minimize
x

f(x), (6.59a)

subject to x ∈ X, (6.59b)

gi(x) ≤ gi(x̄), i ∈ I(x̄), (6.59c)

hj(x) = hj(x̄), j = 1, . . . , ℓ. (6.59d)

(b) If x̄ is feasible in (6.57) and µTg(x̄) = 0 holds, then x̄ solves
(6.57). Moreover, the pair (µ,λ) then solves the Lagrangian dual prob-
lem.

Proof. (a) The proof proceeds by showing that the triple (x̄,µ,λ) is
a saddle point of the function (x,µ,λ) 7→ f(x) + µT[g(x) − g(x̄)] +
λT[h(x) − h(x̄)] over X × Rm

+ × Rℓ.
Let x satisfy the constraints (6.59b)–(6.59d). Since we have that

h(x) = h(x̄) and µTg(x) ≤ µTg(x̄), the optimality of x̄ in (6.58) yields
that

f(x) + µTg(x̄) + λTh(x̄) ≥ f(x) + µTg(x) + λTh(x)

≥ f(x̄) + µTg(x̄) + λTh(x̄),

which shows that f(x) ≥ f(x̄). We are done.
(b) µTg(x̄) = 0 implies that gi(x̄) = 0 for i ∈ I(µ); from (a) x̄ solves

the problem to

minimize
x

f(x), (6.60a)

subject to x ∈ X, (6.60b)

gi(x) ≤ 0, i ∈ I(x̄), (6.60c)

hj(x) = 0, j = 1, . . . , ℓ. (6.60d)

In particular, then, since the feasible set of (6.57) is contained in that of
(6.60) and x̄ is feasible in the former, x̄ must also solve (6.57). That the

179

Draft from February 22, 2005

Lagrangian duality

pair (µ,λ) solves the dual problem follows by the equality between the
primal and dual objective functions at (x̄,µ,λ) and weak duality.

The result is taken from Everett [Eve63]. One important consequence
of the result is that if the right-hand side perturbations gi(x̄) and hi(x̄)
all are close to zero, the vector x̄ being near-feasible might mean that it
is in fact acceptable as an approximate solution to the original problem.
(This interpretation hinges on the dualized constraints being soft con-
straints, in the sense that a small violation is acceptable. See Section 1.7
for an introduction to the topic of soft constraints.)

6.7 ∗Sensitivity analysis

6.7.1 Analysis for convex problems

Consider the inequality constrained convex program (6.4), where f :
Rn → R and gi (i = 1, . . . ,m) are convex functions and X ⊆ Rn is a
convex set. Suppose that the problem (6.4) is feasible, that the com-
pactness condition (6.37) and Slater condition (6.15) hold. This is the
classic case where there exist multipliers µ∗, according to Theorem 6.8,
and strong duality holds.

For certain types of problems where there is no duality gap and where
there exist primal–dual optimal solutions, we have access to a beautiful
theory of sensitivity analysis. The classic meaning of the term is the
answer to the following question: what is the rate of change in f∗ when
a constraint right-hand side changes? This question answers important
practical questions, like the following in manufacturing:� If we buy one unit of additional resource at a given price, or if the

demand of a product that we sell increases by a certain amount,
then how much additional profit do we make?

We will here provide a basic result which states when this sensitivity
analysis of the optimal objective value can be performed for the problem
(6.4), and establish that the answer is determined precisely by the value
of the Lagrange multiplier vector µ∗, provided that it is unique.

Definition 6.27 (perturbation function) Consider the function p : Rm →
R ∪ {±∞} defined by

p(u) := infimum
x

f(x), (6.61a)

subject to x ∈ X, (6.61b)

gi(x) ≤ ui, i = 1, . . . ,m, u ∈ Rm; (6.61c)

180

Draft from February 22, 2005

∗Sensitivity analysis

it is called the perturbation function, or primal function, associated with
the problem (6.4). Its effective domain is the set P := {u ∈ Rm | p(u) <
+∞}.

Under the above convexity conditions, we can establish that p is a
convex function. Indeed, it holds that for any value of the Lagrange
multiplier vector µ∗ for the problem (6.4) that

q(µ∗) = infimum
x∈X

{f(x) + (µ∗)Tg(x)}

= infimum
{ (u,x)∈P×X|g(x)≤u }

{f(x) + (µ∗)Tg(x)}

= infimum
{ (u,x)∈P×X|g(x)≤u }

{f(x) + (µ∗)Tu}

= infimum
u∈P

infimum
{x∈X|g(x)≤u }

{f(x) + (µ∗)Tu}.

Since µ∗ is assumed to be a Lagrange multiplier, we have that q(µ∗) =
f∗ = p(0m). By the definition of infimum, then, we have that

p(0m) ≤ p(u) + (µ∗)Tu, u ∈ Rm,

that is, −µ∗ (notice the sign!) is a subgradient of p at u = 0m (see
Definition 6.15). Moreover, by the result in Proposition 6.16(c), p is
differentiable at 0m if and only if p is finite in a neighbourhood of 0m

and µ∗ is a unique Lagrange multiplier vector, that is, the Lagrangian
dual problem (6.9) has a unique optimal solution. We have therefore
proved the following result:

Proposition 6.28 (a sensitivity analysis result) Suppose that in the in-
equality constrained problem (6.4), f : Rn → R and gi : Rn → R
(i = 1, . . . ,m) are convex functions and X ⊆ Rn is a convex set. Sup-
pose further that the problem (6.4) is feasible, and that the compactness
assumption (6.37) and Slater condition (6.15) hold. Suppose, finally,
that the perturbed problem defined in (6.61) has an optimal solution in
a neighbourhood of u = 0m, and that on the set of primal–dual opti-
mal solutions to (6.4)–(6.9), the Lagrangian dual optimal solution µ∗ is
unique. Then, the perturbation function p is differentiable at u = 0m,
and

∇p(0m) = −µ∗

holds.

It is intuitive that the sign of ∇p(0m) should be non-positive; if a
right-hand side of the (less-than) inequality constraints in (6.4) increases,
then the feasible set becomes larger. [This means that we might be able

181

Draft from February 22, 2005

Lagrangian duality

to find feasible vectors x in the new problem with f(x) < f∗, where f∗

is the optimal value of the minimization problem (6.4).]
The result specializes immediately to linear programming problems,

which is the problem type where this type of analysis is most often
utilized. The proof of differentiability of the perturbation function at
zero for that special case can however be done much more simply. (See
Section 10.3.1.)

6.7.2 Analysis for differentiable problems

There exist local versions of the analysis valid also for non-convex prob-
lems, where we are interested in the effect of a problem perturbation
on a KKT point. A special such analysis was recently performed by
Bertsekas [Ber04], in which he shows that even when the problem is
non-convex and the set of Lagrange multipliers are not unique, a sensi-
tivity analysis is available as long as data is differentiable. Suppose then
that in the problem (6.4) the functions f and gi, i = 1, . . . ,m are in
C1 and that X is nonempty. We generalize the concept of a Lagrange
multiplier to here mean that it is a vector µ∗ associated with a local
minimum x∗ such that

(
∇f(x∗) +

m∑

i=1

µ∗
i∇gi(x

∗)

)T

p ≥ 0, p ∈ TX(x∗), (6.62a)

µ∗
i ≥ 0, i = 1, . . . ,m, (6.62b)

µ∗
i = 0, i 6∈ I(x∗), (6.62c)

where we note that TX(x∗) is the tangent cone to X at x∗ (cf. Defini-
tion 5.2). Notice that under an appropriate CQ this is equivalent to the
KKT conditions, in which case we are simply requiring here that x∗ is
a local minimum.

In the below result we utilize the notation

g+
i (x) := maximum {0, gi(x)}, i = 1, . . . ,m,

and let g+(x) be the m-vector of elements g+
i (x), i = 1, . . . ,m.

Theorem 6.29 (sensitivity from the minimum norm multiplier) Suppose that
x∗ is a local minimum in the problem (6.4), and that the set of Lagrange
multipliers is nonempty. Let µ∗ denote the Lagrange multiplier of mini-
mum Euclidean norm. Then, for every sequence {xk} ⊂ X of infeasible
vectors such that {xk} → x∗ we have that

f(x∗) − f(xk) ≤ ‖µ∗‖ · ‖g+(xk)‖ + o(‖xk − x∗‖). (6.63)

182

Draft from February 22, 2005

Applications

Furthermore, if µ∗ 6= 0m and TX(x∗) is convex, the above inequality
is sharp in the sense that there exists a sequence of infeasible vectors
{xk} ⊂ X such that

lim
k→∞

f(x∗) − f(xk)

‖g+(xk)‖ = ‖µ∗‖,

and for this sequence

lim
k→∞

g+
i (xk)

‖g+(xk)‖ =
µ∗

i

‖µ∗‖ , i = 1, . . . ,m,

holds.

Theorem 6.29 establishes the optimal rate of cost improvement with
respect to infeasible constraint perturbations (in effect, those that imply
an increase in the feasible set).

We finally remark that under stronger conditions still, even the op-
timal solution x∗ is differentiable. Such a result is reminiscent to the
Implicit Function Theorem, which however only covers equality systems.
If we are to study the sensitivity of x∗ to changes in the right-hand sides
of inequality constraints as well, then the analysis becomes complicated
due to the fact that we must be able to predict if some active constraints
may become inactive in the process. In some circumstances, different di-
rections of change in the right-hand sides may cause different subsets of
the active constraints I(x∗) at x∗ to become inactive, and this would
most probably then be a non-differentiable point. A sufficient (but not
necessary at least in the case of linear constraints) condition when this
cannot happen is when x∗ is strictly complementary, that is, when there
exists a multiplier vector µ∗ where µ∗

i > 0 for every i ∈ I(x∗).

6.8 Applications

We provide two example applications of Lagrangian duality. The first
describes the primal–dual relationship between currents and voltages in
an electrical network of devices (voltage sources, diodes, and resistors);
this application illustrates that Lagrange multipliers often have direct
interpretations. The second application concerns a classic combinatorial
optimization problem: the traveling salesman problem. We show how
to approximately solve this problem through Lagrangian relaxation and
subgradient optimization.

183

Draft from February 22, 2005

Lagrangian duality

6.8.1 Electrical networks

An electrical network (or, circuit) is an interconnection of analog elec-
trical elements such as resistors, inductors, capacitors, diodes, and tran-
sistors. Its size varies from the smallest integrated circuit to an entire
electricity distribution network. A circuit is a network that has at least
one closed loop. A network is a connection of 2 or more simple circuit
elements, and may not be a circuit. The goal when designing electrical
networks for signal processing is to apply a predefined operation on po-
tential differences (measured in volts) or currents (measured in amperes).
Typical functions for these electrical networks are amplification, oscil-
lation and analog linear algorithmic operations such as addition, sub-
traction, multiplication, and division. In the case of power distribution
networks, engineers design the circuit to transport energy as efficiently
as possible while at the same time taking into account economic factors,
network safety and redundancy. These networks use components such
as power lines, cables, circuit breakers, switches and transformers.

To design any electrical circuits, electrical engineers need to be able
to predict the voltages and currents in the circuit. Linear circuits (that
is, an electrical network where all elements have a linear current–voltage
relation) can be quite easily analyzed through the use of complex num-
bers and systems of linear equations,11 while nonlinear elements require
a more sophisticated analysis. The classic electrical laws describing
the equilibrium state of an electrical network are due to G. Kirchhoff
[Kir1847]; referred to as Kirchhoff’s circuit laws they express in a math-
ematical form the conservation of charge and energy.12

Formally, we let an electrical circuit be described by branches (or,
links) connecting nodes. We present a simple example where the only
devices are voltage sources, resistors, and diodes. The resulting equi-
librium conditions will be shown to be represented as the solution to a
strictly convex quadratic program. In general, devices such as resistors
can be non-linear, but linearity is assumed throughout this section.� A voltage source maintains a constant branch voltage vs irrespec-

tive of the branch current cs. The power absorbed by the device
is −vscs.� A diode permits the branch current cd to flow in one direction only,
but consumes no power regardless of the current or voltage on the
branch. Denoting the branch voltage by vd, the direction condition

11For such networks already Maxwell [Max1865] had stated equilibrium conditions.
12These laws can be derived from Maxwell’s equations, but Kirchhoff preceded

Maxwell and derived his equations from work done by G. Ohm.

184

Draft from February 22, 2005

Applications

can be stated as a complementarity condition:

cd ≥ 0; vd ≥ 0; vdcd = 0. (6.64)� A resistor consumes power in relation with its resistance, denoted
by Rr. We recognize the following law describing the relationship
between the branch current and voltage in a linear resistor:

vr = −Rrcr. (6.65)

The power consumed is given by

−vrcr =
v2

r

Rr
= Rrc

2
r, (6.66)

where we have utilized (6.65) to derive two alternative relations.

We must be careful about the direction of flow of currents and volt-
ages, and thus define, for each type of device, a node–branch incidence
matrix of the form

nij :=






−1, if branch j has node i as its origin,

1, if branch j ends in node i,

0, otherwise.

The interpretation of a current flow variable is that the direction is
from the negative to the positive terminal of the device, that is, from the
origin to the ending node of the branch; a negative variable value will
therefore correspond to a flow in the opposite direction. Notice that for
the diodes, the latter is not allowed.

For the three types of devices we hence yield incidence matrices de-
noted by NS , NR, and ND, creating a partitioned matrix

N = [NS ND NR].

Similarly, we let

c = (cT
S , c

T
D, c

T
R)T and v = (vT

S ,v
T
D,v

T
R)T

represent the vectors of branch currents and voltages. We also let

p = (pT
S ,p

T
D,p

T
R)T

denote the vector of node potentials. Before stating the optimization
problem whose minimum describes the equilibrium of the system, we
recall the two fundamental equilibrium laws:

185

Draft from February 22, 2005

Lagrangian duality

Kirchhoff’s current law: The sum of all currents entering a node is equal
to the sum of all currents leaving the node. In other words, Nc = 0,
or,13

NScS + NDcD + NRcR = 0. (6.67)

Kirchhoff’s voltage law: The difference between the node potentials at
the ends of each branch is equal to the branch voltage. In other words,
NTp = v, or,14

NT
S p = vS , (6.68a)

NT
Dp = vD, (6.68b)

NT
R p = vR. (6.68c)

We summarize the equations representing the characteristics of the
electrical devices as follows: For the diodes, (6.64) yields

vD ≥ 0; cD ≥ 0; vT
DcD = 0. (6.69)

For the resistors, (6.65) yields

vR = −RcR, (6.70)

R being the diagonal matrix with elements equal to the values Rr.
Hence, (6.67)–(6.70) represent the equilibrium conditions of the cir-

cuit. We will now describe the optimization problem whose optimality
conditions are, precisely, (6.67)–(6.70) [note that vS is fixed]:

minimize
1

2
cT

RRcR − vT
ScS , (6.71)

subject to NScS + NDcD + NRcR = 0,

−cD ≤ 0.

In the problem (6.71) we wish to determine branch currents cS , cD,
and cR so as to minimize the sum of half the energy absorbed in the
resistors and the energy loss of the voltage source.

Note that this is a convex program with linear constraints, and thus
the KKT conditions are both necessary and sufficient for the global op-
timality of the currents. It is instrumental to check that the KKT condi-
tions for (6.71) are given by (6.67)–(6.70), where the Lagrange multipliers
are given by (pT,vT

D)T.

13This law is also referred to as the first law, point rule, junction rule, and node
law.

14This law is a corollary to Ohm’s law, and is also referred to as the loop law.

186

Draft from February 22, 2005

Applications

In the discussion terminating in the Strong Duality Proposition 6.12,
we showed that the Lagrangian dual of a strictly convex quadratic opti-
mization problem is yet another convex quadratic optimization problem.
In our case, following that development, we can derive the following dual
optimization problem in terms of the node potentials p (notice, again,
that vS is fixed):

maximize − 1

2
vT

RR−1vR, (6.72)

subject to NT
S p = vS ,

NT
Dp − vD = 0,

NT
R p − vR = 0,

vD ≥ 0.

In the dual problem (6.72) the matrix R−1 is the diagonal matrix of
conductances. The objective function is equivalent to the minimization
of the power absorbed by the resistors, and we wish to determine the
branch voltages vD and vR, and the potential vector p.

Verify that the KKT conditions for this problem, again, reduce to
the equilibrium conditions (6.67)–(6.70). In other words, the Lagrange
multipliers for the dual problem (6.72) are the (primal) branch currents.

Finally, let us note that by Proposition 6.12(a) the two problems
(6.71) and (6.72) have the same objective value at optimality. That is,

1

2
cT

RRcR +
1

2
vT

RR−1cR − vT
ScS = 0.

By (6.69)–(6.70), the above equation reduces to

vT
ScS + vT

DcD + vT
RcR = 0,

which is precisely the principle of energy conservation.

6.8.2 A Lagrangian relaxation of the traveling sales-
man problem

Lagrangian relaxation has shown to be remarkably efficient for some
combinatorial optimization problems. This is surprising when taking
into account that such problems are integer or mixed-integer problems,
which suffer from non-zero duality gaps in general. What then lies behind
their popularity?

187

Draft from February 22, 2005

Lagrangian duality� One can show that Lagrangian relaxation of an integer program is
always at least as good as that of a continuous relaxation15 (in the
sense that fR is higher for Lagrangian relaxation than a continuous
relaxation);� Together with heuristics for finding primal feasible solution, sur-
prisingly good feasible solutions are often found;� The Lagrangian relaxed problems can be made computationally
much simpler than the original problem, while still keeping a lot
of the structure of the original problem.

6.8.2.1 The traveling salesman problem

We provide an example, taken from an application of the traveling sales-
man problem.

Let the graph G = (N ,L) be defined by a number of cities (or,
nodes) i ∈ N and undirected links in between subsets of pair of them:
(i, j) ∈ L ⊆ N ×N . Notice that the links (i, j) and (j, i) are identical,
and are in L represented by one non-directed link only.

Let cij denote the distance between the cities i and j, {i, j} ⊂ N .
We introduce the following binary variables:

xij :=

{
1, if link (i, j) is part of the TSP tour,

0, otherwise,
(i, j) ∈ L.

With these definitions, the complete, undirected traveling salesman
problem (TSP) is to

minimize
x

∑

(i,j)∈L
cijxij , (6.73a)

subject to
∑

(i,j)∈L:{i,j}⊆S

xij ≤ |S| − 1, S ⊂ N , (6.73b)

∑

(i,j)∈L
xij = n, (6.73c)

∑

i∈N :(i,j)∈L
xij = 2, j ∈ N , (6.73d)

xij ∈ {0, 1}, (i, j) ∈ L. (6.73e)

The constraints have the following interpretation: (6.73b) implies
that there can be no sub-tours, that is, a tour where fewer than n cities
are visited (that is, if S ⊂ N then there can be at most |S| − 1 links

15The continuous relaxation amounts to removing the integrality conditions, re-
placing, for example, xj ∈ {0, 1} by xj ∈ [0, 1].

188

Draft from February 22, 2005

Applications

between nodes in the set S, where |S| is the cardinality–number of mem-
bers of–the set S); (6.73c) implies that in total n cities must be visited;
and (6.73d) implies that each city is connected to two others, such that
we make sure to arrive from one city and leave for the next.

This problem is NP-hard, which implies that there is no known
polynomial algorithm for solving it. We resort therefore to the use
of relaxation techniques, in particular Lagrangian relaxation. We have
more than one alternative relaxation to perform: If we Lagrangian re-
lax the tree constraints (6.73b) and (6.73c) the remaining problem is a
2-matching problem; it can be solved in polynomial time. If we instead
Lagrangian relax the degree constraints (6.73d) for every node except for
one node the remaining problem is a 1-MST problem, that is, a special
type of minimum spanning tree problem.

The following definition is classic: a Hamiltonian path (respectively
cycle) is a path (respectively, cycle) which passes every node in the graph
exactly once.

Every Hamiltonian cycle is a Hamiltonian path from a node s to
another node, t, followed by a link (t, s); a subgraph which consists of
a spanning tree plus an extra link such that all nodes have degree two.
This is then a feasible solution to the TSP.

A 1-MST problem is the problem to find an MST in the graph that
excludes node s, followed by the addition of the two least expensive links
from node s to that tree. If all nodes happen to get degree two, then
the 1-MST solution is a traveling salesman tour (that is, Hamiltonian
cycle). The idea behind solving the Lagrangian dual problem is then
to find proper multiplier values such that the Lagrangian relaxation will
produce feasible solutions.

6.8.2.2 Lagrangian relaxation of the traveling salesman prob-
lem

Suppose that we Lagrangian relax the degree constraints (3), except for
node 1. We assume that the starting node for the trip, node s ∈ N , and
all the links in L connected to it, have been removed temporarily (in
the 1-MST, this data is re-introduced later), but without changing the
notation to reflect this.

The subproblem is the following: an 1-MST with the objective func-

189

Draft from February 22, 2005

Lagrangian duality

tion

q(λ) = minimum
x

∑

(i,j)∈L
cijxij +

∑

j∈N
λj


2 −

∑

i∈N :(i,j)∈L
xij




= 2
∑

j∈N
λj + minimum

x

∑

(i,j)∈L
(cij − λi − λj)xij .

We see immediately the role of the Lagrange multipliers: a high (low)
value of the multiplier λj makes node j attractive (unattractive) in the
above 1-MST problem, and will therefore lead to more (less) links being
attached to it.

When solving the Lagrangian dual problem, we will use the class
of subgradient optimization methods, an overview of which is found in
Section 6.5.

What is the updating step in the subgradient method, and what is its
interpretation? It is as usual an update in the direction of a subgradient,
that is, the direction of

hi(x(λ)) := 2 −
∑

i∈N :(i,j)∈L
xij , i ∈ N ,

where the value of xij ∈ {0, 1} is the solution to the 1-MST solution
with link costs cij − λi − λj . We see from the formula for the direction
that

λnew
j := λj + α


2 −

∑

i∈N :(i,j)∈L
xij


 , j ∈ N ,

where α > 0 is a step length. It is interesting to investigate what the
update means:

current degree at node j :






> 2 =⇒ λj ↓ (link cost ↑)
= 2 =⇒ λj − (link cost constant)
< 2 =⇒ λj ↑ (link cost ↓)

In other words, the updating formula in a subgradient method is
such that the link cost in the 1-MST subproblem is shifted upwards
(downwards) if there are too many (too few) links connected to node j
in the 1-MST. We are hence adjusting the node prices of the nodes in
such a way as to try to influence the 1-MST problem to always choose 2
links per node to connect to.

6.8.2.3 A feasibility heuristic

A feasibility heuristic takes the optimal solution from the Lagrangian
minimization problem over x and adjusts it such that a feasible solution

190

Draft from February 22, 2005

Applications

to the original problem is constructed. As one cannot predict if, or when,
a primal feasible solution will be found directly from the subproblem, the
heuristic will provide a solution that can be used in place of an optimal
one, should one not be found. Moreover, as we know from Lagrangian
duality theory, we then have access to both lower and upper bounds on
the optimal value f∗ of the original problem, and so we have a quality
measure of the feasible solutions found.

A feasibility heuristic which can be used together with our Lagrangian
heuristic is as follows.

Identify a path in the 1-MST with many links. Then form a subgraph
with the remaining nodes and find a path that passes all of them. Put the
two paths together in the best way. The resulting path is a Hamiltonian
cycle, that is, a feasible solution. We then have both a lower bound [the
value of q(λ)] and an upper bound (the original cost of this heuristically
constructed traveling salesman tour), and this interval can be used as a
quality measure of the feasible solution at termination.

6.8.2.4 The Philips example

In 1987–1988 an MSc project was performed at the department of mathe-
matics at Linköping University, in cooperation with the company Philips,
Norrköping. The project was initiated with the goal to improve the cur-
rent practice of solving a production planning problem.

The problem was as follows: Philips produces circuit boards, perhaps
several hundreds or thousands of the same type. There is a new batch of
patterns (holes) to be drilled every day, and perhaps even several such
batches per day.

In order to speed up the production process the drilling machine is
connected to a microcomputer that selects the ordering of the holes to
be drilled automatically, given their coordinates. The algorithm for per-
forming the sorting used to be a simple sorting operation that found,
for every fixed x-coordinate, the corresponding y-coordinates and sorted
them in increasing order. The movement of the drill was therefore from
left to right, and for each fixed x-coordinate the movement was vertical.
The time it took to drill the holes on one circuit board was, however,
far too long, simply because the drill traveled around a lot without per-
forming any tasks, thus following a path that was too long. (On the
other hand, the actual ordering was very fast to produce!) All in all,
though, the complete batch production took too long because of the
poorly planned drill movement.

At the beginning of the project it was observed that the produc-
tion planning problem actually is a traveling salesman problem, where
the cities are the holes to be drilled, and the distances between them

191

Draft from February 22, 2005

Lagrangian duality

correspond to the Euclidean distances between them. Therefore, an effi-
cient TSP heuristic was devised and implemented, for use in conjunction
with the microcomputer. In fact, it was based on precisely the above
Lagrangian relaxation, a subgradient optimization method, and a graph-
search type heuristic of the form discussed above.

A typical run with the algorithm took a few minutes, and was always
stopped after a fixed number of subgradient iterations; the generation of
feasible solutions with the above-mentioned graph search technique was
performed at every Kth iteration, where K was set to a value strictly
larger than one. (Moreover, feasible solutions were not generated during
the first iterations of the dual procedure, because of the poor quality of
λk for low values of k; it is often the case that the traveling salesman
tour resulting from the heuristic is better when the multipliers are near-
optimal in the Lagrangian dual problem.)

In one of the examples implemented it was found that the optimal
path length was in the order to 2 meters, and that the upper and lower
bounds produced lead to the conclusion that the relative error of the
path length of the best feasible solution found was less than 7 %, a quite
good result, also showing that the duality gap for the problem at hand
(together with the Lagrangian relaxation chosen) is quite small.

After implementing the new procedure, Philips could report an in-
crease in production by some 70 %. Hence, the slightly longer time it
took to produce the production plan, that is, the traveling salesman tour
for the drill to follow, was more than well compensated by the fact that
the drilling could be done much faster.

Here is hence an interesting case where Lagrangian relaxation helped
to solve a large-scale, complex and difficult problem by utilizing problem
structure.

6.9 Notes and further reading

Lagrangian duality has been developed in many sources, including early
developments by Arrow, Hurwicz, and Uzawa [AHU58], Everett [Eve63],
and Falk [Fal67], and later on by Rockafellar [Roc70]. Our development
follows to a large extent that of portions of the text books by Bert-
sekas [Ber99], Bazaraa et al. [BSS93], and Rockafellar [Roc70].

The Relaxation Theorem 6.1 can almost be considered to be folklore,
and can be found in a slightly different form in [Wol98, Proposition 2.3].

The differentiability properties of convex functions were developed
largely by Rockafellar [Roc70], whose text we mostly follow.

Subgradient methods were developed in the Soviet Union in the
1960s, predominantly by Ermol’ev, Polyak, and Shor. Text book treat-

192

Draft from February 22, 2005

Exercises

ments of subgradient methods are found, for example, in [Sho85, HiL93,
Ber99]. Theorem 6.21 is essentially due to Ermol’ev [Erm66]; the proof
stems from [LPS96]. Theorem 6.22 is due to Shepilov [She76]; finally,
Theorem 6.23 is due to Polyak [Pol69].

Everett’s Theorem is due to Everett [Eve63].
Theorem 6.29 stems from [Ber04, Proposition 1.1].
That the equilibrium conditions of an electrical or hydralic network

are attained as the minimum of the total energy loss were known more
than a century ago. Mathematical programming models for the electri-
cal network equilibrium problems described in Section 6.8.1 date at least
as far back as to Duffin [Duf46, Duf47] and d’Auriac [dAu47]. Duffin
constructs his objective function as a sum of integrals of resistance func-
tions. The possibility of viewing the equilibrium problem in at least two
related, dual, ways as that of either finding the optimal flows of currents
or the optimal potentials was also known early in the analysis of electri-
cal networks; these two principles are written out in [Cro36] in work on
pipe networks, and explicitly stated as a pair of primal–dual quadratic
programming problems in [Den59]; we followed his development, as rep-
resented in [BSS93, Section 1.2.D].

The traveling salesman problem is an essential model problem in
combinatorial optimization. Excellent introductions to the field can be
found in [Law76, PaS82, NeW88, Wol98, Sch03]. It was the work in
[HWC74, Geo74, Fis81, Fis85], among others, in the 1970s and 1980s on
the traveling salesman problem and its relatives that made Lagrangian
relaxation and subgradient optimization popular, and it remains most
popular within the combinatorial optimization field.

6.10 Exercises

Exercise 6.1 (numerical example of Lagrangian relaxation) Consider the
convex problem to

minimize
1

x1
+

4

x2
,

subject to x1 + x2 ≤ 4,
x1, x2 ≥ 0.

(a) Lagrangian relax the first constraint, and write down the resulting
implicit dual objective function and the dual problem. Motivate why the
relaxed problem always has a unique optimum, whence the dual objective
function is everywhere differentiable.

(b) Solve the implicit Lagrangian dual problem by utilizing that the
gradient to a differentiable dual objective function can be expressed by

193

Draft from February 22, 2005

Lagrangian duality

using the functions that are involved in the relaxed constraints and the
unique solution to the relaxed problem.

(c) Write down an explicit Lagrangian dual problem, that is, a dual
problem only in terms of the Lagrange multipliers. Solve it, and confirm
the results in (b).

(d) Find the original problem’s optimal solution.
(e) Show that strong duality holds. Why does it?

Exercise 6.2 (global optimality conditions) Consider the problem to

minimize f(x) := x1 + 2x2
2 + 3x3

3,

subject to x1 + 2x2 + x3 ≤ 3,

2x2
1 + x2 ≥ 2,

2x1 + x3 = 2,

xj ≥ 0, j = 1, 2, 3.

(a) Formulate the Lagrangian dual problem that results from La-
grangian relaxing all but the sign constraints.

(b) State the global primal–dual optimality conditions.

Exercise 6.3 (Lagrangian relaxation) Consider the problem to

minimize f(x) := x2
1 + 2x2

2,

subject to x1 + x2 ≥ 2,

x2
1 + x2

2 ≤ 5.

Find an optimal solution through Lagrangian duality.

Exercise 6.4 (Lagrangian relaxation) In many circumstances it is of in-
terest to calculate the Euclidean projection of a vector onto a subspace.
Especially, consider the problem to find the Euclidean projection of the
vector y ∈ Rn onto the null space of the matrix A ∈ Rm×n, that is, to
find an x ∈ Rn that solves the problem to

minimize f(x) :=
1

2
‖y − x‖2,

subject to Ax = 0m,

where A is such that rankA = m.
The solution to this problem is classic: the projection is given explic-

itly by

x∗ = y − AT(AAT)−1Ay.

194

Draft from February 22, 2005

Exercises

If we let P := In−AT(AAT)−1A, where In ∈ Rn×n is the unit matrix,
be the projection matrix, the formula is simply x∗ = Py.

Your task is to derive this formula by utilizing Lagrangian duality.
Motivate every step made by showing that the necessary properties are
fulfilled.

[Note: This exercise is similar to that in Example 5.50, but utilizes
Lagrangian duality rather than the KKT conditions to derive the pro-
jection formula.]

Exercise 6.5 (Lagrangian relaxation, exam 040823) Consider the follow-
ing optimization (linear) problem:

minimize f(x, y) = x− 0.5y,

subject to −x+ y ≤ −1,

−2x+ y ≤ −2,

(x, y) ∈ R2
+.

(6.74)

(a) Show that the problem satisfies Slater’s constraint qualification.
Derive the Lagrangian dual problem corresponding to the Lagrangian
relaxation of the two linear inequality constraints, and show that its set
of optimal solutions is convex and bounded.

(b) Calculate the set of subgradients of the Lagrangian dual function
at the dual points (1/4, 1/3)T and (1, 0)T.

Exercise 6.6 (Lagrangian relaxation) Provide an explicit form of the La-
grangian dual problem for the problem to

minimize

m∑

i=1

n∑

j=1

xij lnxij

subject to
m∑

i=1

xij = bj, j = 1, . . . , n,

n∑

j=1

xij = ai, i = 1, . . . ,m,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

where ai > 0, bj > 0 for all i, j, and where the linear equalities are
Lagrangian relaxed.

Exercise 6.7 (Lagrangian relaxation) Given is the problem to

minimize
x

f(x) = 2x2
1 + x2

2 + x1 − 3x2, (6.75a)

subject to x2
1 + x2 ≥ 8, (6.75b)

195

Draft from February 22, 2005

Lagrangian duality

x1 ∈ [1, 3], (6.75c)
x2 ∈ [2, 5]. (6.75d)

Lagrangian relax the constraint (6.75b) with a multiplier µ. Formu-
late the Lagrangian dual problem and calculate the dual function’s value
at µ = 1, µ = 2, and µ = 3. Within which interval lies the optimal value
f∗? Also, draw the dual function.

Exercise 6.8 (Lagrangian duality for integer problems) Consider the pri-
mal problem to

minimize f(x),
subject to g(x) ≤ 0m,

x ∈ X,

whereX ⊆ Rn, f : Rn → R, and g : Rn → Rm. If the restrictions g(x) ≤
0m are complicating side constraints which are Lagrangian relaxed, we
obtain the Lagrangian dual problem to

maximize
µ≥0m

q(µ),

where

q(µ) := minimum
x∈X

{f(x) + µTg(x)}, µ ∈ Rm.

(a) Suppose that the set X is finite (for example, consisting of a
finite number of integer vectors). Denote the elements of X by xp,
p = 1, . . . , P . Show that the dual objective function is piece-wise linear.
How many linear segments can it have, at most? Why is it not always
built up by that many segments?

[Note: This property holds regardless of any properties of f and g.]

(b) Illustrate the result in (a) on the linear 0/1 problem to find

z∗ = maximum z = 5x1 + 8x2 + 7x3 + 9x4,
subject to 3x1 + 2x2 + 2x3 + 4x4 ≤ 5,

2x1 + x2 + 2x3 + x4 = 3,
x1 , x2 , x3 , x4 = 0/1,

where the first constraint is considered complicating.

(c) Suppose that the function f and all components of g are linear,
and that the set X is a polytope (that is, a bounded polyhedron). Show
that the dual objective function is also in this case piece-wise linear.
How many linear pieces can it be built from, at most?

196

Draft from February 22, 2005

Exercises

Exercise 6.9 (Lagrangian relaxation) Consider the problem to

minimize z = 2x1 + x2,
subject to x1 + x2 ≥ 5,

x1 ≤ 4,
x2 ≤ 4,

x1 , x2 ≥ 0, integer.

Lagrangian relax the all-embracing constraint. Describe the Lagrangian
function and the dual problem. Calculate the Lagrangian dual function
at these four points: µ = 0, 1, 2, 3. Give the best lower and upper bounds
on the optimal value of the original problem that you have found.

Exercise 6.10 (surrogate relaxation) Consider an optimization problem
of the form

minimize f(x),

subjectto gi(x) ≤ 0, i = 1, . . . ,m, (P)

x ∈ X,

where the functions f, gi : Rn → R are continuous and the set X ⊂ Rn

is closed and bounded. The problem is assumed to have an optimal
solution, x∗. Introduce parameters µi ≥ 0, i = 1, . . . ,m, and define

s(µ) := minimum f(x),

subject to

m∑

i=1

µigi(x) ≤ 0, (S)

x ∈ X.

This problem therefore has exactly one explicit constraint.
(a) [weak duality] Show that x∗ is a feasible solution to the problem

(S) and that s(µ) ≤ z∗ therefore always holds, that is, the problem (S) is
a relaxation of the original one. Motivate also why maximumµ≥0m s(µ) ≤
z∗ must hold. Explain the potential usefulness of this result!

(b) [example] Consider the linear 0/1 problem

z∗ = maximum z =5x1 + 8x2 +7x3 + 9x4,
subject to 3x1 + 2x2 +3x3 + 3x4 ≤ 6, (1)

2x1 + 3x2 +3x3 + 4x4 ≤ 5, (2)
2x1 + x2 +2x3 + x4 = 3,
x1 , x2 , x3 , x4 =0/1.

Surrogate relax the constraints (1) and (2) with multipliers µ1, µ2 ≥ 0
and formulate the problem (S). Let µ̄ = (1, 2)T. Calculate s(µ̄).

197

Draft from February 22, 2005

Lagrangian duality

Consider again the original problem and Lagrangian relax the con-
straints (1) and (2) with multipliers µ1, µ2 ≥ 0. Calculate the Lagrangian
dual objective value at µ = µ̄.

Compare the two results!
(c) [comparison with Lagrangian duality] Let µ ≥ 0m and

q(µ) := minimum
x∈X

f(x) +
m∑

i=1

µigi(x).

Show that q(µ) ≤ s(µ), and that

maximum
u≥0m

q(µ) ≤ maximum
u≥0m

s(µ) ≤ z∗

holds.

198

Draft from February 22, 2005

Part IV

Linear Optimization

Draft from February 22, 2005 Draft from February 22, 2005

Linear programming:
An introduction

VII

Linear programming (LP) models, that is, the collection of optimization
models with linear objective functions and polyhedral feasible regions,
are very useful in practice. The reason for this is that many real world
problems can be described by LP models (even if several approximations
must be made first) and, perhaps more importantly, there exist efficient
algorithms for solving linear programs; the most famous of them is the
Simplex method, which will be presented in Chapter 9. Often, LP models
deal with situations where a number of resources (materials, machines,
people, land, etcetera) are available and are to be combined to yield
several products.

To introduce the concept of linear programming we use a (oversim-
plified) manufacturing problem. In Section 7.1 we describe the problem.
From the problem description we develop an LP model in Section 7.2.
It turns out that the LP model only contains two variables. Hence it is
possible to solve the problem graphically, which is done in Section 7.3. In
Section 7.4 we discuss what happens if the data of the problem is mod-
ified, namely, we see how the optimal solution changes if the supply of
raw-material or the prices of the products are modified. Finally, in Sec-
tion 7.5 we develop what we call the linear programming dual problem
to the manufacturing problem.

7.1 The manufacturing problem

A manufacturer produces two pieces of furniture: tables and chairs. The
production of the furniture requires the use of two different pieces of
raw-material, large and small pieces. One table is assembled by putting
together two pieces of each, while one chair is assembled from one of the
larger pieces and two of the smaller pieces (see Figure 7.1).

Draft from February 22, 2005

Linear programming: An introduction

Table, x1

Chair, x2

Small piece

Large piece

Figure 7.1: Illustration of the manufacturing problem.

When determining the optimal production plan, the manufacturer
must take into account that only 6 large and 8 small pieces are available.
One table is sold for 1600 SEK, while the chair sells for 1000 SEK.
Under the assumption that all items produced can be sold, and that
the raw-material has already been paid for, the problem is to determine
the production plan that maximizes the total income, within the limited
resources.

7.2 A linear programming model

In order to develop a linear programming model for the manufacturing
problem we introduce the following variables:

x1 = number of tables manufactured and sold,

x2 = number of chairs manufactured and sold,

z = total income.

The variable z is, strictly speaking, not a variable, but will be defined
by the variables x1 and x2.

The income from each product is given by the price of the product
multiplied by the number of products sold. Hence the total income
becomes

z = 1600x1 + 1000x2. (7.1)

Given that we produce x1 tables and x2 chairs the required number
of large pieces is 2x1 + x2 and the required number of small peaces is

202

Draft from February 22, 2005

Graphical solution

2x1 + 2x2. But only 6 large pieces and 8 small pieces are available, so
we must have that

2x1 + x2 ≤ 6, (7.2)

2x1 + 2x2 ≤ 8. (7.3)

Further, it is impossible to produce a negative number of chairs or tables,
which gives that

x1, x2 ≥ 0. (7.4)

(Also, the number of chairs and tables produced must be integers, but
we will not take that into account here.)

Now the objective is to maximize the total income, so if we put the
income function (7.1) together with the constraints (7.2)–(7.4) we get
the following linear programming model:

maximize z = 1600x1 +1000x2 (7.5)

subject to 2x1 +x2 ≤ 6,

2x1 +2x2 ≤ 8,

x1, x2 ≥ 0.

7.3 Graphical solution

The feasible region of the linear programming formulation (7.5) is graphed
in Figure 7.2. The figure also includes lines corresponding to various val-
ues of the cost function. For example, the line z = 0 = 1600x1 + 1000x2

passes through the origin, and the line z = 2600 = 1600x1 + 1000x2

passes through the point (1, 1)T. We see that the value of the cost func-
tion increases as these lines move upward in the value of z, and it follows
that the optimal solution is x∗ = (2, 2)T and z∗ = 5200. Observe that
the optimal solution is an extreme point, which is in accordance with
Remark 4.12. This fact will be very important in the development of the
Simplex method in Chapter 9, and established in Theorem 8.10.

7.4 Sensitivity analysis

In this section we investigate how the optimal solution changes if the
data of the problem is changed. We consider three different changes
(made independent of each other), namely

1. an increase in the number of large pieces available;

203

Draft from February 22, 2005

Linear programming: An introduction

x1

x2

z = 0

z = 2600

z = 5200

x∗ = (2, 2)T

Figure 7.2: Graphical solution of the manufacturing problem.

2. an increase in the number of small pieces available; and

3. a decrease in the price of the tables.

7.4.1 An increase in the number of large pieces avail-
able

Assume that the number of large pieces available increases from 6 to 7.
Then the linear program becomes

maximize z = 1600x1 +1000x2

subject to 2x1 +x2 ≤ 7,

2x1 +2x2 ≤ 8,

x1, x2 ≥ 0.

The feasible region is shown in Figure 7.3.
We see that the optimal solution becomes (3, 1)T and z∗ = 5800,

which means that an additional large piece increases the income by
5800 − 5200 = 600. Hence the shadow price of the large pieces is 600.
The figure also illustrates what happens if the number of large pieces is
8. Then the optimal solution becomes (4, 0)T and z∗ = 6400. But what

204

Draft from February 22, 2005

Sensitivity analysis

x1

x2

z = 0

2x1 + x2 = 7

2x1 + x2 = 8

2x1 + 2x2 = 10

2x1 + 2x2 = 12

Figure 7.3: An increase in the number of large and small pieces available.

happens if we increase the number of large pieces further? From the
figure it follows that the optimal solution will not change (since x2 ≥ 0
must apply), so an increase larger than 2 in the number of large pieces
gives no further income.

7.4.2 An increase in the number of small pieces avail-
able

Starting from the original setup, in the same manner as for the large
pieces it follows from Figure 7.3 that two additional small pieces give
the new optimal solution x∗ = (1, 4)T and z∗ = 5600, so the income per
additional small piece is (5600−5200)/2 = 200. Hence the shadow price
of the small pieces is 200. However, no more than 4 small pieces are
worth this price, since x1 ≥ 0 must apply.

7.4.3 A decrease in the price of the tables

Now assume that the price of tables is decreased from 1600 to 800. The
new linear program becomes

maximize z = 800x1 +1000x2

subject to 2x1 +x2 ≤ 6,

2x1 +2x2 ≤ 8,

x1, x2 ≥ 0.

205

Draft from February 22, 2005

Linear programming: An introduction

This new situation is illustrated in Figure 7.4, from which we see that

x1

x2

800x1 + 1000x2 = 0
1600x1 + 1000x2 = 0

Figure 7.4: A decrease in the price of the tables.

the optimal solution is (0, 4)T, that is, we will not produce any tables.
This is natural, since it takes the same number of small pieces to produce
a table and a chair, but the table requires one more large piece, and in
addition the price of a table is lower than that of a chair.

7.5 The dual of the manufacturing problem

7.5.1 A competitor

Suppose that another manufacturer (let us call them Billy) produce book
shelves whose raw material is identical to those used for the table and
chairs, that is, the small and large pieces. Billy wish to expand their
production, and are interested in acquiring the resources that “our” fac-
tory sits on. Let us ask ourselves two questions, which (as we shall see)
have identical answers: (1) what is the lowest bid (price) for the total
capacity at which we are willing to sell?; (2) what is the highest bid
(price) that Billy are prepared to offer for the resources? The answer to
those two questions is a measure of the wealth of the company in terms
of their resources.

206

Draft from February 22, 2005

The dual of the manufacturing problem

7.5.2 A dual problem

To study the problem, we introduce the variables

y1 = the price which Billy offers for each large piece,

y2 = the price which Billy offers for each small piece,

w = the total bid which Billy offers.

In order to accept to sell our resources, it is reasonable to require
that the price offered is at least as high as the value that the resource
represents in our optimal production plan, as otherwise we would earn
more by using the resource ourselves. Consider, for example, the net
income on a table sold. It is 1600 SEK, and for that we use two large
and two small pieces. The bid would therefore clearly be too low unless
2y1 + 2y2 ≥ 1600. The corresponding requirement for the chairs is that
y1 + 2y2 ≥ 1000.

Billy is interested in minimizing the total bid, under the condition
that the offer is accepted. Observing that y1 and y2 are prices and
therefore non-negative, we have the following mathematical model for
Billy’s problem:

minimize w = 6y1 +8y2 (7.6)

subject to 2y1 +2y2 ≥ 1600,

y1 +2y2 ≥ 1000,

y1, y2 ≥ 0.

This is usually called the dual problem of our production planning
problem (which would then be the primal problem).

The optimal solution to this problem is y∗ = (600, 200)T. The total
offer is w∗ = 5200.

Remark 7.1 (the linear programming dual) Observe that the dual prob-
lem (7.6) is in accordance with the Lagrangian duality theory in Section
6.2.4. The linear programming dual will be discussed further in Chapter
10.

7.5.3 Interpretations of the dual optimal solution

From the above we see that the dual optimal solution is identical to the
shadow prices for the resource (capacity) constraints. (This is indeed
a general conclusion in linear programming.) To motivate that this is
reasonable in our setting, we may consider Billy as a fictitious competitor
only, which we use together with the dual problem to measure the value

207

Draft from February 22, 2005

Linear programming: An introduction

of our resources. This (fictitious) measure can be used to create internal
prices in a company in order to utilize limited resources as efficiently
as possible, especially if the resource is common to several independent
sub-units. The price that the dual optimal solution provides will then
be a price directive for the sub-units, that will make them utilize the
scarce resource in a manner which is optimal for the overall goal.

We note that the optimal value of the production (z∗ = 5200) agrees
with the total value w∗ = 5200 of the resources in our company. (This
is also a general result in linear programming; see the Strong Duality
Theorem 10.6.) Billy will of course not pay more than what the resource
is worth, but can at the same time not offer less than the profit that our
company can make ourselves, since we would then not agree to sell. It
follows immediately that for each feasible production plan x and price
y, it holds that z ≤ w, since

z = 1600x1 + 1000x2 ≤ (2y1 + 2y2)x1 + (y1 + 2y2)x2

= y1(2x1 + x2) + y2(2x1 + 2x2) ≤ 6y1 + 8y2 = w,

where in the inequalities we utilize all the constraints of the primal and
dual problems. (Also this fact is general in linear programming; see the
Weak Duality Theorem 10.4.) So, each offer accepted (from our point
of view) must necessarily be an upper bound on our own possible profit,
and this upper bound is what Billy wish to minimize in the dual problem.

208

Draft from February 22, 2005

Linear programming
models

VIII

We begin this chapter with a presentation of the axioms underlying the
use of linear programming models and discuss the modelling process.
Then, in Section 8.2, the geometry of linear programming is studied. It
is shown that every linear program can be transformed into the standard
form which is the form that the Simplex method uses. Further, we
introduce the concept of basic feasible solution and discuss its connection
to extreme points. A version of the Representation Theorem adapted to
the standard form is presented, and we show that if there exists an
optimal solution to a linear program in standard form, then there exists
an optimal solution among the basic feasible solutions. Finally, we define
adjacency between extreme points and give an algebraic characterization
of adjacency which actually proves that the Simplex method at each
iteration step moves from one extreme point to an adjacent one.

8.1 Linear programming modelling

Many real world situations can be modelled as linear programs. How-
ever, the applicability of a linear program requires certain axioms to be
fulfilled. Hence, often approximations of the real world problem must be
made prior to the formulation of a linear program. The axioms under-
lying the use of linear programming models are:� proportionality (linearity, e.g., no economies-of-scales, no fixed costs);� additivity (no substitute-time-effects);� divisibility (continuity); and� determinism (no randomness).

Draft from February 22, 2005

Linear programming models

George Dantzig presented the linear programming model and the
Simplex method for solving it at an econometrics conference in Wisconsin
in the late 40s. The economist Hotelling stood up, devastatingly smiling,
and stated that “But we all know the world is nonlinear.” The young
graduate George Dantzig could not respond, but was defended by John
von Neumann, who stood up and concluded that “The speaker titled his
talk ’linear programming’ and carefully stated his axioms. If you have
an application that satisfies the axioms, well use it. If it does not, then
don’t”; he sat down, and Hotelling was silenced. (See Dantzig’s account
of the early history of linear programming in [LRS91, pp. 19–31].)

Now if the problem considered (perhaps after approximations) ful-
fills the axioms above, then it can be formulated as a linear program.
However, in practical modelling situations we usually do not talk about
the axioms; they naturally appear when a linear program is formulated.

To formulate a real world problem as a linear program is an art in
itself, and unfortunately there is little theory to help in formulating the
problem in this way. The general approach can however be described by
two steps:

1. Prepare a list of all the decision variables in the problem. This list
must be complete in the sense that if an optimal solution providing
the values of each of the variables is obtained, then the decision
maker should be able to translate it into an optimum policy that
can be implemented.

2. Use the variables from step 1 to formulate all the constraints and
the objective function of the problem.

We illustrate the two-step modelling process by an example.

Example 8.1 (the transportation problem) In the transportation prob-
lem we have a set of nodes or places called sources, which have a com-
modity available for shipment, and another set of places called demand
centers, or sinks, which require this commodity. The amount of com-
modity available at each source and the amount required at each de-
mand center are specified, as well as the cost per unit of transporting
the commodity from each source to each demand center. The problem
is to determine the quantity to be transported from each source to each
demand center, so as to meet all the requirements at minimum total
shipping cost.

Consider the problem where the commodity is iron ore, the sources
are found at mines 1 and 2, where the ore is produced, and the demand
centers are three steel plants. The unit costs of shipping ore from each
mine to each steel plant are given in Table 8.1.

210

Draft from February 22, 2005

Linear programming modelling

Table 8.1: Unit cost of shipping ore from mine to steel plant (KSEK per
Mton).

Plant 1 2 3

Mine 1 9 16 28
Mine 2 14 29 19

Table 8.2: Amount of ore available at the mines (Mtons).

Mine 1 103
Mine 2 197

Further, the amount of ore available at the mines and the Mtons of
ore required at each steel plant are given in the Tables 8.2 and 8.3.

We use the two-step modelling process to formulate a linear program-
ming model.

Step 1: The activities in the transportation model are to ship ore from
mine i to steel plant j for i = 1, 2 and j = 1, 2, 3. It is convenient
to represent the variables corresponding to the levels at which these
activities are carried out by double subscripted symbols. Hence, for
i = 1, 2 and j = 1, 2, 3, we introduce the following variables:

xij = amount of ore (in Mtons) shipped from mine i to steel plant j.

We also introduce a variable corresponding to the total cost of the
shipping:

z = total shipping cost.

Step 2: The transportation problem considered is illustrated in Figure
8.1.

Table 8.3: Ore requirements at the steel plants (Mtons).

Plant 1 71
Plant 2 133
Plant 3 96

211

Draft from February 22, 2005

Linear programming models

x11

x12

x13

x21

x22

x23

Mine 1

Mine 2

Plant 1

Plant 2

Plant 3

Figure 8.1: Illustration of the transportation problem.

The items in this problem are the ore at various locations. Consider
the ore at mine 1. According to Table 8.2 there are only M103 tons
of it available, and the amount of ore shipped out of mine 1, which
is x11 + x12 + x13, cannot exceed the amount available, leading to the
constraint

x11 + x12 + x13 ≤ 103.

Likewise, if we consider ore at mine 2 we get the constraint

x21 + x22 + x23 ≤ 197.

Further, at steel plant 1 according to Table 8.3 there are at least 71
Mtons of ore required, so the amount of ore shipped to steel plant 1 has
to be greater than or equal to this amount, leading to the constraint

x11 + x21 ≥ 71.

In the same manner, for the steel plants 2 and 3 we get

x12 + x22 ≥ 133,

x13 + x23 ≥ 96.

Of course it is impossible to ship a negative amount of ore, yielding the
constraints

xij ≥ 0, i = 1, 2, j = 1, 2, 3.

212

Draft from February 22, 2005

Linear programming modelling

From Table 8.1 it follows that the total cost of the shipping is (in
KSEK)

z = 9x11 + 16x12 + 28x13 + 14x21 + 29x22 + 19x23.

Finally, since the objective is to minimize the total cost we get the
following linear programming model:

minimize z = 9x11 +16x12 +28x13 +14x21 +29x22 +19x23

subject to x11 +x12 +x13 ≤ 103,

x21 +x22 +x23 ≤ 197,

x11 +x21 ≥ 71,

x12 +x22 ≥ 133,

x13 +x23 ≥ 96,

x11, x12, x13, x21, x22, x23 ≥ 0.

Normally, transportation problems consider a large number of sources
and demand centers and then it is convenient to use general notation
leading to a compact formulation. Assume that we have N sources and
M demand centers. For i = 1, . . . , N and j = 1, . . . ,M , introduce the
variables

xij = amount of commodity shipped from source i to demand center j,

and let

z = total shipping cost.

Further for i = 1, . . . , N and j = 1, . . . ,M introduce the shipping costs

cij = unit cost of shipping commodity from source i to demand center j.

Also, let

si = amount of commodity available at source i, i = 1, . . . , N,

dj = amount of commodity required at demand center j, j = 1, . . . ,M.

Now consider source i. The amount of commodity available is given
by si, which gives the constraint

M∑

j=1

xij ≤ si.

213

Draft from February 22, 2005

Linear programming models

Similarly, the amount of commodity required at demand center j is given
by dj , leading to the constraint

N∑

i=1

xij ≥ dj .

It is impossible to ship a negative amount of commodity, which gives

xij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M.

Finally, the total cost for shipping is

z =
N∑

i=1

M∑

j=1

cijxij ,

and we end up with the following linear program:

minimize z =
N∑

i=1

M∑

j=1

cijxij

subject to

M∑

j=1

xij ≤ si, i = 1, . . . , N,

N∑

i=1

xij ≥ dj , j = 1, . . . ,M,

xij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M.

If, for some reason, it is impossible to transport any commodities from
a source i to a sink j, then we may either remove this variable altogether
from the model, or, more simply, give it the unit price cij = +∞.

Note, finally, that there exists a feasible solution to the transportation
problem if and only if

∑N
i=1 si ≥

∑M
j=1 dj .

8.2 The geometry of linear programming

In Section 3.2 we studied the class of feasible sets in linear programming,
namely the sets of polyhedra; they are sets of the form

P = {x ∈ Rn | Ax ≤ b },

where A ∈ Rm×n and b ∈ Rm. In particular we proved the Repre-
sentation Theorem 3.22 and promised that it would be important in

214

Draft from February 22, 2005

The geometry of linear programming

the development of the Simplex method. In this section we revisit this
polyhedron. Here, however, we will consider polyhedra of the form

P = {x ∈ Rn | Ax = b; x ≥ 0n }, (8.1)

where A ∈ Rm×n, and b ∈ Rm is such that b ≥ 0m. The advantage
of this form is that the constraints (except for the non-negativity con-
straints) are equalities, which admits pivot operations to to be carried
out. The Simplex method uses pivot operations at each iteration step
and hence it is necessary that the polyhedron (that is, the feasible region)
is represented in the form (8.1). This is, however, not a restriction, as
we will see in Section 8.2.1, since every polyhedron can be transformed
into this form! We will use the term standard form when a polyhedron
is represented in the form (8.1). In Section 8.2.2 we introduce the con-
cept of basic feasible solution and show that each basic feasible solution
corresponds to an extreme point. We also restate the Representation
Theorem 3.22 and prove that if there exists an optimal solution to a lin-
ear program, then there exists an optimal solution among the extreme
points. Finally, in Section 8.2.3, a strong connection between basic feasi-
ble solutions and adjacent extreme points is discussed. This connection
shows that the Simplex method at each iteration step moves from an
extreme point to an adjacent extreme point.

8.2.1 Standard form

A linear programming problem in standard form is a problem of the form

minimize z = cTx

subject to Ax = b,

x ≥ 0n,

where A ∈ Rm×n and b ≥ 0m. The purpose of this section is to show
that every linear program can be transformed into the standard form.
In order to do that we must� express the objective function in minimization form;� transform all the constraints into equality constraints with non-

negative right-hand sides; and� transform any unrestricted and non-positive variables into non-
negative ones.

215

Draft from February 22, 2005

Linear programming models

Objective function

Constant terms in the objective function will not change the set of opti-
mal solutions and can therefore be eliminated. If the objective is to

maximize z = cTx,

then change the objective function so that the objective becomes

minimize z̃ = −z = −cTx.

This change does not affect the set of feasible solutions to the problem
and the equation

[maximum value of z] = −[minimum value of z̃]

can be used to get the maximum value of the original objective function.

Inequality constraints and negative right-hand sides

Consider the inequality constraint

aTx ≤ b,

where a ∈ Rn and b ∈ R. By introducing a non-negative slack variable
s this constraint can be written as

aTx + s = b, (8.2a)

s ≥ 0, (8.2b)

which has the desired form of an equation. Suppose that b < 0. By
multiplying both sides of (8.2a) by −1 the negativity in the right-hand
side is eliminated and we are done. Similarly, a constraint of the form

aTx ≥ b,

can be written as

aTx − s = b,

s ≥ 0.

We call such variables s surplus variables.

Remark 8.2 (on the role of slack and surplus variables) Slack and surplus
may appear to be only help variables, but they often have a clear inter-
pretation as decision variables. Consider, for example, the model (7.5)

216

Draft from February 22, 2005

The geometry of linear programming

of a furniture production problem. The two inequality constraints are
associated with the capacity of production stemming from the availabil-
ity of raw material. Suppose then that we introduce slack variables in
these constraints, which leads to the equivalent problem to

maximize
(x ,s)

z = 1600x1 +1000x2, (8.3a)

subject to 2x1 +x2 +s1 = 6, (8.3b)
2x1 +2x2 +s2 = 8, (8.3c)
x1, x2, s1, s2 ≥ 0. (8.3d)

The new variables s1 and s2 have the following interpretation: the
value of si (i = 1, 2) is the level of inventory (or, remaining capacity of
raw material of type i) that will be left unused when the production plan
(x1, x2) has been implemented. This interpretation makes it clear that
the values of s1 and s2 are clear consequences of our decision-making.

Surplus variables have a corresponding interpretation. In the case of
the transportation model of the previous section, a demand constraint
(
∑N

i=1 xij ≥ dj , j = 1, . . . ,M) may be fulfilled with equality (in which
case the customer gets an amount exactly according to the demand) or
it is fulfilled with strict inequality (in which case the customer gets a
surplus of the product asked for).

Unrestricted and non-positive variables

Consider the linear program

minimize z = cTx (8.4)

subject to Ax = b,

x2 ≤ 0,

xj ≥ 0, j = 3, . . . , n,

which is assumed to be of standard form except for the unrestricted
variable x1 and the non-positive variable x2. The x2-variable can be
replaced by the non-negative variable x̃2 = −x2. The x1-variable can be
transformed into the difference of two non-negative variables. Namely,
introduce the variables x+

1 ≥ 0 and x−1 ≥ 0 and let x1 = x+
1 − x−1 . Then

by substituting x1 with x+
1 −x−1 wherever it occurs we have transformed

the problem into standard form. The drawback of this method to handle
unrestricted variables is that often the resulting problem is numerically
unstable. However, there are other techniques to handle unrestricted
variables that overcome this problem; one of them is given in Exercise
8.5.

217

Draft from February 22, 2005

Linear programming models

Example 8.3 (standard form) Consider the linear program

maximize z = 9x1 −7x2+3y1

subject to 3x1 +x2 −y1 ≤ 1,

4x1 −x2+2y1 ≥ 3,

x1, x2 ≥ 0.

In order to transform the objective into the minimization form, let

z̃ = −z = −9x1 + 7x2 − 3y1.

Further, by introducing the slack variable s1 and the surplus variable s2
the constraints can be transformed into an equality form by

3x1 +x2 −y1+s1 = 1,

4x1 −x2 +2y1 −s2 = 3,

x1, x2, s1, s2 ≥ 0.

Finally, by introducing the variables y+
1 and y−1 we can handle the un-

restricted variable y1 by substituting it by y+
1 − y−1 wherever it occurs.

We arrive at the standard form to

minimize z̃ = −9x1 +7x2 −3y+
1 +3y−1

subject to 3x1 +x2 −y+
1 +y−1 +s1 = 1,

4x1 −x2 +2y+
1 −2y−1 −s2 = 3,

x1, x2, y+
1 , y−1 , s1, s2 ≥ 0.

8.2.2 Basic feasible solutions and the Representation
Theorem

In this section we introduce the concept of basic feasible solution and
show the equivalence between extreme points and a basic feasible so-
lutions. From this we can draw the conclusion that if there exists an
optimal solution then there exists an optimal solution among the ba-
sic feasible solutions. This fact is crucial in the Simplex method which
searches for an optimal solution among the basic feasible solutions.

Consider a linear program in standard form,

minimize z = cTx (8.5)

subject to Ax = b,

x ≥ 0n,

218

Draft from February 22, 2005

The geometry of linear programming

where A ∈ Rm×n with rankA = m (otherwise, we can always delete
rows), n > m, and b ∈ Rm is such that b ≥ 0m. A point x̃ is a basic
solution of (8.5) if

1. the equality constraints are satisfied at x̃, that is, Ax̃ = b; and

2. the columns of A corresponding to the non-zero components of x̃

are linearly independent.

A basic solution that also satisfies the non-negativity constraints is
called a basic feasible solution, or, in short, a BFS.

Since rankA = m, we can solve the system Ax = b by selecting m
variables of x corresponding to m linearly independent columns of A.
Hence, we partition the columns of A in two parts: one with n − m
columns of A corresponding to components of x that are set to 0; these
are called the non-basic variables and are denoted by the subvector xN ∈
Rn−m. The other represents the basic variables, and are denoted by
xB ∈ Rm. According to this partition,

x =

(
xB

xN

)
, A = (B,N),

which yields that

Ax = BxB + NxN = b.

Since xN = 0n−m by construction, we get the basic solution

x =

(
xB

xN

)
=

(
B−1b

0n−m

)
.

Further, if B−1b ≥ 0m then x is a basic feasible solution.

Remark 8.4 (degenerate solution) If more than n−m variables are zero
at a solution x, then the partition is not unique, that is, the solution x

corresponds to more than one basic solution. Such a solution is called
degenerate.

Example 8.5 (partitioning) Consider the linear program

minimize z = 4x1 +3x2 +7x3 −2x4

subject to x1 −x3 = 3,

x1 −x2 −2x4 = 1,

2x1 +x4 +x5 = 7,

x1, x2, x3, x4, x5 ≥ 0.

219

Draft from February 22, 2005

Linear programming models

The constraint matrix and the right-hand side vector are given by

A =




1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1



 , b =




3
1
7



 .

(a) The partition xB = (x2, x3, x4)
T, xN = (x1, x5)

T,

B =




0 −1 0
−1 0 −2
0 0 1



 , N =




1 0
1 0
2 1



 ,

corresponds the basic solution

x =

(
xB

xN

)
=




x2

x3

x4

x1

x5




=

(
B−1b

02

)
=




−15
−3
7
0
0



.

This is, however, not a basic feasible solution (since x2 and x3 are neg-
ative).

(b) Now take another partition, xB = (x1, x2, x5)
T, xN = (x3, x4)

T,

B =




1 0 0
1 −1 0
2 0 1


 , N =



−1 0
0 −2
0 1


 .

This partition corresponds to the basic solution

x =

(
xB

xN

)
=




x1

x2

x5

x3

x4




=

(
B−1b

02

)
=




3
2
1
0
0



,

which is in fact a basic feasible solution.
(c) Further, the partition xB = (x2, x4, x5)

T, xN = (x1, x3)
T,

B =




0 0 0
−1 −2 0
0 1 1


 , N =




1 −1
1 0
2 0


 ,

does not correspond to a basic solution since the system BxB = b is
infeasible.

220

Draft from February 22, 2005

The geometry of linear programming

(d) Finally, the partition xB = (x1, x4, x5)
T, xN = (x2, x3)

T,

B =




1 0 0
1 −2 0
2 1 1



 , N =




0 −1
−1 0
0 0



 ,

corresponds to the basic feasible solution

x =

(
xB

xN

)
=




x1

x4

x5

x2

x3




=

(
B−1b

02

)
=




3
1
0
0
0



,

which is degenerate (since a basic variables, x5, has value zero).

Remark 8.6 (partitioning) The above partitioning technique will be used
frequently in what follows and from now on when we say that A =
(B,N) is a partition of A we will always mean that the columns of A

and the variables of x have been rearranged so that B corresponds to
the basic variables xB and N to the non-basic variables xN .

We are now ready to prove the equivalence between extreme points
and basic feasible solutions.

Theorem 8.7 (equivalence between extreme point and BFS) A point x

is an extreme point of the set {x ∈ Rn | Ax = b; x ≥ 0n } if and only
if it is a basic feasible solution.

Proof. Let x be a basic feasible solution with the corresponding par-
tition A = (B,N), where rankB = m (such a partition exists since
rankA = m). Then the equality subsystem of

Ax = b,

x ≥ 0n

is given by

BxB + NxN = b,

xN = 0n−m

(if some of the basic variables equals zero we get additional rows but
these will not affect the proof). Since rankB = m it follows that

rank

(
B N

0 I

)
= n.

The theorem then follows from Theorem 3.17.

221

Draft from February 22, 2005

Linear programming models

Remark 8.8 (degenerate extreme point) An extreme point that corre-
sponds to more than one BFS is degenerate. This typically occurs when
we have redundant constraints.

We present a reformulation of the Representation Theorem 3.22 that
is adapted to the standard form. Consider the polyhedral cone C =
{x ∈ Rn | Ax = 0m; x ≥ 0n }. From Theorem 3.28 it follows that C is
finitely generated, that is, there exist vectors d1, . . . ,dr ∈ Rn such that

C = cone {d1, . . . ,dr} =

{
x ∈ Rn

∣∣∣∣∣ x =

r∑

i=1

αid
i; α1, . . . , αr ≥ 0

}
.

There are, of course, infinitely many ways to generate a certain poly-
hedral cone C. Assume that C = cone {d1, . . . ,dr}. If there exists a
vector di ∈ {d1, . . . ,dr} such that

di ∈ cone
{
{d1, . . . ,dr} \ {di}

}
,

then di is not necessarily in the description of C. If we similarly continue
to remove vectors from {d1, . . . ,dr} one at a time, we end up with a set
generating C such that none of the vectors of the set can be written as
a non-negative linear combination of the others. Such a set is naturally
called the set of extreme directions of C (cf. Definition 3.11 of extreme
point).

Theorem 8.9 (Representation Theorem) Let P = {x ∈ Rn | Ax =
b; x ≥ 0n} and V = {v1, . . . ,vk} be the set of extreme points of P .
If and only if P is nonempty, V is nonempty (and finite). Further, let
C = {x ∈ Rn | Ax = 0m; x ≥ 0n } and D = {d1, . . . ,dr} be the set of
extreme directions of C. If and only if P is unbounded D is nonempty
(and finite). Every x ∈ P can be represented as the sum of a convex
combination of the points in V and a non-negative linear combination
of the points in D, that is,

x =

k∑

i=1

αiv
i +

r∑

j=1

βjd
j ,

for some α1, . . . , αk ≥ 0 such that
∑k

i=1 αi = 1, and β1, . . . , βr ≥ 0.

We have arrived at the important result that if there exists an optimal
solution to a linear program in the standard form then there exists an
optimal solution among the basic feasible solutions.

222

Draft from February 22, 2005

The geometry of linear programming

Theorem 8.10 (existence and properties of optimal solutions) Let the sets
P , V and D be defined as in Theorem 8.9 and consider the linear pro-
gram

minimize z = cTx

subject to x ∈ P.

This problem has a finite optimal solution if and only if P is nonempty
and z is lower bounded on P , that is, if P is nonempty and cTdj ≥ 0
for all dj ∈ D.

If the problem has a finite optimal solution, then there exists an
optimal solution among the extreme points.

Proof. Let x ∈ P . Then it follows from Theorem 8.9 that

x =

k∑

i=1

αiv
i +

r∑

j=1

βjd
j , (8.6)

for some α1, . . . , αk ≥ 0 such that
∑k

i=1 αi = 1, and β1, . . . , βr ≥ 0.
Hence

cTx =

k∑

i=1

αic
Tvi +

r∑

j=1

βjc
Tdj . (8.7)

Now, as x varies over P , the value of z clearly corresponds to variations
of the weights αi and βj . The first term in the right-hand side of (8.7) is

bounded as
∑k

i=1 αi = 1. The second term is lower bounded as x varies

over P if and only if cTdj ≥ 0 holds for all dj ∈ D, since otherwise we
could let βj → +∞ for an index j with cTdj < 0, and get that z → −∞.
If cTdj ≥ 0 for all dj ∈ D, then it is clearly optimal to choose βj = 0 for
j = 1, . . . , r. It remains to search for the optimal solution in the convex
hull of V .

Now assume that x ∈ P is an optimal solution and let x be rep-
resented as in (8.6). From the above we have that we can choose
β1 = · · · = βr = 0, so we can assume that

x =

k∑

i=1

αiv
i.

Further, let

a ∈ arg minimum
i∈{1,...,k}

cTvi.

223

Draft from February 22, 2005

Linear programming models

Then,

cTva = cTva
k∑

i=1

αi =

k∑

i=1

αic
Tva ≤

k∑

i=1

αic
Tvi = cTx,

that is, the extreme point va is a global minimum.

Remark 8.11 The bounded case of Theorem 8.10 was already proved
in Section 3.2.

8.2.3 Adjacent extreme points

Consider the polytope in Figure 8.2. Clearly, every point on the line

x

u (adjacent to x)

w (not adjacent to x)

Figure 8.2: Illustration of adjacent extreme points.

segment joining the extreme points x and u cannot be written as a con-
vex combination of any pair of points that are not on this line segment.
However, this is not true for the points on the line segment between the
extreme points x and w. The extreme points x and u are said to be
adjacent (while x and w are not adjacent).

Definition 8.12 (adjacent extreme points) Two extreme points x and
u of a polyhedron P are adjacent if each point y on the line segment
between x and u has the property that if

y = λv + (1 − λ)w,

where λ ∈ (0, 1) and v,w ∈ P , then both v and w must be on the line
segment between x and u.

224

Draft from February 22, 2005

The geometry of linear programming

Now, consider the polyhedron of standard form,

P = {x ∈ Rn | Ax = b; x ≥ 0n }.

Let u ∈ P be a basic feasible solution (and hence an extreme point of
P) corresponding to the partition A = (B1,N1), where rankB1 = m,
that is,

u =

(
uB1

uN1

)
=

(
(B1)−1b

0n−m

)
.

Further, let B1 = (b1, . . . , bm) and N 1 = (n1, . . . ,nn−m) (that is, bi ∈
Rm, i = 1, . . . ,m, and nj ∈ Rn, j = 1, . . . , n −m, are columns of A).
Now construct a new partition (B2,N2) by replacing one column of B1,
say b1, with one column of N 1, say n1, that is,

B2 = (n1, b2, . . . , bm),

N2 = (b1,n2, . . . ,nn−m).

Assume that the partition (B2,N 2) corresponds to a basic feasible solu-
tion v (i.e., v is an extreme point), and that the two extreme points u and
v corresponding to (B1,N1) and (B2,N 2), respectively, are not equal.
Then we have the following elegant result. (Since the Simplex method
at each iteration performs exactly the above replacement action the the-
orem actually shows that the Simplex method at each non-degenerate
iteration moves from one extreme point to an adjacent.)

Proposition 8.13 (algebraic characterization of adjacency) Let u and v

be the extreme points that correspond to the partitions (B1,N 1) and
(B2,N2) described above. Then u and v are adjacent.

Proof. If the variables of v are ordered in the same way as the variables
of u, then the vectors must be of the form

u = (u1, . . . , um, 0, 0, . . . , 0)T,

v = (0, v2, . . . , vm+1, 0, . . . , 0)T.

Now take a point x on the line segment between u and v, that is,

x = λu + (1 − λ)v

for some λ ∈ (0, 1). In order to prove the theorem we must show that
if x can be written as a convex combination of two feasible points, then

225

Draft from February 22, 2005

Linear programming models

these points must be on the line segment between u and v. So assume
that

x = αy1 + (1 − α)y2

for some feasible points y1 and y2, and α ∈ (0, 1). Then it follows that
y1 and y2 must be solutions to the system

y1b
1 + · · · + ymbm + ym+1n

1 = b,

ym+2 = . . . = yn = 0,

y ≥ 0n,

or equivalently [by multiplying both sides of the first row by (B1)−1],

y =

(
(B1)−1b

0n−m

)
+



−ym+1(B

1)−1n1

ym+1

0n−m−1


 ,

y ≥ 0n.

But this is in fact the line segment between u and v (if ym+1 = 0 then
y = u and if ym+1 = vm+1 then y = v). In other words, y1 and y2 are
on the line segment between u and v, and we are done.

Remark 8.14 Actually the converse of Proposition 8.13 also holds.
Namely, if two extreme points u and v are adjacent, then there ex-
ists a partition (B1,N 1) corresponding to u and a partition (B2,N2)
corresponding to v such that the columns of B1 and B2 are the same
except for one. The proof is similar to that of Proposition 8.13.

8.3 Notes and further reading

The material in this chapter can be found in most books on linear pro-
gramming, such as [Dan63, Chv83, Mur83, Sch86, Pad99, Van01, DaT97,
DaT03].

8.4 Exercises

Exercise 8.1 (LP modelling) Let A ∈ Rm×n and b ∈ Rm. Formulate
the following problems as linear programming problems.

(a) minimizex∈Rn

∑m
i=1 |(Ax − b)i| subject to maxi=1,...,n |xi| ≤ 1.

(b) minimizex∈Rn

∑m
i=1 |(Ax − b)i| + maxi=1,...,n |xi|.

226

Draft from February 22, 2005

Exercises

Exercise 8.2 (LP modelling) Consider the sets V = {v1, . . . ,vk} ⊂ Rn

and W = {w1, . . . ,wl} ⊂ Rn. Formulate the following problem as linear
programming problems.

(a) Construct, if possible, a hyperplane that separates the sets V and
W , that is, find a ∈ Rn, with a 6= 0n, and b ∈ R such that

aTv ≤ b, for all v ∈ V ,

aTw ≥ b, for all w ∈W.

(b) Construct, if possible, a sphere that separates the sets V and W ,
that is, find a center xc ∈ Rn and a radius R ≥ 0 such that

‖v − xc‖2 ≤ R, for all v ∈ V ,

‖w − xc‖2 ≥ R, for all w ∈W.

Exercise 8.3 (linear-fractional programming) Consider the linear-fractional
program

minimize f(x) = (cTx + α)/(dTx + β) (8.8)

subject to Ax ≤ b,

where c,d ∈ Rn, A ∈ Rm×n, and b ∈ Rm. Further, assume that the
polyhedron P = {x ∈ Rn | Ax ≤ b} is bounded and that dTx+β > 0 for
all x ∈ P . Show that (8.8) can be solved by solving the linear program

minimize g(y, z) = cTy + αz (8.9)

subject to Ay − zb ≤ 0m,

dTy + βz = 1,

z ≥ 0.

[Hint: Suppose that y∗ together with z∗ are a solution to (8.9), and
show that z∗ > 0 and that y∗/z∗ is a solution to (8.8).]

Exercise 8.4 (standard form) Transform the linear program

minimize z = x1−5x2−7x3

subject to 5x1−2x2+6x3 ≥ 5, (1)

3x1+4x2−9x3 = 3, (2)

7x1+3x2+5x3 ≤ 9, (3)

x1 ≥ −2,

into standard form.

227

Draft from February 22, 2005

Linear programming models

Exercise 8.5 (standard form) Consider the linear program

minimize z = 5x1 +3x2 −7x3

subject to 2x1 +4x2 +6x3 = 11,

3x1 −5x2 +3x3+x4 = 11,

x1, x2, x4 ≥ 0.

(a) Show how to transform this problem into standard form by elim-
inating the unrestricted variable x3.

(b) Why cannot this technique be used to eliminate variables with
non-negativity restrictions?

Exercise 8.6 (basic feasible solutions) Suppose that a linear program
includes a free variable xj . When transforming this problem into stan-
dard form, xj is replaced by

xj = x+
j − x−j ,

x+
j , x

−
j ≥ 0.

Show that no basic feasible solution can include both x+
j and x−j as

non-zero basic variables.

Exercise 8.7 (equivalent systems) Consider the system of equations

n∑

j=1

aijxj = bi, i = 1, . . . ,m. (8.10)

Show that this system is equivalent to the system

n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m, (8.11a)

m∑

i=1

n∑

j=1

aijxj ≥
m∑

i=1

bi. (8.11b)

228

Draft from February 22, 2005

The simplex method IX

This chapter presents the Simplex method for solving linear program-
ming problems. In Section 9.1 the basic algorithm is presented. First we
assume that a basic feasible solution is known at the start of the algo-
rithm, and then we describe what to do when a BFS is not known from
the beginning. In Section 9.2 we discuss termination characteristics of
the algorithm. It turns out that if all the BFSs of the problem are non-
degenerate, then the basic algorithm terminates. However, if there exist
degenerate BFSs there is a possibility that the basic algorithm cycles be-
tween degenerate BFSs and hence never terminates. Fortunately there is
a simple rule, called Bland’s rule, that eliminates cycling. We close the
chapter by discussing the computational complexity of the Simplex al-
gorithm. In the worst case, the algorithm visits all the extreme points of
the problem, and since the number of extreme points may be exponential
in the dimension of the problem, the Simplex algorithm does not belong
to the desirable polynomial complexity class. The Simplex algorithm is
therefore not theoretically satisfactory, but in practice it works very well
and thus it frequently appears in commercial linear programming codes.

9.1 The algorithm

Assume that we have a linear program in standard form:

minimize z = cTx

subject to Ax = b,

x ≥ 0n,

where A ∈ Rm×n, n > m and the rank of A is full, and b ∈ Rm is such
that b ≥ 0m, and c ∈ Rn. (This is not a restriction, as was shown in

Draft from February 22, 2005

The simplex method

Section 8.2.1.) At each iteration the Simplex algorithm starts at a basic
feasible solution (BFS) and moves to an adjacent BFS such that the
objective function value decreases. It terminates with an optimal BFS
(if there exists a finite optimal solution), or a direction of unboundedness,
that is, a point in C := {p ∈ Rn | Ap = 0m; p ≥ 0n } along which the
objective function diverges to −∞. Observe that if p ∈ C is a direction
of unboundedness and x̃ is a feasible solution, then every solution y(α)
of the form

y(α) = x̃ + αp, α ≥ 0,

is feasible. Hence if cTp < 0 then z = cTy(α) → −∞ as α→ ∞.

9.1.1 A BFS is known

Assume that a basic feasible solution xT = (xT
B,x

T
N) corresponding to

the partition A = (B,N) is known. Then we have that

Ax = (B,N)

(
xB

xN

)
= BxB + NxN = b,

or, equivalently,

xB = B−1b − B−1NxN . (9.1)

Further, rearrange the components of c such that cT = (cT
B, c

T
N) has the

same ordering as xT = (xT
B,x

T
N). Then from (9.1) follows that

cTx = cT
BxB + cT

NxN

= cT
B(B−1b − B−1NxN) + cT

NxN

= cT
BB−1b + (cT

N − cT
BB−1N)xN . (9.2)

The principle of the Simplex algorithm is now easy to describe. Cur-
rently we are located at the BFS given by

x =

(
xB

xN

)
=

(
B−1b

0n−m

)
,

which is an extreme point according to Theorem 8.7. Proposition 8.13
gives that if we construct a new partition by replacing one column of B

by one column of N such that the new partition corresponds to a basic
feasible solution, x̃, not equal to x, then x̃ is adjacent to x. The principle
of the Simplex algorithm is to move to an adjacent extreme point such
that the objective function value decreases. From (9.2) follows that if

230

Draft from February 22, 2005

The algorithm

we increase the jth component of the non-basic vector xN from 0 to 1,
then the change in the objective function value becomes

(c̃N)j := (cT
N − cT

BB−1N)j ,

that is, the change in the objective value resulting from a unit increase
of the non-basic variable xj from zero is given by the jth component of
the vector cT

N − cT
BB−1N .

We call (c̃N)j the reduced cost of the non-basic variable (xN)j for j =
1, . . . , n −m. Actually, we can define the reduced cost, c̃T = (c̃T

B, c̃
T
N),

of all the variables at the given BFS by

c̃T := cT − cT
BB−1A = (cT

B , c
T
N) − cT

BB−1(B,N)

= ((0m)T, cT
N − cT

BB−1N);

in particular, we see that the reduced costs of the basic variables are
c̃B = 0m.

Now, if (c̃N)j ≥ 0 for all j = 1, . . . , n − m, then there exists no
adjacent extreme point such that the objective function value decreases
and we stop; x is then an optimal solution.

Proposition 9.1 (optimality in the Simplex method) Let x∗ be the ba-
sic feasible solution that corresponds to the partition A = (B,N). If
(c̃N)j ≥ 0 for all j = 1, . . . , n−m, then x∗ is an optimal solution.

Proof. Since cT
BB−1b is constant, it follows from (9.2) that the original

linear program is equivalent to

minimize z = c̃T
NxN

subject to xB+B−1NxN = B−1b,

xB ≥ 0m,

xN ≥ 0n−m,

or equivalently [by reducing the xB variables through (9.1)],

minimize z = c̃T
NxN (9.3)

subject to B−1NxN ≤ B−1b,

xN ≥ 0n−m.

Since x∗ is a basic feasible solution it follows that x∗
N = 0n−m is a

feasible solution to (9.3). But c̃N ≥ 0n−m so x∗
N = 0n−m is in fact an

optimal solution to (9.3). (Why?) Hence

x∗ =

(
B−1b

0n−m

)

231

Draft from February 22, 2005

The simplex method

is an optimal solution to the original problem.

Remark 9.2 (optimality condition) Proposition 9.1 states that if (c̃N)j ≥
0 for all j = 1, . . . , n − m, then x∗ is an optimal extreme point. But
is it true that if x∗ is an optimal extreme point, then (c̃N)j ≥ 0 for all
j = 1, . . . , n−m? The answer to this question is no. Namely, if the op-
timal basic feasible solution x∗ is degenerate, then there may exist basis
representations of x∗ such that (c̃N)j < 0 for some j. However, it holds
that if x∗ is an optimal extreme point, then there exists at least one basis
representation of it such that (c̃N)j ≥ 0 for all j = 1, . . . , n−m. That
is, Proposition 9.1 can be strengthened to state that x∗ is an optimal
extreme point if and only if there exists a basis representation of it such
that c̃N ≥ 0n−m.

If some of the reduced costs are strictly negative, we choose the non-
basic variable with the least reduced cost to enter the basis. We must
also choose one variable from xB to leave the basis. Suppose that the
variable (xN)j has been chosen to enter the basis. Then, according to
(9.1), when the value of (xN)j is increased from zero we will move along
the half-line

l(µ) :=

(
B−1b

0n−m

)
+ µ

(
−B−1N j

ej

)
, µ ≥ 0,

where ej is the jth unit vector. In order to maintain feasibility we must
have that l(µ) ≥ 0n. If l(µ) ≥ 0n for all µ ≥ 0, then z → −∞ as µ→ ∞,
that is,

p =

(
−B−1N j

ej

)

is a direction of unboundedness and z → −∞ along the half-line l(µ),
µ ≥ 0. Observe that this occurs if and only if

B−1N j ≤ 0m.

Otherwise, the maximal value of µ in order to maintain feasibility is
given by

µ∗ = minimum
i∈{ i | (B−1N j)i>0 }

(B−1b)i

(B−1N j)i

.

If µ∗ > 0 it follows that l(µ∗) is an extreme point adjacent to x. Actually
we move to l(µ∗) by choosing (xB)i, where

i ∈ arg minimum
i∈{ i | (B−1N j)i>0 }

(B−1b)i

(B−1N j)i

,

232

Draft from February 22, 2005

The algorithm

to leave the basis.
We are now ready to state the Simplex algorithm.

The Simplex Algorithm:

Step 0 (initialization: BFS). Let xT = (xT
B,x

T
N) be a BFS correspond-

ing to the partition A = (B,N).

Step 1 (descent direction generation or termination: entering variable, pricing).
Calculate the reduced costs of the non-basic variables:

(c̃N)j = (cT
N − cT

BB−1N)j , j = 1, . . . , n−m.

If (c̃N)j ≥ 0 for all j = 1, . . . , n−m then stop; x is then optimal.
Otherwise choose (xN)j , where

j ∈ arg minimum
j∈{1,...,n−m}

(c̃N)j ,

to enter the basis.

Step 2 (line search or termination: leaving variable). If

B−1N j ≤ 0m,

then the problem is unbounded, stop; p := ((−B−1N j)
T, eT

j)T is
then a direction of unboundedness. Otherwise choose (xB)i, where

i ∈ arg minimum
i∈{ i | (B−1N j)i>0 }

(B−1b)i

(B−1N j)i

,

to leave the basis.

Step 3 (update: change basis). Construct a new partition by swapping
(xB)i with (xN)j . Go to Step 1.

Remark 9.3 (the Simplex algorithm as a feasible descent method) In the
above description, we have chosen to use terms similar to those that will
be used for several descent methods in nonlinear optimization that are
described in Parts V and VI; see, for example, the algorithm descrip-
tion in Section 11.1 for unconstrained nonlinear optimization problems.
The Simplex method is a very special type of descent algorithm: in or-
der to remain feasible we generate feasible descent directions p (Step
1) that follow the boundary of the polyhedron; because of the fact that
the objective function is linear, a line search would yield an infinite step
unless a new boundary makes such a step infeasible; this is the role of
Step 2. Finally, termination at an optimal solution (Step 2) is based
on a special property of linear programming which allows us to decide

233

Draft from February 22, 2005

The simplex method

on global optimality based on only local information about the current
BFS:s reduced costs. (Of course, the convexity of LP is a crucial prop-
erty for this principle to be valid.) More on the characterization of this
optimality criterion, and its relationships to the optimality principles in
the Chapters 4 and 6 will be discussed in the next chapter.

Remark 9.4 (calculating the reduced costs) When calculating the reduced
costs of the non-basic variables at the pricing Step 1 of the Simplex al-
gorithm, it is appropriate to first calculate

yT := cT
BB−1,

through the system
BTy = cB,

and then calculate the reduced costs by

c̃T
N = cT

N − yTN .

By this procedure we avoid the matrix–matrix multiplication B−1N .

Remark 9.5 (alternative pricing rules) If n is very large, it can be costly
to compute the reduced costs at the pricing Step 1 of the Simplex algo-
rithm. A methodology which saves computations is partial pricing, in
which only a subset of the elements (c̃N)j is calculated.

Another problem with the standard pricing rule is that the use of
the criterion minimizej∈{1,...,n−m} {(c̃N)j} does not take into account
the actual improvement that is made. In particular, a different scaling
of the variables might mean that one unit change is a dramatic move
in one variable, and a very small move in another. The steepest-edge
rule eliminates this scaling problem somewhat: With (xN)j being the
entering variable we have that

(
xB

xN

)new

=

(
xB

xN

)
+ (xN)jpj , pj =

(
−B−1N j

ej

)
.

Choose j in

arg minimum
j∈{1,...,n−m}

cTpj

‖pj‖
,

that is, the usual pricing rule based on cTpj = cT
B(−B−1N j)+ (cN)j =

(c̃N)j is replaced by a rule wherein the reduced costs are scaled by the
length of the candidate search directions pj . (Other scaling factors can
of course be used.)

234

Draft from February 22, 2005

The algorithm

Remark 9.6 (initial basic feasible solution) Consider the linear program

minimize z = cTx (9.4)

subject to Ax ≤ b,

x ≥ 0n,

where A ∈ Rm×n and b ∈ Rm is such that b ≥ 0m. By introducing slack
variables s we get

minimize z = cTx (9.5)

subject to Ax+Ims = b,

x ≥ 0n,

s ≥ 0m.

Since b ≥ 0m it then follows that the partition (Im,A) corresponds to a
basic feasible solution to (9.5), that is, the slack variables s are the basic
variables. (This corresponds to the origin in the problem (9.4), which is
clearly feasible when b ≥ 0m.)

Similarly, if we can identify an identity matrix among the columns
of the constraint matrix, then (if the right-hand side is non-negative,
which is the case if the problem is of standard form) we get a basic
feasible solution just by taking the variables that correspond to these
columns as basic variables.

To illustrate the Simplex algorithm we give an example.

Example 9.7 (illustration of the Simplex method) Consider the linear pro-
gram

minimize z = x1 −2x2 −4x3 +4x4

subject to −x2 +2x3 +x4 ≤ 4,
−2x1 +x2 +x3 −4x4 ≤ 5,
x1 −x2 +2x4 ≤ 3,
x1, x2, x3, x4 ≥ 0.

By introducing the slack variables x5, x6 and x7 we get the problem to

minimize z = x1 −2x2 −4x3 +4x4

subject to −x2 +2x3 +x4 +x5 =4,
−2x1 +x2 +x3 −4x4 +x6 =5,
x1 −x2 +2x4 +x7 =3,
x1, x2, x3, x4, x5, x6, x7 ≥ 0.

According to Remark 9.6 we take xB = (x5, x6, x7)
T and xN = (x1, x2, x3, x4)

T

as the initial basic and non-basic vector, respectively. The reduced costs

235

Draft from February 22, 2005

The simplex method

of the non-basic variables then become

cT
N − cT

BB−1N = (1,−2,−4, 4),

and hence we choose x3 as the entering variable. Further, we have that

B−1b = (4, 5, 3)T,

B−1N3 = (2, 1, 0)T,

which gives that

arg minimum
i∈{ i | (B−1N 3)i>0 }

(B−1b)i

(B−1N3)i

= {1},

so we choose x5 to leave the basis. The new basic and non-basic vectors
are xB = (x3, x6, x7)

T and xN = (x1, x2, x5, x4)
T, and the reduced costs

of the non-basic variables become

cT
N − cT

BB−1N = (1,−4, 2, 6),

so x2 is the entering variable, and

B−1b = (2, 3, 3)T,

B−1N 2 = (−1/2, 3/2,−1)T,

which gives that

arg minimum
i∈{ i | (B−1N 2)i>0 }

(B−1b)i

(B−1N2)i

= {2},

and hence x6 is the leaving variable. The new basic and non-basic vectors
become xB = (x3, x2, x7)

T and xN = (x1, x6, x5, x4)
T, and the reduced

costs of the non-basic variables are

cT
N − cT

BB−1N = (−13/3, 8/3, 2/3,−6),

so x4 is the entering variable and

B−1b = (3, 2, 5)T,

B−1N4 = (−1,−3,−1)T.

But since B−1N4 ≤ 03 it follows that the objective function diverges to
−∞ along the half-line given by

l(µ) = (x1, x2, x3, x4)
T = (0, 2, 3, 0)T + µ(0, 3, 1, 1)T, µ ≥ 0.

We conclude that the problem is unbounded.

236

Draft from February 22, 2005

The algorithm

9.1.2 A BFS is not known: Phase I & II

Often a basic feasible solution is not known from the beginning. (In
fact, only if the origin is feasible in (9.4) we know a BFS immediately.)
However, an initial basic feasible solution can be found by solving a
linear program that is a pure feasibility problem. We call this the Phase
I problem.

Consider the following linear program in standard form:

minimize z = cTx (9.6)

subject to Ax = b,

x ≥ 0n.

In order to find a basic feasible solution we introduce the artificial vari-
ables a ∈ Rm and consider the Phase I problem to

minimize w = (1m)Ta (9.7)

subject to Ax +Ima = b,

x ≥ 0n,

a ≥ 0m.

In other words, we introduce an additional (artificial) variable ai for
every linear constraint i = 1, . . . ,m, and thus construct the unit matrix
in Rm×m sought.

We get a basic feasible solution to the Phase I problem (9.7) by
taking the artificial variables a as the basic variables. (Remember that
b ≥ 0m; the simplicity of finding an initial BFS for the Phase I problem
is in fact the reason why we require this to hold!) Then the Phase I
problem (9.7) can be solved by the Simplex method stated in the previous
section. Note that the Phase I problem is bounded from below (since
(1m)Ta ≥ 0) which means that an optimal solution to (9.7) always exists
by Theorem 8.10.

Assume that the optimal objective function value is w∗. We observe
that if and only if the part x∗ of an optimal solution ((x∗)T, (a∗)T)T to
the problem (9.7) is a feasible solution to the original problem (9.6), then
((x∗)T, (0m)T)T is an optimal feasible solution to the Phase I problem
and w∗ = 0. Hence, if w∗ > 0, then the original linear program is
infeasible. We have the following cases:

1. If w∗ > 0, then the original problem is infeasible.

2. If w∗ = 0, then if the optimal basic feasible solution is (xT,aT)T

we must have that a = 0m, and x corresponds to a basic feasible

237

Draft from February 22, 2005

The simplex method

solution to the original problem.1

Therefore, if there exists a feasible solution to the original problem
(9.6), then a basic feasible solution is found by solving the Phase I prob-
lem (9.7). This basic feasible solution can then be used as the starting
BFS in the solution of the original problem, which is called the Phase II
problem, with the Simplex method.

Remark 9.8 (artificial variables) The purpose of introducing artificial
variables is to get an identity matrix among the columns of the constraint
matrix. If some of the columns of the constraint matrix of the original
problem consists of only zeros except for one positive entry, then it is not
necessary to introduce an artificial variable in the corresponding row. An
example of a linear constraint for which an original variable naturally
serves as a basic variable is a ≤-constraint with a positive right-hand
side, in which case we can use the corresponding slack variable.

Example 9.9 (Phase I & II) Consider the following linear program:

minimize z = 2x1

subject to x1 −x3 = 3,
x1 −x2 −2x4 = 1,

2x1 +x4 ≤ 7,
x1, x2, x3, x4 ≥ 0.

By introducing a slack variable x5 we get the equivalent linear pro-
gram in standard form:

minimize z = 2x1 (9.8)

subject to x1 −x3 = 3,

x1 −x2 −2x4 = 1,

2x1 +x4 +x5 = 7,

x1, x2, x3, x4, x5 ≥ 0.

We cannot identify the identity matrix among the columns of the
constraint matrix of the problem (9.8), but the third unit vector e3

is found in the column corresponding to the x5-variable. Therefore, we
leave the problem (9.8) for a while, and instead we introduce two artificial
variables a1 and a2 and consider the Phase I problem to

1Notice that if the final BFS in the Phase I problem is degenerate then one or
several artificial variables ai may remain in the basis with value zero; in order to
remove them from the basis a number of degenerate pivots may have to be performed;
this is naturally always possible.

238

Draft from February 22, 2005

The algorithm

minimize w = a1 +a2

subject to x1 −x3 +a1 =3,
x1 −x2 −2x4 +a2 =1,

2x1 +x4 +x5 =7,
x1, x2, x3, x4, x5, a1, a2 ≥ 0.

Let xB = (a1, a2, x5)
T and xN = (x1, x2, x3, x4)

T be the initial basic
and non-basic vector, respectively. The reduced costs of the non-basic
variables then become

cT
N − cT

BB−1N = (−2, 1, 1, 2),

and hence we choose x1 as the entering variable. Further, we have

B−1b = (3, 1, 7)T,

B−1N1 = (1, 1, 2)T,

which gives that

arg minimum
i∈{ i | (B−1N 1)i>0 }

(B−1b)i

(B−1N1)i

= {2},

so we choose a2 as the leaving variable. The new basic and non-basic vec-
tors are xB = (a1, x1, x5)

T and xN = (a2, x2, x3, x4)
T, and the reduced

costs of the non-basic variables become

cT
N − cT

BB−1N = (2,−1, 1,−2),

so x4 is the entering variable, and

B−1b = (2, 1, 5)T,

B−1N4 = (2,−2, 5)T,

which gives that

arg minimum
i∈{ i | (B−1N 4)i>0 }

(B−1b)i

(B−1N4)i

= {1, 3},

and we choose a1 to leave the basis. The new basic and non-basic vectors
become xB = (x4, x1, x5)

T and xN = (a2, x2, x3, a1)
T, and the reduced

costs of the non-basic variables are

cT
N − cT

BB−1N = (1, 0, 0, 1),

239

Draft from February 22, 2005

The simplex method

so by choosing the basic variables as xB = (x4, x1, x5)
T we get an optimal

basic feasible solution of the Phase I problem, and w∗ = 0. This means
that by choosing the basic variables as xB = (x4, x1, x5)

T we get a basic
feasible solution of the Phase II problem (9.8).

We return to the problem (9.8). By letting xB = (x4, x1, x5)
T and

xN = (x2, x3)
T we get the reduced costs

c̃T
N = cT

N − cT
BB−1N = (0, 2),

which means that

x =

(
xB

xN

)
=




x4

x1

x5

x2

x3




=

(
B−1b

02

)
=




1
3
0
0
0




is an optimal basic feasible solution to the original problem. (Observe
that most often the basic feasible solution found when solving the Phase
I problem is not an optimal solution to the Phase II problem!) But
since the reduced cost of x2 is zero there is a possibility that there are
alternative optimal solutions. Let x2 enter the basic vector. We have
that

B−1b = (1, 3, 0)T,

B−1N1 = (0.5, 0,−0.5)T,

which gives that

arg minimum
i∈{ i | (B−1N 1)i>0 }

(B−1b)i

(B−1N1)i

= {1},

so x4 is the leaving variable. We get xB = (x2, x1, x5)
T and xN =

(x4, x3)
T, and the reduced costs become

c̃T
N = cT

N − cT
BB−1N = (0, 2),

so

x =

(
xB

xN

)
=




x2

x1

x5

x4

x3




=

(
B−1b

02

)
=




2
3
1
0
0




is an alternative optimal basic feasible solution.

240

Draft from February 22, 2005

Termination

9.1.3 Alternative optimal solutions

As we saw in Example 9.9 there can be alternative optimal solutions to
a linear program. However, this can only happen if some of the reduced
costs of the non-basic variables of an optimal solution is zero.

Proposition 9.10 (unique optimal solutions in linear programming) Consider
the linear program in standard form

minimize z = cTx

subject to Ax = b,

x ≥ 0n.

Let xT = (xT
B,x

T
N) be an optimal basic feasible solution that corresponds

to the partition A = (B,N). If the reduced costs of the non-basic vari-
ables xN are all strictly positive, then x is the unique optimal solution.

Proof. As in the proof of Proposition 9.1 we have that the original
linear program is equivalent to

minimize z = c̃T
NxN

subject to xB+B−1NxN = B−1b,

xB ≥ 0m,

xN ≥ 0n−m.

Now if the reduced costs of the non-basic variables are all strictly posi-
tive, that is, c̃N > 0n−m, it follows that a solution for which (xN)j > 0
for some j = 1, . . . , n−m cannot be optimal. Hence

x =

(
xB

xN

)
=

(
B−1b

0n−m

)

is the unique optimal solution.

9.2 Termination

So far we have not discussed whether the Simplex algorithm terminates
in a finite number of iterations or not. Unfortunately, if there exist
degenerate basic feasible solutions it can happen that the Simplex algo-
rithm cycles between degenerate solutions and hence never terminates.
However, if all of the basic feasible solutions are non-degenerate this kind
of cycling never occurs.

241

Draft from February 22, 2005

The simplex method

Theorem 9.11 (finiteness of the Simplex algorithm) If all of the basic
feasible solutions are non-degenerate, then the Simplex algorithm ter-
minates after a finite number of iterations.

Proof. If a basic feasible solution is non-degenerate it follows that it
has exactly m strictly positive components, and hence has a unique
associated basis. In this case, in the minimum ratio test,

µ∗ = minimum
i∈{ i | (B−1N j)i>0 }

(B−1b)i

(B−1N j)i

,

we get that µ∗ > 0. Therefore, at each iteration the objective value
strictly decreases, and hence a basic feasible solution that has appeared
once can never reappear. Further, from Corollary 3.18 follows that the
number of extreme points, hence the number of basic feasible solutions,
is finite. We are done.

Cycling resulting from degeneracy does not seem to occur often among
the numerous degenerate linear programs encountered in practical appli-
cations. However, the fact that it can occur is not theoretically satisfac-
tory. Therefore methods have been developed that avoid cycling. One
of them is Bland’s rule.

Theorem 9.12 (Bland’s rule) Fix an ordering of the variables. (This
ordering can be arbitrary, but once it has been selected it cannot be
changed.) If at each iteration step the entering and leaving variables are
chosen as the first variables that are eligible2 in the ordering, then the
Simplex algorithm terminates after a finite number of iteration steps.

9.3 Computational complexity

The Simplex algorithm is very efficient in practice. Although the total
number of basic feasible solutions can be as many as

(
n
m

)
=

n!

(n−m)!m!

2By eligible entering variables we mean the variables (xN)j for which (˜
N)j < 0,
and when we have chosen the entering variable j, the eligible leaving variables are
the variables (xB)i such that

i ∈ arg minimum
i∈{ i | (B−1N j)i>0 }

(B−1b)i

(B−1N j)i

.

242

Draft from February 22, 2005

Notes and further reading

(the number of different ways m objects can be chosen from n objects),
which is a number that grows exponentially, it is rare that more than 3m
iterations are needed, and practice shows that the expected number is in
the order of 3m/2. Since each iteration costs no more than a polynomial
(O(m3) for factorizations and O(mn) for the pricing) the algorithm is
polynomial in practice. Its worst-case behaviour is however very bad, in
fact exponential.

The bad worst-care behaviour of the simplex method led to a huge
amount of work being laid down to find polynomial algorithms for solv-
ing linear programs. Such a polynomial time competitor to the Simplex
method nowadays is the class of interior point algorithms. Its main fea-
ture is that the optimal extreme points are not approached by following
the edges, but by moving within the interior of the polyhedron. The
famous Karmarkar algorithm is one, which however has been improved
much in recent years. An analysis of interior point methods for lin-
ear programs is made in Chapter 13, as they are in fact to be seen as
instances of the interior penalty algorithm in nonlinear programming.

9.4 Notes and further reading

The simplex method was developed by Danzig [Dan51]. The version
of the simplex method we have presented is usually called the revised
simplex method and was first described by Danzig [Dan53] and Orchard-
Hays [Orc54]. The first book describing the simplex method was [Dan63].

In the (revised) simplex algorithm several computations are per-
formed using B−1. The major drawback in this approach is that round-
off errors accumulates as the algorithm moves from step to step. This
drawback can be alleviated by using LU decomposition or Cholesky fac-
torization. Most of the software packages for linear programming use LU
decomposition. Early references on numerically stable forms of the sim-
plex method are [BaG69, Bar71, GiM73, Sau72]. Books that discusses
the subject are [Mur83, NaS96].

The first example of cycling was constructed by Hoffman [Hof53]. Dif-
ferent methods have been developed that avoid cycling, for example the
perturbation method by Charnes [Cha52], the lexicographic method by
Danzig, Orden and Wolfe [DOW55], and Bland’s rule by Bland [Bla77].
In practice, however, cycling is rarely encountered. Instead, the problem
is stalling, which means that the value of the objective function does
not change (or changes very little) for a very large number of iterations3

before it eventually starts to make substantial progress again. So in

3“Very large” normally refers to a number of iterations which is an exponential
function of the number of variables of the LP problem.

243

Draft from February 22, 2005

The simplex method

practice, we are interested in methods that primarily prevent stalling,
and only secondarily cycling (see, e.g., [GMSW89]).

In 1972, Klee and Minty [KlM72] showed that there exist problems of
arbitrary size that cause the simplex method to examine every possible
basis when the steepest-descent pricing rule is used, and hence showed
that the simplex method is an exponential algorithm in the worst case. It
is still an open question, however, whether there exists a rule for choosing
entering and leaving basic variables that makes the simplex method poly-
nomial. The first polynomial-time method for linear programming was
given by Khachiyan [Kha79, Kha80], by adapting the ellipsoid method
for nonlinear programming of Shor [Sho70a, Sho70b, Sho77] and Yudin
and Nemirovskii [YuN77]. Karmarkar [Kar84a, Kar84b] showed that in-
terior point methods can be used in order to solve linear programming
problems in polynomial time.

General text books that discusses the simplex method are [Dan63,
Chv83, Mur83, Sch86, Pad99, Van01, DaT97, DaT03].

9.5 Exercises

Exercise 9.1 (checking feasibility: phase I) Consider the system

3x1 +2x2 −x3 ≤ −3,

−x1 −x2 +2x3 ≤ −1,

x1, x2, x3 ≥ 0.

Show that this system is infeasible.

Exercise 9.2 (the Simplex algorithm: phase I & II) Consider the linear
program

minimize z = 3x1 +2x2 +x3

subject to 2x1 +x3 ≥ 3,

2x1 +2x2 +x3 = 5,

x1, x2, x3 ≥ 0.

(a) Solve the linear program by using the Simplex algorithm with
Phase I & II.

(b) Is the solution obtained unique?

Exercise 9.3 (the Simplex algorithm) Consider the linear program in stan-

244

Draft from February 22, 2005

Exercises

dard form,

minimize z = cTx

subject to Ax = b,

x ≥ 0n.

Suppose that at a given step of the Simplex algorithm, there is only
one possible entering variable, (xN)j . Also assume that the current BFS
is non-degenerate. Show that (xN)j > 0 in any optimal solution.

245

Draft from February 22, 2005

The simplex method

246

Draft from February 22, 2005

Linear programming
duality and sensitivity
analysis

X

10.1 Introduction

Consider the linear program

minimize z = cTx (10.1)

subject to Ax = b,

x ≥ 0n,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, and assume that this problem
has been solved by the Simplex algorithm. Let x∗ = (xT

B,x
T
N)T be

an optimal basic feasible solution corresponding to the partition A =
(B,N). Introduce the vector y∗ ∈ Rm through

(y∗)T = cT
BB−1.

Since x∗ is an optimal solution it follows that the reduced costs of
the non-basic variables are greater than or equal to zero, that is,

cT
N − cT

BB−1N ≥ (0n−m)T ⇐⇒ cT
N − (y∗)TN ≥ (0n−m)T.

Further, cT
B − (y∗)TB = cT

B − cT
BB−1B = (0m)T, so actually we have

that

cT − (y∗)TA ≥ (0n)T,

or equivalently,

ATy∗ ≤ c.

Draft from February 22, 2005

LP duality and sensitivity analysis

Now, for every y ∈ Rm such that ATy ≤ c and every feasible solution
x to (10.1) it holds that

cTx ≥ yTAx = yTb = bTy.

But

bTy∗ = bT(B−1)TcB = cT
BB−1b = cT

BxB ≤ cTx,

for every feasible solution x to (10.1) (since x∗ = (xT
B,x

T
N)T is optimal),

so in fact we have that y∗ is an optimal solution to the linear program

maximize bTy (10.2)

subject to ATy ≤ c,

y free.

Observe that the linear program (10.2) is exactly the Lagrangian dual
problem to (10.1) (see Section 6.2.4). Also, note that the linear programs
(10.1) and (10.2) have the same optimal objective value, which is in
accordance with the Strong Duality Theorem 6.11 (see also Theorem 10.6
below for an independent proof).

The linear program (10.2) is called the linear programming dual to
the linear program (10.1) (which is called the primal linear program). In
this chapter we will study linear programming duality. In Section 10.2
we discuss how to construct the linear programming dual to a general
linear program. Section 10.3 presents duality theory, such as weak and
strong duality and complementary slackness. Finally, in Section 10.5
we discuss how the optimal solutions of a linear program change if the
right-hand side b or the objective function coefficients c are modified.

10.2 The linear programming dual

For every linear program it is possible to construct the Lagrangian dual
problem. From now on we will call this problem the dual linear program.
It is quite tedious to construct the Lagrangian dual problem for every
special case of a linear program, but fortunately the dual of a general
linear program can be constructed just by following some simple rules.
These rules are presented in this section. (It is, however, a good exercise
to show the validity of these rules by constructing the Lagrangian dual
in each case.)

248

Draft from February 22, 2005

The linear programming dual

10.2.1 Canonical form

When presenting the rules for constructing the linear programming dual
we will use the notation of canonical form. The canonical form is con-
nected with the inequalities of the problem and the objective function. If
the objective is to maximize the objective function, then every inequality
of type “≤” is said to be of canonical form. Similarly, if the objective is
to minimize the objective function, then every inequality of type “≥” is
said to be of canonical form. Further, we consider non-negative variables
to be variables in canonical form.

Remark 10.1 (mnemonic rule for canonical form) Consider the problem
to

minimize z = x1

subject to x1 ≤ 1.

This problem is unbounded from below and hence an optimal solution
does not exist. However, if the problem is to

minimize z = x1

subject to x1 ≥ 1,

then an optimal solution exists, namely x1 = 1. Hence it seems natural to
consider inequalities of type “≥” as canonical to minimization problems.
Similarly, it is natural that inequalities of type “≤” are canonical to
maximization problems.

10.2.2 Constructing the dual

From the notation of canonical form introduced in Section 10.2.1 we can
now construct the dual, (D), to a general linear program, (P), according
to the following rules.

Dual variables

To each constraint of (P) a dual variable, yi, is introduced. If the ith

constraint of (P) is an inequality of canonical form, then yi is a non-
negative variable, that is, yi ≥ 0. Similarly, if the ith constraint of (P) is
an inequality that is not of canonical form, then yi ≤ 0. Finally, if the
ith constraint of (P) is an equality, then the variable yi is unrestricted.

249

Draft from February 22, 2005

LP duality and sensitivity analysis

Dual objective function

If (P) is a minimization (respectively, a maximization) problem, then (D)
is a maximization (respectively, a minimization) problem. The objective
function coefficient for the variable yi in the dual problem equals the
right-hand side constant of the ith constraint of (P).

Constraints of the dual problem

If A is the constraint matrix of (P), then AT is the constraint matrix of
(D). The jth right-hand side constant of (D) equals the jth coefficient in
the objective function of (P). If the jth variable of (P) has non-negativity
restriction, then the jth constraint of (D) is an inequality of canonical
form. If the jth variable of (P) has a non-positivity restriction, then the
jth constraint of (D) is an inequality of non-canonical form. Finally, if
the jth variable of (P) is unrestricted, then the jth constraint of (D) is
an equality.

Summary

The rules above can be summarized as follows:

primal/dual constraint dual/primal variable

canonical inequality ⇐⇒ ≥ 0

non-canonical inequality ⇐⇒ ≤ 0

equality ⇐⇒ unrestricted

Consider the following general linear program:

minimize z =

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≥ bi, i ∈ C,

n∑

j=1

aijxj ≤ bi, i ∈ NC,

n∑

j=1

aijxj = bi, i ∈ E,

xj ≥ 0, j ∈ P,

xj ≤ 0, j ∈ N,

xj free, j ∈ F,

250

Draft from February 22, 2005

The linear programming dual

where C stands for “canonical”, NC for “non-canonical”, E for “equal-
ity”, P for “positive”, N for “negative”, and F for “free”. Note that
P ∪N ∪ F = {1, . . . , n} and C ∪NC ∪E = {1, . . . ,m}. If we apply the
rules above we get the following dual linear program:

maximize w =

m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≤ cj , j ∈ P,

m∑

i=1

aijyi ≥ cj , j ∈ N,

m∑

i=1

aijyi = cj , j ∈ F,

yi ≥ 0, i ∈ C,

yi ≤ 0, i ∈ NC,

yi free, i ∈ E.

From this it is easily established that if we construct the dual of the dual
linear program, then we return to the original (primal) linear program.

Examples

In order to illustrate how to construct the dual linear program we present
two examples. The first example considers a linear program with block
structure. This is a usual form of linear programs and it is particularly
easy to construct the dual linear program. The other example deals
with the transportation problem presented in Section 8.1. The purpose
of constructing the dual to this problem is to show how to handle double
subscripted variables and indexed constraints.

Example 10.2 (the dual to a linear program of block form) Consider the
linear program

maximize cTx+dTy

subject to Ax +By ≤ b,

Dy = e,

x ≥ 0n1 ,

y ≤ 0n2 ,

251

Draft from February 22, 2005

LP duality and sensitivity analysis

where A ∈ Rm1×n1 , D ∈ Rm2×n2 , b ∈ Rm1 , e ∈ Rm2 , c ∈ Rn1 , and
d ∈ Rn2 . The dual of this linear program becomes that to

minimize bTu +eTv

subject to ATu ≥ c,

BTu+DTv ≤ d,

u ≥ 0m1 ,

v free.

Observe that the constraint matrix of the primal problem is
(

A B

0 D

)
,

and if we transpose this matrix we get
(

AT 0T

BT DT

)
.

Also note that the vector of objective function coefficients of the primal
problem, (cT,dT)T, is the right-hand side of the dual problem, and
the right-hand side of the primal problem, (bT, eT)T, is the vector of
objective function coefficients of the dual problem.

Example 10.3 (the dual of the transportation problem) Consider the trans-
portation problem (see Example 8.1) to

minimize z =

N∑

i=1

M∑

j=1

cijxij

subject to
M∑

j=1

xij ≤ si, i = 1, . . . , N,

N∑

i=1

xij ≥ dj , j = 1, . . . ,M,

xij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M.

The dual linear program is given by

maximize w =
N∑

i=1

siui +
M∑

j=1

djvj

subject to ui + vj ≤ cij , i = 1, . . . , N, j = 1, . . . ,M,

ui ≤ 0, i = 1, . . . , N,

vj ≥ 0, j = 1, . . . ,M.

252

Draft from February 22, 2005

Linear programming duality theory

Observe that there are N + M constraints in the primal problem and
hence there are N +M dual variables. Also, there are NM variables of
the primal problem, yielding NM constraints in the dual problem. The
form of the constraints in the dual problem arises from the fact that xij

appears twice in the column of the constraint matrix corresponding to
this variable: once in the constraints over i = 1, . . . , N and once in the
constraints over j = 1, . . . ,M . Also note that all the coefficients of the
constraint matrix in the primal problem equal +1, and since we have
one dual constraint for each column, we finally get the dual constraint
ui + vj ≤ cij .

10.3 Linear programming duality theory

In this section we present some of the most fundamental duality theo-
rems. Throughout the section we will consider the primal linear program

minimize z = cTx (P)

subject to Ax = b,

x ≥ 0n,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, and its dual linear program

maximize w = bTy (D)

subject to ATy ≤ c,

y free.

The theorems presented actually hold for every primal–dual pair of linear
programs, and the proofs are similar to those presented here. See also
the more general statements on the differentiability of the perturbation
function in Section 6.7.

10.3.1 Weak and strong duality

We begin by proving the Weak Duality Theorem.

Theorem 10.4 (Weak Duality Theorem) If x is a feasible solution to
(P) and y a feasible solution to (D), then cTx ≥ bTy.

Proof. We have that

cTx ≥ (ATy)Tx [c ≥ ATy, x ≥ 0n]

= yTAx = yTb [Ax = b]

= bTy,

253

Draft from February 22, 2005

LP duality and sensitivity analysis

and we are done.

Corollary 10.5 If x is feasible solution to (P), y a feasible solution to
(D), and cTx = bTy, then x is an optimal solution to (P) and y and
optimal solution to (D).

Next we show that the duality gap is zero, that is, strong duality
holds. Note that this can also be established by the use of the Lagrangian
duality theory in Chapter 6.

Theorem 10.6 (Strong Duality Theorem) If one of the problems (P) and
(D) has a finite optimal solution, then so does its dual, and their optimal
objective values are equal.

Proof. Suppose that x∗ = (xT
B,x

T
N)T is an optimal basic feasible solu-

tion to (P) corresponding to the partition A = (B,N). We construct
an optimal solution to (D). (Actually we have already done this in detail
in Section 10.1.) Let

(y∗)T = cT
BB−1.

Since x∗ is an optimal basic feasible solution the reduced costs of the
non-basic variables are non-negative, which gives that (for details see
Section 10.1)

ATy∗ ≤ c.

Hence, y∗ is feasible to (D). Further, we have that

bTy∗ = bT(B−1)TcB = cT
BB−1b = cT

BxB = cTx∗,

so by Corollary 10.5 it follows that y∗ is an optimal solution to (D).
Now suppose instead that the dual problem has a finite optimal so-

lution. Convert (D) into standard form:

minimize w̃ = −bTy+ + bTy− (D’)

subject to
(
AT −AT I

)



y+

y−

s



 = c,

y+,y− ≥ 0m,

s ≥ 0n.

254

Draft from February 22, 2005

Linear programming duality theory

If there exists an optimal solution y∗ to (D), then there exists an optimal
basic feasible solution to (D’) (with w̃∗ = −w∗). As in the first part of
the proof we then get that there exists an x∗ ∈ Rn such that




A

−A

I



x∗ ≤




−b

b

0n



 ,

and

w̃∗ = cTx∗.

Hence, by Corollary 10.5, we get that −x∗ is an optimal solution to (P).
We are done.

Remark 10.7 (dual solution from the primal solution) Note that the proof
of Theorem 10.6 is constructive. We actually construct an optimal dual
solution from an optimal basic feasible solution by

(y∗)T = cT
BB−1. (10.3)

When a linear program is solved by the Simplex method we obtain an
optimal basic feasible solution (if the LP is not unbounded or infeasible).
Hence from (10.3) we then also—without any additional effort—obtain
an optimal dual solution. In fact the dual solution is calculated in the
pricing step of the Simplex algorithm.

Interpretation of the optimal dual solution

We have from (10.3) that

bTy∗ = cT
BB−1b,

for any optimal basic feasible solution to (P). If xB > 0m, then a small
change in b does not change the basis, and so the optimal value of (D)
(and (P)), namely

v(b) := bTy∗

is linear at, and locally around, the value b. If, however, some (xB)i = 0,
then in this degenerate case it could be that the basis changes in a non-
differentiable manner with b. We summarize:

255

Draft from February 22, 2005

LP duality and sensitivity analysis

Theorem 10.8 (shadow price) If, for a given b, the optimal solution
to (P) corresponds to a non-degenerate basic feasible solution, then its
optimal value is differentiable at b, with

∂v(b)

∂bi
= y∗i , i = 1, . . . ,m,

that is, ∇v(b) = y∗.

Remark 10.9 (shadow price) The optimal dual solution is indeed the
shadow price for the constraints. If a unit change in one right-hand side
bi does not change the optimal basis, then the above states that the
optimal value will change exactly with the amount y∗i .

It is also clear that non-degeneracy at x∗ in (P) implies that the
optimal solution in (D) must be unique. Namely, we can show that
the function v is convex on its effective domain (why?) and the non-
degeneracy property clearly implies that v is also finite in a neighbour-
hood of b. Then, its differentiability at b is equivalent to the uniqueness
of its subgradients at b; cf. Proposition 6.16(c).

Farkas’ Lemma

In Section 3.2 we proved Farkas’ Lemma 3.30 by using the Separation
Theorem 3.24. However, Farkas’ Lemma 3.30 can easily be proved by
using the Strong Duality Theorem 10.6.

Theorem 10.10 (Farkas’ Lemma) Let A ∈ Rm×n and b ∈ Rm. Then,
exactly one of the systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Proof. If (I) has a solution x, then

bTy = xTATy > 0.

But x ≥ 0n, so ATy ≤ 0n cannot hold, which means that (II) is infea-
sible.

256

Draft from February 22, 2005

Linear programming duality theory

Assume that (II) is infeasible. Consider the linear program

maximize bTy (10.4)

subject to ATy ≤ 0n,

y free,

and its dual program

minimize (0n)Tx (10.5)

subject to Ax = b,

x ≥ 0n.

Since (II) is infeasible, y = 0m is an optimal solution to (10.4). Hence
the Strong Duality Theorem 10.6 implies that there exists an optimal
solution to (10.5). This solution is feasible to (I).

What we have proved above is the equivalence

(I) ⇐⇒ ¬(II).

Logically, this is equivalent to the statement that

¬(I) ⇐⇒ (II).

We have hence established that precisely one of the two systems (I) and
(II) has a solution. We are done.

10.3.2 Complementary slackness

A further relationship between (P) and (D) at an optimal solution is
given by the Complementary Slackness Theorem.

Theorem 10.11 (Complementary Slackness Theorem) Let x be a feasi-
ble solution to (P) and y a feasible solution to (D). Then x is optimal
to (P) and y optimal to (D) if and only if

xj(cj − AT
·jy) = 0, j = 1, . . . , n, (10.6)

where A·j is the jth column of A.

Proof. If x and y are feasible we get

cTx ≥ (ATy)Tx = yTAx = bTy. (10.7)

257

Draft from February 22, 2005

LP duality and sensitivity analysis

Further, by the Strong Duality Theorem 10.6 and the Weak Duality
Theorem 10.4, x and y are optimal if and only if cTx = bTy, so in fact
(10.7) holds with equality, that is,

cTx = (ATy)Tx ⇐⇒ xT(c − ATy) = 0.

Since x ≥ 0n and ATy ≤ c, xT(c−ATy) = 0 is equivalent to that each
term in the sum is zero, that is, (10.6) holds.

Often the Complementary Slackness Theorem is stated for the primal–
dual pair given by

maximize cTx (10.8)

subject to Ax ≤ b,

x ≥ 0n,

and

minimize bTy (10.9)

subject to ATy ≥ c,

y ≥ 0m.

The Complementary Slackness Theorem then becomes as follows. (Its
proof is similar to that of Theorem 10.11.)

Theorem 10.12 (Complementary Slackness Theorem) Let x be a feasi-
ble solution to (10.8) and y a feasible solution to (10.9). Then x is
optimal to (10.8) and y optimal to (10.9) if and only if

xj(cj − yTA·j) = 0, j = 1, . . . , n, (10.10a)

yi(Ai·x − bi) = 0, i = 1 . . . ,m, (10.10b)

where A·j is the jth column of A and Ai· the ith row of A.

Remark 10.13 (interpretation of the Complementary Slackness Theorem)
From the Complementary Slackness Theorem follows that, for an opti-
mal primal dual pair of solutions, if there is slack in one constraint, then
the respective variable in the other problem is zero. Further, if a variable
is positive, then there is no slack in the respective constraint in the other
problem.

The consequence of the Complementary Slackness Theorem is the
following characterization of an optimal solution to a linear program.
We state it for the primal–dual pair given by (10.8) and (10.9), but it
holds as well for each primal dual pair of linear programs.

258

Draft from February 22, 2005

Linear programming duality theory

Theorem 10.14 (necessary and sufficient conditions for global optimality)
Take a vector x ∈ Rn. For x to be an optimal solution to the linear pro-
gram (10.8), it is both necessary and sufficient that

(a) x is a feasible solution to (10.8);
(b) corresponding to x there is a dual feasible solution y ∈ Rm to

(10.9); and
(c) the pair (x,y) satisfies the complementarity conditions (10.10).

The simplex method is very well adapted to these conditions. After
Phase I, (a) holds. Every basic solution (feasible or not) satisfies (c),
since if xj is in the basis, then c̃j = cj − yTA·j = 0, and if c̃j 6= 0,
then xj = 0. So, the only condition that the Simplex method does not
satisfy for every basic feasible solution is (b). The proof of the Strong
Duality Theorem 10.6 shows that it is satisfied exactly at an optimal
basic feasible solution. The entering criterion is based on trying to better
satisfy it. Indeed, by choosing as an entering variable xj such that

j ∈ argminimum
j∈{1,...,n}

c̃j ,

we actually identify a dual constraint
m∑

i=1

aijyi ≤ cj ,

which is among the most violated at the complementary solution yT =
cT

BB−1 given by the current BFS. After the basis change we will have
equality in this dual constraint, and hence the basis change corresponds
to making a currently most violated dual constraint feasible!

Example 10.15 (illustration of complementary slackness) Consider the primal–
dual pair given by

maximize z = 3x1 +2x2 (10.11)

subject to x1 +x2 ≤ 80,

2x1 +x2 ≤ 100,

x1 ≤ 40,

x1, x2 ≥ 0,

and

minimize w = 80y1 +100y2 +40y3 (10.12)

subject to y1 +2y2 +y3 ≥ 3,

y1 +y2 ≥ 2,

y1, y2, y3 ≥ 0.

259

Draft from February 22, 2005

LP duality and sensitivity analysis

We use Theorem 10.14 to show that x∗ = (20, 60)T is an optimal
solution to (10.11).

(a) (primal feasibility) Obviously x∗ is a feasible solution to (10.11).
(c) (complementary) The complementary conditions must hold, that

is,

y∗1(x∗1 + x∗2 − 80) = 0

y∗2(2x∗1 + x∗2 − 100) = 0

y∗3(x∗1 − 40) = 0 =⇒ y∗3 = 0 [x∗1 = 20 6= 40]

x∗1(y
∗
1 + 2y∗2 + y∗3 − 3) = 0 =⇒ y∗1 + 2y∗2 = 3 [x∗1 > 0]

x∗2(y
∗
1 + y∗2 − 2) = 0 =⇒ y∗1 + y∗2 = 2 [x∗2 > 0]

which gives that y∗1 = 1, y∗2 = 1 and y∗3 = 0.

(b) (dual feasibility) Obviously y∗ = (1, 1, 0)T is a feasible solution to
(10.12).

From Theorem 10.14 it then follows that x∗ = (20, 60)T is an optimal
solution to (10.11) and y∗ = (1, 1, 0)T an optimal solution to (10.12).

10.4 The Dual Simplex method

The Simplex method presented in Chapter 9, which we here refer to
as the primal Simplex method, starts with a basic feasible solution to
the primal linear program and then iterates until the primal optimality
conditions are fulfilled, that is, until a basic feasible solution is found
such that the reduced costs

c̄T
N := cT

N − cT
BB−1N ≥ (0n−m)T.

This is equivalent to the dual feasibility condition

ATy ≤ c,

where y = (B−1)TcB. We call a basis such that all of the reduced
costs are greater than or equal to zero a dual feasible basis; otherwise we
call it a dual infeasible basis. Hence, the primal Simplex method starts
with a primal feasible basis and then moves through a sequence of dual
infeasible (but primal feasible) bases until a dual (and primal) feasible
basis is found.

The Dual Simplex method is a variant of the primal Simplex method
that works in a dual manner in the sense that it starts with a dual feasible
basis and then moves through a sequence of primal infeasible (but dual
feasible) bases until a primal (and dual) feasible basis is found.

260

Draft from February 22, 2005

The Dual Simplex method

In order to derive the Dual Simplex algorithm, let xB be a dual
feasible basis with the corresponding partition (B,N). If

b̄ = B−1b ≥ 0m,

then xB is primal feasible and since it is also dual feasible all of the
reduced costs are greater than or equal to zero; hence, xB is an optimal
BFS. Otherwise some of the components of b̃ is strictly negative, say b̄1,
that is,

(xB)1 +
n−m∑

j=1

(B−1N)1j(xN)j = b̄1 < 0,

so (xB)1 < 0 in the current basis and will be the leaving variable. Now,
if

(B−1N)1j ≥ 0, j = 1, . . . , n−m, (10.13)

then there exists no primal feasible solution to the problem. (Why?)
Hence, if (10.13) is fulfilled, then we say that the primal infeasibility
criterion is satisfied. Otherwise (B−1N)1j < 0 for some j = 1, . . . , n−m.
Assume that (B−1N)1k < 0 and choose (xN)k to replace (xB)1 in the
basis. (Note that this yields that (xN)k = b̄1/(B

−1N)1k > 0 in the new
basis.) The new reduced costs then become

(c̃B)1 = − 1

(B−1N)1k

,

(c̃B)j = 0, j = 2, . . . ,m,

(c̃N)j = (c̄N)j − (c̄N)k
(B−1N)1j

(B−1N)1k

, j = 1, . . . , n−m.

Since we want the new basis to be dual feasible it must hold that all of
the new reduced costs are non-negative, that is,

(c̄N)j ≥ (c̄N)k
(B−1N)1j

(B−1N)1k

, j = 1, . . . , n−m,

or, equivalently,

(c̄N)k

(B−1N)1k

≥ (c̄N)j

(B−1N)1j

, for all j such that (B−1N)1j < 0.

Therefore, in order to preserve dual feasibility, as entering variable we
must choose (xN)k such that

k ∈ arg maximum
i∈{ j | (B−1N)1j<0 }

(c̄N)j

(B−1N)1j

.

261

Draft from February 22, 2005

LP duality and sensitivity analysis

We have now derived an infeasibility criterion and criteria for how to
choose the leaving and the entering variables, and are ready to state the
Dual Simplex algorithm:

The Dual Simplex Algorithm:

Step 0 (initialization: DFS) Assume that xT = (xT
B,x

T
N) is a dual fea-

sible basis corresponding to the partition A = (B,N).

Step 1 (leaving variable or termination) Calculate

b̄ = B−1b.

If b̄ ≥ 0m, then stop; the current basis is optimal. Otherwise,
choose an s such that b̄s < 0, and let (xB)s be the leaving variable.

Step 2 (entering variable or termination) If

(B−1N)sj ≥ 0, j = 1, . . . , n−m,

then stop; the (primal) problem is infeasible. Otherwise, choose a
k such that

k ∈ arg maximum
i∈{ j | (B−1N)sj<0 }

(c̄N)j

(B−1N)sj

,

and let (xN)k be the entering variable.

Step 3 (update: change basis) Construct a new partition by swapping
(xB)s with (xN)k. Go to Step 1.

Similarly to the primal Simplex Algorithm it can be shown that the
Dual Simplex Algorithm terminates in a finite number of steps if cycling
is avoided. Also, there exist rules for choosing the leaving and entering
variables (among the eligible ones) such that cycling is avoided.

If a dual feasible solution is not available from the start, it is possible
to add a constraint to the original problem, that makes it possible to
construct a dual feasible basis, and then run the Dual Simplex Algorithm
on this modified problem (see Exercise 10.13).

Remark 10.16 (unboundedness of the primal problem) Since the dual prob-
lem is known to be feasible, the primal problem cannot be unbounded
by the Weak Duality Theorem 10.4. Hence the Dual Simplex Algorithm
terminates with a basis that satisfies either the optimality criterion or
the primal infeasibility criterion.

262

Draft from February 22, 2005

The Dual Simplex method

Example 10.17 (illustration of the Dual Simplex Algorithm) Consider the
linear program

minimize 3x1 +4x2 +2x3 +x4 +5x5

subject to x1 −2x2 −x3 +x4 +x5 ≤−3,

−x1 −x2 −x3 +x4 +x5 ≤−2,

x1 +x2 −2x3 +2x4 −3x5 ≤ 4,

x1, x2, x3, x4, x5 ≥ 0.

By introducing the slack variables x6, x7, x8, we get the following linear
program:

minimize 3x1 +4x2 +2x3 +x4 +5x5

subject to x1 −2x2 −x3 +x4 +x5 +x6 =−3,

−x1 −x2 −x3 +x4 +x5 +x7 =−2,

x1 +x2 −2x3 +2x4 −3x5 +x8 = 4,

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0.

We see that the basis xB = (x6, x7, x8)
T is dual feasible, but primal in-

feasible. Hence we use the Dual Simplex Algorithm to solve the problem.
We have that

b̄ = B−1b = (−3,−2, 4)T,

so we choose (xB)1 = x6 to leave the basis. Further we have that

c̄T = (3, 4, 2, 1, 5, 0, 0, 0),

(B−1A)1,· = (1,−2,−1, 1, 1, 1, 0, 0), [the 1st row of B−1A]

so we choose x2 as the entering variable. The new basis becomes xB =
(x2, x7, x8)

T. We get that

b̄ = B−1b = (1.5,−0.5, 2.5)T.

Hence, we choose (xB)2 = x7 as the leaving variable. Further

c̄T = (5, 0, 0, 3, 7, 2, 0, 0),

(B−1A)2,· = (−1.5, 0,−0.5, 0.5, 0.5,−0.5, 1, 0),

which gives that x3 is the entering variable. The new basis becomes
xB = (x2, x3, x8)

T. We get that

b̄ = B−1b = (1, 1, 5)T,

263

Draft from February 22, 2005

LP duality and sensitivity analysis

which means that the optimality criterion (primal feasibility) is satisfied,
and an optimal solution to the original problem is given by

x∗ = (x1, x2, x3, x4, x5)
T = (0, 1, 1, 0, 0)T.

Check that this is indeed true, for example by using Theorem 10.12.

10.5 Sensitivity analysis

In this section we study two kinds of perturbations of a linear program
in standard form,

minimize z = cTx (10.14)

subject to Ax = b,

x ≥ 0n,

namely

1. perturbations in the objective function coefficients cj; and

2. perturbations in the right-hand side coefficients bi.

We assume that x∗ = (xT
B,x

T
N)T = ((B−1b)T, (0n−m)T)T is an optimal

basic feasible solution to (10.14) with the corresponding partition A =
(B,N).

10.5.1 Perturbations in the objective function

Assume that the objective function coefficients of the linear program
(10.14) are perturbed by the vector p ∈ Rn, that is, we consider the
perturbed problem to

minimize z̃ = (c + p)Tx (10.15)

subject to Ax = b,

x ≥ 0n.

The optimal solution x∗ to the unperturbed problem (10.14) is obviously
a feasible solution to (10.15), but is it still optimal? To answer this ques-
tion, we note that a basic feasible solution is optimal if the reduced costs
of the non-basic variables are greater than or equal to zero. The reduced
costs for the non-basic variables of the perturbed problem (10.15) are
given by [let pT = (pT

B ,p
T
N)]

c̄T
N = (cN + pN)T − (cB + pB)TB−1N .

Hence, c̄N ≥ 0n−m is sufficient for x∗ to be an optimal solution to
the perturbed problem (10.15). (Observe, however, that this is not a
necessary condition unless x∗ is non-degenerate.)

264

Draft from February 22, 2005

Sensitivity analysis

Perturbations of a non-basic cost coefficient

If only one component of cN is perturbed, that is,

p =

(
pB

pN

)
=

(
0m

εej

)
,

for some ε ∈ R and j ∈ {1, . . . , n − m}, then we have that x∗ is an
optimal solution to the perturbed problem if

(cN)j + ε− cT
BB−1N j ≥ 0 ⇐⇒ ε+ (c̃N)j ≥ 0,

so in this case we only have to check that the perturbation ε is not less
than −(c̃N)j in order to guarantee that x∗ is an optimal solution to the
perturbed problem.

Perturbations of a basic cost coefficient

If only one component of cB is perturbed, that is,

p =

(
pB

pN

)
=

(
εej

0n−m

)
,

for some ε ∈ R and j ∈ {1, . . . ,m}, then we have that x∗ is an optimal
solution to the perturbed problem if

(cN)T − (cT
B + εeT

j)B−1N ≥ (0n−m)T ⇐⇒ εeT
j B−1N + c̃N ≥ 0n−m.

In this case all of the reduced costs of the non-basic variables may change,
and we must check that the perturbation ε multiplied by the jth row of
B−1N plus the original reduced costs c̃N is a vector whose components
all are greater than or equal to zero.

Perturbations that makes x∗ non-optimal

If the perturbation p is such that some of the reduced costs of the per-
turbed problem becomes strictly negative for the basis xB , then x∗ is
perhaps not an optimal solution anymore. If this happens, let some
of the variables with strictly negative reduced cost enter the basis and
continue the Simplex algorithm until an optimal solution is found.

10.5.2 Perturbations in the right-hand side coeffi-
cients

Now, assume that the right-hand side b of the linear program (10.14)
is perturbed by the vector p ∈ Rm, that is, we consider the perturbed

265

Draft from February 22, 2005

LP duality and sensitivity analysis

problem to

minimize z̃ = cTx (10.16)

subject to Ax = b + p,

x ≥ 0n.

The original reduced costs do not change as the right-hand side is
perturbed, so the basic feasible solution given by the partition A =
(B,N) is optimal to the perturbed problem (10.16) if and only if it is
feasible, that is,

(
xB

xN

)
=

(
B−1(b + p)

0n−m

)
≥ 0n,

which means that we have to check that B−1(b + p) ≥ 0m.

Perturbations of one component of the right-hand side

Suppose that only one of the components of the right-hand side is per-
turbed, that is,

p = εej ,

for some ε ∈ R and j ∈ {1, . . . ,m}. The basic feasible solution corre-
sponding to the partition A = (B,N) is then feasible if and only if

B−1(b + εej) ≥ 0m ⇐⇒ εB−1ej + B−1b ≥ 0m,

so it must hold that ε multiplied by the jth column of B−1 plus the
vector B−1b equals a vector whose components all are greater than or
equal to zero.

Perturbations that makes x∗ infeasible

If the perturbation p is such that the basis xB becomes infeasible, then
some of the components in the updated right-hand side, B−1(b + p), is
strictly negative. However, the reduced costs are independent of p, so
the basis xB is still a dual feasible basis. Hence, we can continue with
the Dual Simplex algorithm until an optimal solution is found (or until
the primal infeasibility criterion is satisfied).

266

Draft from February 22, 2005

Notes and further reading

10.6 Notes and further reading

10.7 Exercises

Exercise 10.1 (constructing the LP dual) Consider the linear program

maximize z = 6x1 −3x2−2x3+5x4

subject to 4x1 +3x2−8x3+7x4 = 11,

3x1 +2x2+7x3+6x4 ≥ 23,

7x1 +4x2+3x3+2x4 ≤ 12,

x1, x2 ≥ 0,

x3 ≤ 0,

x4 free.

Construct the linear programming dual.

Exercise 10.2 (constructing the LP dual) Consider the linear program

minimize z = cTx

subject to Ax = b,

l ≤ x ≤ u.

(a) Construct the linear programming dual.

(b) Show that the dual problem is always feasible (independent of A,
b, l, and u).

Exercise 10.3 (constructing an optimal dual solution from an optimal BFS)
Consider the linear program in standard form

minimize z = cTx (P)

subject to Ax = b,

x ≥ 0n.

Assume that an optimal BFS, x∗ = (xT
B,x

T
N)T, is given by the partition

A = (B,N). Show that

y = (B−1)TcB

is an optimal solution to the LP dual problem.

267

Draft from February 22, 2005

LP duality and sensitivity analysis

Exercise 10.4 (application of the Weak and Strong Duality Theorems) Consider
the linear program

minimize z = cTx (P)

subject to Ax = b,

x ≥ 0n,

and the perturbed problem to

minimize z = cTx (P’)

subject to Ax = b̃,

x ≥ 0n.

Show that if (P) has an optimal solution, then the perturbed problem
(P’) cannot be unbounded (independent of b̃).

Exercise 10.5 (application of the Weak and Strong Duality Theorems) Consider
the linear program

minimize z = cTx (P)

subject to Ax ≤ b.

Assume that the objective function vector c cannot be written as a linear
combination of the rows of A. Show that (P) cannot have an optimal
solution.

Exercise 10.6 (application of the Weak and Strong Duality Theorems) Consider
the linear program

minimize z = cTx (P)

subject to Ax ≥ b,

x ≥ 0n.

Construct a polyhedron that equals the set of optimal solutions to (P).

Exercise 10.7 (application of the Weak and Strong Duality Theorems) Consider
the linear program

minimize z = cTx (P)

subject to Ax ≤ b,

x ≥ 0n.

268

Draft from February 22, 2005

Exercises

Let x∗ be an optimal solution to (P) with the optimal objective function
value z∗, and let y∗ be an optimal solution to the LP dual of (P). Show
that

z∗ = (y∗)TAx∗.

Exercise 10.8 (linear programming primal-dual optimality conditions) Consider
the linear program

maximize z = −4x2 +3x3 +2x4 −8x5

subject to 3x1 +x2 +2x3 +x4 = 3,

x1 −x2 +x4 −x5 ≥ 2,

x1, x2, x3, x4, x5 ≥ 0.

Find an optimal solution by using the LP primal-dual optimality condi-
tions.

Exercise 10.9 (linear programming primal-dual optimality conditions) Consider
the linear program (the continuous knapsack problem)

maximize z = cTx (P)

subject to aTx ≤ b,

x ≤ 1n,

x ≥ 0n,

where c > 0n, a > 0n, b > 0, and

c1
a1

≥ c2
a2

≥ · · · ≥ cn
an
.

Show that the feasible solution x given by

xj = 1, j = 1, . . . , r − 1, xr =
b −∑r−1

j=1 aj

ar
, xj = 0, j = r + 1, . . . , n,

where r is such that
∑r−1

j=1 aj < b and
∑r

j=1 aj > b, is an optimal
solution.

Exercise 10.10 (characterizations of optimal solutions in linear programming)
Assume that x is feasible to (10.8) and y is feasible to (10.9). Show that
the following are equivalent:

(1) x is an optimal solution to (10.8) and y is an optimal solution to
(10.9);

(2) cTx = bTy; and
(3) the complementary slackness conditions (10.10) hold.

269

Draft from February 22, 2005

LP duality and sensitivity analysis

Exercise 10.11 (KKT versus LP primal-dual optimality conditions) Consider
the linear program

minimize z = cTx (P)

subject to Ax ≤ b,

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. Show that the KKT conditions
are equivalent to the LP primal-dual optimality conditions.

Exercise 10.12 (Lagrangian primal-dual versus LP primal-dual) Consider
the linear program

minimize z = cTx

subject to Ax ≤ b.

Show that the Lagrangian primal-dual optimality conditions are equiv-
alent to the LP primal-dual optimality conditions.

Exercise 10.13 (the Dual Simplex Method) Show that by adding the
constraint

x1 + · · · + xn ≤M,

where M is very large positive number, to a linear program in standard
form, it is always possible to construct a dual feasible basis.

Exercise 10.14 (sensitivity analysis: perturbations in the objective function)
Consider the linear program

maximize z = −x1 +18x2 +c3x3 +c4x4

subject to x1 +2x2 +3x3 +4x4 ≤ 3,

−3x1 +4x2 −5x3 −6x4 ≤ 1,

x1, x2, x3, x4 ≥ 0.

Find the values of c3 and c4 such that the basic solution that corresponds
to the partition xB = (x1, x2)

T is an optimal basic feasible solution to
the problem.

Exercise 10.15 (sensitivity analysis: perturbations in the right-hand side)
Consider the linear program

minimize z = −x1 +2x2 +x3

subject to 2x1 +x2 −x3 ≤ 7,

−x1 +2x2 +3x3 ≥ 3 + δ,

x1, x2, x3 ≥ 0.

270

Draft from February 22, 2005

Exercises

(a) Show that the basic solution that corresponds to the partition
xB = (x1, x3)

T is an optimal solution to the problem when δ = 0.
(b) Find the values of the perturbation δ ∈ R such that the above

BFS is optimal.
(c) Find an optimal solution when δ = −7.

271

Draft from February 22, 2005

LP duality and sensitivity analysis

272

Draft from February 22, 2005

Part V

Optimization over
Convex Sets

Draft from February 22, 2005 Draft from February 22, 2005

Unconstrained
optimization

XI

11.1 Introduction

We consider throughout this chapter the unconstrained optimization
problem to

minimize
x∈Rn

f(x), (11.1)

where f ∈ C0 on Rn (f is continuous). Mostly, we will assume that f ∈
C1 holds (f is continuously differentiable), in some cases even f ∈ C2.

What are the methods of choice for this problem? It depends on
many factors:� what is the size of the problem (n)?� are ∇f(x) and/or ∇2f(x) available, and if so to what cost?� what it is the solution requirement? (Do we need a global minimum

or a local minimum or simply a stationary point?)� What are the convexity properties of f?� Do we have a good estimate of the location of a stationary point
x∗? (Can we use locally-only convergent methods?)

We will discuss some basic approaches to the problem (11.1) and refer
to questions such as the ones just mentioned during the development.

Example 11.1 (non-linear least squares data fitting) Suppose that we have
m data points (ti, bi) which we believe are related through an algebraic
expression of the form

x1 + x2 exp(x3ti) + x4 exp(x5ti) = bi, i = 1, . . . ,m,

Draft from February 22, 2005

Unconstrained optimization

where however the parameters x1, . . . , x5 are unknown. (Here, exp(x) =
ex.) In order to best describe the above model, we minimize the total
“residual error” given by the norm of the residual

fi(x) := bi − [x1 + x2 exp(x3ti) + x4 exp(x5ti)], i = 1, . . . ,m.

A minimization will then yield the best fit with respect to the data points
available. The following then is the resulting optimization problem to
be solved:

minimize
x∈R5

f(x) :=

m∑

i=1

|fi(x)|2 =

m∑

i=1

[fi(x)]2.

This type of problem is very often solved within numerical analysis and
mathematical statistics. Note that the 2-norm is not the only measure
of the residual used; some times the maximum norm is used.

What is the typical form of an algorithm in unconstrained optimiza-
tion (in fact, for almost every problem class)? Take a look at Figure 11.1
which depicts the level curves of a convex, quadratic function, the below
description, and the flow chart in Figure 11.2 of a complete iteration.

Descent algorithm:

Step 0 (initialization). Determine a starting point x0 ∈ Rn. Set k := 0.

Step 1 (descent direction generation). Determine a search direction pk ∈
Rn.

Step 2 (line search). Determine a step length αk > 0 such that f(xk +
αkpk) < f(xk) holds.

Step 3 (update). Update: let xk+1 := xk + αkpk.

Step 4 (termination check). If a termination criterion is fulfilled, then
stop! Otherwise, let k := k + 1 and go to step 1.

This type of algorithm is inherently local, since we cannot in general
use more than the information that can be calculated at the current point
xk, that is, f(xk), ∇f(xk), and ∇2f(xk). As far as our local “sight”
is concerned, we sometimes call this type of method (for maximization
problems) the “near-sighted mountain climber,” reflecting the distinct
possibility that the mountain climber is in a deep fog and can only check
her barometer for the height and feel the steepness of the slope under her
feet. Notice then that Figure 11.1 was plotted using several thousands of
function evaluations; in reality—and definitely in higher dimension than
two—this type of orienteering map never exists when we want to solve
a problem.

276

Draft from February 22, 2005

Descent directions

−5
−4

−3
−2

−1
0

1
2

3
4

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

pk

pk+1

xk

xk+1

Figure 11.1: At xk, the search direction pk is generated. A step αk is
taken in this direction, producing xk+1. At this point, a new search
direction pk+1 is generated, and so on.

We begin by analyzing Step 1, the most important step of the above-
described algorithm. Based on the result in Proposition 4.15 it makes
good sense to generate pk such that it is a direction of descent.

11.2 Descent directions

11.2.1 Basic ideas

The definition of a direction of descent at a given point is given by
Definition 4.14. Usually, we have many choices for directions of descent,
see for example Proposition 4.15 for a sufficient criterion in case we deal
with a continuously differentiable function. In this section we discuss
some details on how descent directions should be generated, depending
on a particular situation.

Example 11.2 (example descent directions) (a) Let f ∈ C1(N) in some
neighborhood N of xk ∈ Rn. If ∇f(xk) 6= 0n, then p = −∇f(xk) is a

277

Draft from February 22, 2005

Unconstrained optimization

x0, k = 0

xk

Search direction

pk

Line search

αk

Update

Yes

No

xk+1

Termination?

k := k + 1

Figure 11.2: Flow chart of an iteration of the general algorithm.

descent direction for f at xk (this follows directly from Proposition 4.15).
This is exactly the search direction used in the steepest descent method,
and it naturally bears the name of steepest descent direction because it
solves the minimization problem to1

minimize
p∈Rn:‖p‖=1

∇f(xk)Tp. (11.2)

(b) Let f ∈ C2(N) in some neighborhood N of xk. If ∇f(xk) = 0n

we cannot use the steepest descent direction anymore. However, we can
work with second order information provided by the Hessian to find a
descent direction in this case also, provided that f is non-convex at 0n.

1We have that ∇f(x)Tp = ‖∇f(x)‖ · ‖p‖ cos θ, where θ is the angle between
the vectors ∇f(x) and p; this expression is clearly minimized by making cos θ =
−1, that is, by letting p have the angle 180◦ with −∇f(x); in other words, p =
−∇f(x)/‖∇f(x)‖.

278

Draft from February 22, 2005

Descent directions

Assume that ∇2f(xk) is not positive semidefinite (otherwise, xk is likely
to be at the locally optimal solution, see Theorem 4.16). If ∇2f(xk) is
indefinite we call the stationary point xk a saddle point of f . Let p be an
eigenvector corresponding to a negative eigenvalue of ∇2f(xk). Then,
we call p a direction of negative curvature for f at xk, and it can be
demonstrated that it is a descent direction for f at this point [the proof
is similar to the one of Proposition 4.15, but uses Taylor expansion (2.5)
instead of (2.4)].

(c) Assume the conditions of (a), and let Q ∈ Rn×n be an arbitrary
symmetric, positive definite matrix. Then p = −Q∇f(xk) is a descent
direction for f at xk: ∇f(xk)Tp = −∇f(xk)TQ∇f(xk) < 0, due to
the positive definiteness of Q. (This is of course true only if xk is non-
stationary, as assumed.)

Pre-multiplying by Q may be interpreted as a scaling of ∇f if we
choose a diagonal matrix Q; the use of more general matrices is of course
possible and leads to exceptionally good computational results for clever
choices of Q. Newton and quasi-Newton methods are based on con-
structing directions in this way. Note that setting Q = In (the identity
matrix in Rn×n), we obtain the steepest descent direction.

To find some arbitrary direction of descent is not a very difficult
task as demonstrated by Example 11.2 [in fact, the situation when
∇f(xk) = 0n appearing in (b) is quite an exotic one already, so typi-
cally one can always use directions constructed in (a), or, more generally
(c), as descent directions]. However, in order to secure the convergence
of numerical algorithms we must provide descent directions that “be-
have well” numerically. Typical requirements, additional to the basic
requirement of being a direction of descent, are:

|∇f(xk)Tpk| ≥ s1‖∇f(xk)‖2, and ‖pk‖ ≤ s2‖∇f(xk)‖, (11.3)

or

− ∇f(xk)Tpk

‖∇f(xk)‖ · ‖pk‖
≥ s1, and ‖pk‖ ≥ s2‖∇f(xk)‖, (11.4)

where s1, s2 > 0, and xk and pk are, respectively, iterates and search
directions of some iterative algorithm. (In the next section, we shall
provide the basic form of an iterative algorithm.)

The purpose of these condition is to prevent the descent directions to
deteriorate in quality in terms of always providing good enough descent.
For example, the first condition in (11.3) states that if the directional
derivative of f tends to zero then it must be that the gradient of f also
tends to zero, while the second condition makes sure that a bad direction

279

Draft from February 22, 2005

Unconstrained optimization

in terms of the directional derivative is not compensated by the search
direction becoming extremely long in norm. The first condition

− ∇f(xk)Tpk

‖∇f(xk)‖ · ‖pk‖
≥ s1 (11.5)

in (11.4) is equivalent to the requirement that the cosine of the angle
between −∇f(xk) and pk is positive and bounded away from zero by
the value of s1, that is, the angle must be acute and not too close to
π/2; this is another way of saying that the direction pk must be steep
enough. The purpose of the second condition in (11.4) then is to ensure
that if the search direction vanishes then so does the gradient. Methods
satisfying (11.3), (11.4) are some times referred to as gradient related,
since they cannot be based on search directions that are very far from
those of the steepest descent method.

The choice

pk = −∇f(xk)

fulfills the above conditions, with s1 = s2 = 1.
Another example is as follows: set pk = −Qk∇f(xk), where Qk ∈

Rn×n is a symmetric and positive definite matrix such that m‖s‖2 ≤
sTQks ≤M‖s‖2, for all s ∈ Rn, holds. [All eigenvalues of Qk lie in the
interval [m,M] ⊂ (0,∞).] Then, the requirement (11.3) is verified with
s1 = m, s2 = M , and (11.4) holds with s1 = m/M , s2 = m.

11.2.2 Less basic ideas

What should a good descent direction do? Roughly speaking, it should
provide as large descent as possible, that is, minimize f(x + p) − f(x)
over some large enough region of p around the origin. In principle, this
is the idea behind the optimization problem (11.2), because, according
to (2.1), f(x + p) − f(x) ≈ ∇f(x)Tp.

Therefore, more insights into how the scaling matrices Q appearing
in Example 11.2(c) should be constructed and, in particular, reasons why
the steepest descent direction is not a very wise choice, can be gained if
we consider more general approximations than the ones given by (2.1).
Namely, assume that f is C1 near x, and that for some positive definite
matrix Q it holds that

f(x + p) − f(x) ≈ ϕx (p) = ∇f(x)Tp +
1

2
pTQ−1p. (11.6)

For example, if f ∈ C2, ∇2f(x) ≻ 0n×n, and assuming o(‖p‖2) ≈ 0
[cf. (2.3)] we may use Q−1 = ∇2f(x).

280

Draft from February 22, 2005

Descent directions

Using the optimality conditions, we can easily check that the search
direction defined in Example 11.2(c) is a solution to the following opti-
mization problem:

minimize
p∈Rn

ϕx (p), (11.7)

where ϕx (p) is defined by (11.6). The closer ϕx (p) approximates f(x +
p) − f(x), the better the quality of search directions generated by Ex-
ample 11.2(c) we can expect.

As was already mentioned, setting Q = In, which absolutely fails
to take into account any information about f (that is, it is a “one-size-
fits-all” approximation), gives us the steepest descent direction. (Cases
can easily be constructed such that the algorithm converges extremely
slowly; convergence can actually be so bad that the authors of the book
[BGLS03] decree that the steepest descent method should be forbidden!)
On the other hand, the “best” second-order approximation is given by
the Taylor expansion (2.3), and therefore we would like to set Q =
[∇2f(x)]−1; this is exactly the choice made in the Newton method.

Remark 11.3 (a motivation for the descent property in Newton’s method)
Recall that the search direction in Newton’s method is based on the so-
lution of the following linear system of equations: find p ∈ Rn such
that

∇pϕx (p) = ∇f(x) + ∇2f(x)p = 0n.

Consider the case of n = 1. We should then solve

f ′(x) + f ′′(x)p = 0. (11.8)

It is obvious that unless f ′(x) = 0 (whence we are at a stationary point
and p = 0 solves the equation) we cannot solve (11.8) unless f ′′(x) 6= 0.
Then, the solution p̄ := −f ′(x)/f ′′(x) to (11.8) is well-defined. We
distinguish between two cases:

(a) f ′′(x) > 0. In this case, the derivative of the second-order approx-
imation p 7→ f ′(x)p+ 1

2f
′′(x)p2 has a positive slope. Hence, if f ′(x) > 0

then p̄ < 0, and if f ′(x) < 0 then instead p̄ > 0 holds. In both cases,
therefore, the directional derivative f ′(x)p̄ < 0, that is, p̄ is a descent
direction.

(b) f ′′(x) < 0. In this case, the derivative of the second-order approx-
imation p 7→ f ′(x)p+ 1

2f
′′(x)p2 has a negative slope. Hence, if f ′(x) > 0

then p̄ > 0, and if f ′(x) < 0 then instead p̄ < 0 holds. In both cases,
therefore, the directional derivative f ′(x)p̄ > 0, that is, p̄ is an ascent
direction.

From this derivation it becomes clear that Newton’s method (for
n = 1 it is often referred to as the Newton–Raphson method) (cf. Sec-
tion 4.6.5.2) provides the same search direction regardless of whether

281

Draft from February 22, 2005

Unconstrained optimization

the optimization problem is a minimization or a maximization problem;
the reason is that the search direction is based on the stationarity of the
second-order approximation and not its minimization/maximization. We
also see that the Newton direction p̄ is a descent direction if the function
f is of the strictly convex type around x [that is, if f ′′(x) > 0], and an
ascent direction if it is of the strictly concave type around x [that is, if
f ′′(x) < 0]. In other words, if the objective function is (strictly) convex
or concave, the Newton equation will give us the right direction, if it
gives us a direction at all. Translated to the case of n > 1, Newton’s
method acts as a descent method if the Hessian matrix ∇2f(x) is posi-
tive definite, and as an ascent method if it is negative definite, which is
appropriate.

An essential problem arises of course if the above-described is not
what we want; for example, it may be that we are interested in max-
imizing a function which is neither convex or concave, and around a
current point the function is of strictly convex type (that is, the Hessian
is positive definite). In this case the Newton direction will not point in
an ascent direction, but instead the opposite. How to solve a problem
with a Newton-type method in a non-convex world is the main topic of
what follows. As always, we consider minimization to be the direction
of interest for f .

So, why might one want to choose a matrix Q differing from the
“best” choice [∇2f(x)]−1? There are several reasons:

Lack of positive definiteness The matrix ∇2f(x) might not be pos-
itive definite. As a result, the problem (11.7) may even lack optimal
solutions and −[∇2f(x)]−1∇f(x) might in any case not be a direction
of descent.

This problem can be cured by adding to ∇2f(x) a diagonal matrix
E, so that ∇2f(x) + E is positive definite. For example, E = γIn, for
−γ smaller than all the non-positive eigenvalues of ∇2f(x), may be used
because such a modification “shifts” the original eigenvalues of ∇2f(x)
by γ > 0. The value of γ needed will automatically be found when
solving the “Newton equation” ∇2f(x)p = −∇f(x), since eigenvalues
of ∇2f(x) are pivot elements in Gaussian-elimination procedures. This
modification bears the name Levenberg–Marquardt.

[Note: as γ becomes large, p resembles more and more the steepest
descent direction.]

Lack of enough differentiability The function f might not be twice
differentiable, or the matrix of second derivatives might be too costly to
compute/evaluate.

282

Draft from February 22, 2005

Descent directions

Either being the case, quasi-Newton methods approximate the New-
ton equation by replacing ∇2f(xk) with a matrix Bk that is cheaper to
compute, typically by only using values of ∇f at the current and some
previous points.

Using a first-order Taylor expansion (2.1) for ∇f(xk) we know that

∇2f(xk)(xk − xk−1) ≈ ∇f(xk) −∇f(xk−1),

so the matrix Bk is taken to satisfy the similar system

Bk(xk − xk−1) = ∇f(xk) −∇f(xk−1).

[Note: For n = 1, this corresponds to the secant method, in which at
iteration k we approximate the second derivative as

f ′′(xk) ≈ f ′(xk) − f ′(xk−1)

xk − xk−1

in Newton’s method.]
However, the matrix Bk (that is, n2 unknowns) is under-determined

in these n equations, so additional requirements, such as ones that make
sure that Bk is symmetric and positive definite, result in particular
quasi-Newton methods. Typically, starting from B0 = In, Bk+1 is
calculated from Bk using a rank-one or rank-two update; in particular,
this allows us to update the factorization of Bk to efficiently obtain the
factorization of Bk+1 using standard algorithms in linear algebra.

There are infinitely many choices that may be used, and the following
(called the Broyden–Fletcher–Goldfarb–Shanno, or BFGS, method after
the original publications [Bro70, Fle70, Gol70, Sha70]) is considered to
be the most effective:

Bk+1 = Bk − (Bksk)(Bksk)T

sT
k Bksk

+
ykyT

k

yT
k sk

,

where sk = xk+1 − xk, and yk = ∇f(xk+1) − ∇f(xk). Interestingly
enough, should f be quadratic, Bk will be identical to the Hessian of f
after a finite number of steps (namely, n).

Quasi-Newton methods with various update rules for Bk are very
popular for unconstrained optimization.

See Section 11.9 for more details on quasi-Newton methods.

Computational burden The solution of a linear system Bkpk =
−∇f(xk), or, which is the same if we identify Q−1 = Bk, finding the
optimum of (11.7), may be too costly. This is exactly the situation when

283

Draft from February 22, 2005

Unconstrained optimization

one would like to use the steepest descent method, which avoids any such
calculations.

Other possibilities are: (a) In a quasi-Newton method, keep the ma-
trix Bk (and, obviously, its factorization) fixed for k0 > 1 subsequent
steps; in this way, we need to perform matrix factorization (the most
computationally consuming part) only every k0 steps, k0 being a small
integer.

(b) Solve the optimization problem (11.7) only approximately; based
on the following arguments. Assume that xk violates the second order
necessary optimality conditions for f , and consider the problem (11.7)
where we replace the matrix Q−1 with an iteration-dependent, perhaps
only positive semi-definite matrix Bk. As a first example, suppose we
consider the Newton method, whence we choose Bk = ∇2f(xk). Then,
by the assumption that the second order necessary optimality conditions
are violated, p = 0n is not a minimum of ϕxk

(p) in the problem (11.7).
Let p̃ 6= 0n be any vector with ϕxk

(p̃) < ϕxk
(0n) = 0. Then,

ϕxk
(p̃) = ∇f(xk)Tp̃ +

1

2
p̃

T
Bkp̃

︸ ︷︷ ︸
≥0

< 0 = ϕxk
(0n),

which implies that ∇f(xk)Tp̃ < 0. This means that if the Newton
equations are solved inexactly, a descent direction is still obtained. This
can of course be generalized for quasi-Newton methods as well, since we
only assumed that the matrix Bk is positive semi-definite.

We summarize the above development of search directions in Ta-
ble 11.1. At some iteration k the iterate is xk; for each algorithm, we
describe the linear system solved in order to generate the search direc-
tion pk. In the table γk > 0 and Bk ∈ Rn×n is a symmetric and positive
definite matrix.

Algorithm Linear system
Steepest descent pk = −∇f(xk)

Newton’s method ∇2f(xk)pk = −∇f(xk)
Levenberg–Marquardt [∇2f(xk) + γkIn]pk = −∇f(xk)

Quasi-Newton Bkpk = −∇f(xk)

Table 11.1: Search directions.

284

Draft from February 22, 2005

Line searches

11.3 Line searches

11.3.1 Introduction

Executing Step 2 in the iterative algorithm is naturally done by finding
an approximate solution to the one-dimensional problem to

minimize
α≥0

ϕ(α) := f(xk + αpk). (11.9)

Its optimality conditions are that2

ϕ′(α∗) ≥ 0, α∗ · ϕ′(α∗) = 0, α∗ ≥ 0, (11.11)

that is,

∇f(xk + α∗pk)Tpk ≥ 0, α∗ · ∇f(xk + α∗pk)Tpk = 0, α∗ ≥ 0,

holds. So, if α∗ > 0, then ϕ′(α∗) = 0 must hold, which therefore means
that ∇f(xk + α∗pk)Tpk = 0, that is, that the search direction pk is
orthogonal to the gradient of f at the point xk + α∗pk.

Figure 11.3 shows an example of the one-dimensional function ϕ along
a descent direction with a well-defined minimum.

−5
−4

−3
−2

−1
0

1
2

3
4

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

α∗

α∗

α

pk

xk

ϕ(α)

Figure 11.3: A line search in a descent direction.

2These conditions are the same as those in Proposition 4.22(b). To establish this
fact, let’s suppose first that we satisfy (4.10) which here becomes the statement that

ϕ′(α∗)(α − α∗) ≥ 0, α ≥ 0. (11.10)

Setting first α = 0 in (11.10), then α∗ ·ϕ′(α∗) ≤ 0 follows. On the other hand, setting
α = 2α∗ in (11.10), then α∗ · ϕ′(α∗) ≥ 0 follows. So, α∗ · ϕ′(α∗) = 0 must hold.
Also, setting α = α∗ + 1 in (11.10), we obtain that ϕ′(α∗) ≥ 0. This establishes
that (11.11) follows from (4.10). To establish the reverse conclusion and therefore
prove that the two conditions are the same, we note that if we satisfy (11.11), then
it follows that for every α ≥ 0, ϕ′(α∗)(α − α∗) = αϕ′(α∗) ≥ 0, and we are done.

285

Draft from February 22, 2005

Unconstrained optimization

In the quest for a stationary point it is of relatively minor importance
to do a line search accurately—the stationary point is most probably
not situated somewhere along that half-line anyway. Therefore, most
line search strategies used in practice are approximate. It should also be
noted that if the function f is non-convex then so is probably the case
with ϕ as well, and globally minimizing a non-convex function is difficult
even in one variable.

11.3.2 Approximate line search strategies

First, we consider the case where f is quadratic; this is the only general
case where an accurate line search is practical.

Let f(x) = (1/2)xTQx−qTx+a, where the dimensions of Q ∈ Rn×n,
q ∈ Rn and a ∈ R are given data. Suppose we wish to minimize the
function ϕ for this special case. Then, we can solve for ϕ′(α∗) = 0
analytically:

ϕ′(α) = ∇f(x + αp)Tp

= [Q(x + αp) − q]Tp

= αpTQp − (q − Qx)Tp

= 0

⇔
α = (q − Qx)Tp/pTQp.

Let’s check the validity and meaning of this solution. We suppose nat-
urally that p is a descent direction, whence ϕ′(0) = (q − Qx)Tp < 0
holds. Therefore, if Q is positive definite, we are guaranteed that the
value of α will be positive.

Among the classic approximate line searches we mention very briefly
the following:

Interpolation Take f(xk),∇f(xk),∇f(xk)Tpk to model a quadratic
function approximating f along pk. Minimize it by using the an-
alytic formula above.

Newton’s method Repeat the improvements gained from a quadratic
approximation: α := α− ϕ′(α)/ϕ′′(α).

Golden Section The golden section method is a derivative-free method
for minimizing unimodal functions.3 The method reduces an in-

3ϕ is unimodal in an interval [a, b] of R if it has a unique global minimum in
[a, b], and is strictly increasing to the left as well as to the right of the minimum.
This notion is equivalent to that of ϕ having a minimum over [a, b] and being strictly
quasi-convex there.

286

Draft from February 22, 2005

Line searches

terval wherein the reduction is based only on evaluating ϕ. The
portion left of the length of the previous interval after reduction is

exactly the golden section,
√

5−1
2 ≈ 0.618.

An approximate line search methodology often used is known as the
Armijo step length rule. The idea is to quickly generate a step length
α which provides a “sufficient” decrease in the value of f . Note that
f(xk + αpk) ≈ f(xk) + α · ∇f(xk)Tpk for very small values of α > 0.
The requirement of the step length rule is that we get a decrease in
the left-hand side of the above approximate relation which is at least a
fraction of that predicted in the right-hand side.

Let µ ∈ (0, 1) be the fraction of decrease required. Then, the step
lengths accepted by the Armijo step length rule are the positive values
α which satisfy the inequality

ϕ(α) − ϕ(0) ≤ µαϕ′(0), (11.12a)

that is,

f(xk + αpk) − f(xk) ≤ µα∇f(xk)Tpk. (11.12b)

Figure 11.4 illustrates the Armijo step length rule.

αR

ϕ(0) + αϕ′(0) ϕ(0) + µαϕ′(0)

ϕ(α)

Figure 11.4: The interval, denoted R, accepted by the Armijo step length
rule.

The typical choices are the following: choose µ small [µ ∈ (0.001, 0.01)],
and take α = 1. If α = 1 does not satisfy the inequality (11.12), then
take α := α/2, and check the inequality (11.12) again. The choice of
initial trial step α = 1 is especially of interest in Newton-type methods,
where, locally around a stationary point x∗ where ∇2f(x∗) is positive

287

Draft from February 22, 2005

Unconstrained optimization

definite, local convergence with step length one is guaranteed. (See also
Section 4.6.5.2.)

In theory, however, we can select any starting guess ᾱ > 0 and any
fraction β ∈ (0, 1) in place of the choice β = 1

2 made above.
The Armijo condition is satisfied for any sufficiently small step length,

provided that the direction pk is a direction of descent. (See Exer-
cise 11.1.) In itself it therefore does not guarantee that the next iterate
is much better in terms of the objective value than the current one.
Often, therefore, it is combined with a condition such that

|ϕ′(αk)| ≤ η|ϕ′(0)|,

that is,
|∇f(xk + αpk)Tpk| ≤ η|∇f(xk)Tpk|,

holds for some η ∈ [0, 1). This is called the Wolfe condition. A relaxed
condition, the weak Wolfe condition, of the form

ϕ′(αk) ≥ ηϕ′(0)

is often preferred, since the former takes more computations to fulfill.
The choice 0 < µ < η < 1 leads to interesting descent algorithms when
the Armijo and weak Wolfe conditions are combined, and it is possible
(Why?) to find positive step lengths that satisfy these two conditions
provided only that f is bounded from below and pk is a direction of
descent.

11.4 Convergent algorithms

11.4.1 Basic convergence results

This section presents two basic convergence results for descent methods
under different step length rules.

Theorem 11.4 (convergence of a gradient related algorithm) Suppose that
f ∈ C1, and that for the starting point x0 it holds that the level set
levf (f(x0)) = {x ∈ Rn | f(x) ≤ f(x0) } is bounded. Consider the
iterative algorithm defined by the description in Section 11.1. In this
algorithm, suppose we make the following choices that hold for each
iteration k:� the search direction pk satisfies the sufficient descent condition

(11.4);� ‖pk‖ ≤M , where M is some positive constant; and

288

Draft from February 22, 2005

Convergent algorithms� the Armijo step length rule (11.12) is used.

Then, the sequence {xk} is bounded, the sequence {f(xk)} is descending,
lower bounded and therefore has a limit, and every limit point of {xk}
is stationary.

Proof. That {xk} is bounded follows since the algorithm, as stated, is
a descent method, and we assumed that the level set of f at the starting
point is bounded; therefore, the sequence of iterates must remain in that
set and is therefore bounded.

The rest of the proof is by contradiction. Suppose that x̄ is a limit
point of {xk} but that ∇f(x̄) 6= 0n. It is clear that by the continuity
of f , the whole sequence {f(xk)} converges to the value f(x̄). Hence,
{f(xk) − f(xk+1)} → 0 must hold. According to the Armijo rule, then,
{αk∇f(xk)Tpk} → 0. Here, there are two possibilities. Suppose that
{αk} → 0. Then, there must be some iteration k̄ after which the initial
step length is not accepted by the inequality (11.12), and therefore,

f(xk + (αk/β)pk) − f(xk) > µ(αk/β)∇f(xk)Tpk, k ≥ k̄.

Dividing both sides by 2αk we obtain in the limit that

∇f(x̄)Tp∞ ≥ 0,

for any limit point p∞ of the bounded sequence {pk}. But in the limit of
the inequality (11.4) we then clearly reach a contradiction. So, in fact,
we must have that {αk} 6→ 0. In this case, then, by the above we must
have that {∇f(xk)Tpk} → 0 holds, so by letting k tend to infinity we
obtain that

∇f(x̄)Tp∞ = 0,

which again produces a contradiction to the initial claim because of
(11.4). We conclude that ∇f(x̄) = 0n must therefore hold, and we are
done.

We note that since the resulting step length from an exact line search
in particular must satisfy the Armijo rule (11.12), the above proof can be
used to also establish the result of such a modification of the algorithm
given in the theorem. We further note that there is no guarantee that
the limit points x̄ is a local minimum; it may also be a saddle point,
that is, a stationary point where ∇2f(x̄) is indefinite, if it exists.

Another result is cited below from [BeT00]. It allows the Armijo step
length rule to be replaced by a much simpler type of step length rule
which is also used to minimize a class of non-differentiable functions (cf.
Section 6.5). The proof requires the addition of a technical assumption:

289

Draft from February 22, 2005

Unconstrained optimization

Definition 11.5 (Lipschitz continuity) A C1 function f : Rn → R is
said to have a Lipschitz continuous gradient mapping on Rn if there
exists a scalar L ≥ 0 such that

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖ (11.13)

holds for every x,y ∈ Rn.

Check that the gradient of a C2 function f is Lipschitz continuous
whenever its Hessian matrix is bounded over Rn.

Theorem 11.6 (on the convergence of gradient related methods) Let f ∈
C1. Consider the sequence {xk} generated by the formula xk+1 :=
xk + αkpk. Suppose that:� ∇f is Lipschitz continuous on Rn;� c1‖∇f(xk)‖2 ≤ −∇f(xk)Tpk, c1 > 0;� ‖pk‖ ≤ c2‖∇f(xk)‖, c2 > 0;� αk > 0 satisfies that {αk} → 0 and limk→∞

∑k
s=1 αs = ∞.

Then, either limk→∞ f(xk) = −∞ holds, or limk→∞ f(xk) = f̄ and
limk→∞ ∇f(xk) = 0n holds.

In Theorem 11.4 convergence is only established in terms of that
of subsequences, and the requirements include a level set boundedness
condition that can be difficult to check. A strong convergence result is
available for the case of convex functions f whenever we know that there
exists at least one optimal solution. It follows readily from Theorem 12.5
on the gradient projection method for differentiable optimization over
convex sets, whence we will not establish it here. In fact, for the special
case of the steepest descent algorithm, we have already seen such a result
in Theorem 6.23 for possibly even non-differentiable convex functions.

Theorem 11.7 (convergence of gradient related algorithms under convexity)
Suppose the function f ∈ C1 on Rn. Suppose further that f is convex
and that the problem (11.1) has at least one optimal solution. Consider
the iterative algorithm defined by the description in Section 11.1, under
the three additional conditions stated in Theorem 12.5, and where the
step length αk is determined by the Armijo step length rule. Then, the
sequence {xk} converges to some optimal solution to (11.1).

We have so far neglected Step 4 in the algorithm description in Sec-
tion 11.1 in that we assume in the above results that the sequence {xk}
is infinite. A termination criterion must obviously be applied if we are
to obtain a result in a finite amount of time. This is the subject of the
next section.

290

Draft from February 22, 2005

Finite termination criteria

11.5 Finite termination criteria

As noted above, convergence to a stationary point is only asymptotic.
How does one know when it is wise to terminate? A criterion based only
on a small size of ‖∇f(xk)‖ is no good—why? Because we compare with
0!

The recommendation is the combination of the following:

1. ‖∇f(xk)‖ ≤ ε1(1 + |f(xk)|), ε1 > 0 small;

2. f(xk−1) − f(xk) ≤ ε2(1 + |f(xk)|), ε2 > 0 small; and

3. ‖xk−1 − xk‖ ≤ ε3(1 + ‖xk‖), ε3 > 0 small.

The right-hand sides are constructed in order to eliminate some of the
possible influence of bad scaling of the variable values, of the objective
function, and of the gradient, and also of the possibility that some values
are zero at the optimum solution.

Notice that using the criterion 2. only might mean that we terminate
too soon if f is very flat; similarly with 3., we terminate prematurely if f
is extremely steep around the stationary point we are approaching. The
presence of the constant 1 is to remove the dependency of the criterion
on the absolute values of f and xk, particularly if they are near zero.

We also note that using the ‖ · ‖2 norm may not be good when n is
very large: suppose that ∇f(x̄) = (γ, γ, . . . , γ)T = γ(1, 1, . . . , 1)T. Then,
‖∇f(x̄)‖2 =

√
n · γ, which illustrates that the dimension of the problem

may enter the norm. Better then is to use the ∞-norm: ‖∇f(x̄)‖∞ :=

max1≤j≤n |∂f(x̄)
∂xj

| = |γ|, which does not depend on n.

Norms have other bad effects. Suppose that

xk−1 = (1.44453, 0.00093, 0.0000079)T,

xk = (1.44441, 0.00012, 0.0000011)T;

then,

‖xk−1 − xk‖∞ = ‖(0.00012, 0.00081, 0.0000068)T‖∞
= 0.00081.

Here, the termination test would possibly pass, although the number of
significant digits is very small (the first significant digit is still changing!)
Norms emphasize larger elements, so small ones may have bad relative
accuracy. This is a case where scaling is needed.

Suppose we know that x∗ = (1, 10−4, 10−6)T. If, by transforming
the space, we obtain that the optimal solution is x̂

∗ = (1, 1, 1)T, then

291

Draft from February 22, 2005

Unconstrained optimization

the same relative accuracy would be possible to achieve for all variables.
Let then

x̂ =




1 0 0
0 104 0
0 0 106




︸ ︷︷ ︸
D

x.

Let

f(x) :=
1

2
xTQx − cTx,

Q :=




8 3 · 104 0
3 · 104 4 · 108 1010

0 1010 6 · 1012


 ,

c :=




11
8 · 104

7 · 106


 .

Hence, x∗ = Q−1c = (1, 10−4, 10−6)T.

With x̂ = Dx, we get the transformed problem to minimize f̂(x̂) :=
1
2 x̂

T(D−1QD−1)x̂ − (D−1c)Tx̂, with

D−1QD−1 =




8 3 0
3 4 1
0 1 6



 ; D−1c =




11
8
7



 ,

and x̂∗ = (1, 1, 1)T. Notice the change in condition number in the ma-
trix!

The steepest descent algorithm takes only ∇f(x) into account, not
∇2f(x). Therefore, if the problem is badly scaled, it will suffer from a
poor convergence behaviour. Introducing elements of ∇2f(x) into the
search direction helps in this respect. This is the precisely the effect of
using second-order (Newton-type) algorithms.

11.6 A comment on non-differentiability

The subject of non-differentiable optimization will not be taken up in
generality here; it has been analyzed more fully for Lagrangian dual
problems in Chapter 6. The purpose of this discussion is to explain, by
means of an example, that things can go terribly wrong if we apply meth-
ods for the minimization of differentiable function when the function is
non-differentiable.

292

Draft from February 22, 2005

A comment on non-differentiability

The famous theorem of Rademacher states that a function that is
Lipschitz continuous [cf. (11.13) for a statement of the Lipschitz con-
dition for gradients] automatically is differentiable almost everywhere.
That seems to imply that we should not worry about differentiability,
because it is very unlikely that a non-differentiable point will be “hit”
by mistake. This is certainly true if the subject is simply to pick points
at random, but the subject of optimization deals with searching for a
particular, extremal point in the sense of the objective function, and
such points tend to be non-differentiable with a higher probability than
zero! Suppose for example that we consider the convex (Why?) function

f(x) := maximum
i∈{1,...,m}

{cT
i x + bi}, x ∈ Rn,

that is, a max-function defined by affine functions. It has the appearance
shown in Figure 11.5.

f(x)

x

Figure 11.5: A piece-wise affine convex function.

Clearly, the minimum of this function is located at a point where it
is non-differentiable.

We next look at a specific problem to which we will apply the method
of steepest descent. Suppose that we are given the following objective
function:4

f(x1, x2) :=

{
5(9x2

1 + 16x2
2)

1/2, if x1 > |x2|,
9x1 + 16|x2|, if x1 ≤ |x2|.

4This example is due to Wolfe [Wol75].

293

Draft from February 22, 2005

Unconstrained optimization

For x1 > 0, f is actually continuously differentiable! It is also convex,
by the way. (Checking these facts is a nice exercise.)

If we start at a point x0 anywhere in the region x1 > |x2| > (9/16)2|x1|
then we obtain a sequence generated by steepest descent with exact line
searches that defines a polygonal path with successive orthogonal seg-
ments, converging to x̄ = (0, 0)T.

But x̄ is not a stationary point! What is wrong here is that the
gradients calculated say very little about the behaviour of f at the limit
point (0, 0)T. In fact, f is non-differentiable there. In this example, it in
fact holds that limx1→−∞ f(x1, 0) = −∞, so steepest descent has failed
miserably.

In order to resolve this problem, we need to take some necessary
measures:

a) At a non-differentiable point, ∇f(x) must be replaced by a well-
defined extension. Usually, we would replace it with a subgradient,
that is, one of the vectors that define a supporting hyperplane to
the graph of f . At x̄ it is the set defined by the convex hull of the
two vectors (9, 16)T and (9,−16)T.

b) The step lengths must be chosen differently; exact line searches are
clearly forbidden, as we have just seen.

From such considerations, we may develop algorithms that find op-
tima to non-differentiable problems. They are referred to a subgradient
algorithms, and are analyzed in Section 6.5.

11.7 Trust region methods

Trust region methods use quadratic models like Newton-type methods
do, but avoid a line search by instead bounding the length of the search
direction, thereby also influencing its direction.

Let ψk(p) := f(xk) + ∇f(xk)Tp + 1
2pT∇2f(xk)p. We say that the

model ψk is trusted in a neighbourhood of xk : ‖p‖ ≤ ∆k. The use
of this bound is apparent when ∇2f(xk) is not positive semi-definite.
The problem to minimize ψk(p) subject to ‖p‖ ≤ ∆k can be solved
(approximately) quite efficiently. The idea is that when ∇2f(xk) is
badly conditioned, the value of ∆k should be kept low—thus turning
the algorithm more into a steepest descent-like method [recall (11.2)]—
while if ∇2f(xk) is well conditioned, ∆k should become large and allow
unit steps to be taken. (Prove that the direction of pk tends to that of
the steepest descent method when ∆k → 0!)

294

Draft from February 22, 2005

Conjugate gradient methods

The vector pk which solves the trust region problem satisfies [∇2f(xk)+
γkIn]pk = −∇f(xk) for some γk ≥ 0 such that ∇2f(xk) + γIn is pos-
itive semidefinite. The bounding enforced hence has a similar effect to
that of the Levenberg–Marquardt strategy discussed in Section 11.2.2.
Provided that the value of ∆k is low enough, f(xk + pk) < f(xk) holds.
Even if ∇f(xk) = 0n holds, f(xk + pk) < f(xk) still holds, if ∇2f(xk)
is not positive definite. So, progress is made also from stationary points
if they are saddle points or local maxima. The robustness and strong
convergence characteristics have made trust region methods quite pop-
ular.

The update of the trust region size is based on the following measure
of similarity between the model ψk and f : Let

ρk =
f(xk) − f(xk + pk)

f(xk) − ψk(pk)
=

actual reduction

predicted reduction
.

If ρk ≤ µ let xk+1 = xk (unsuccessful step), else
xk+1 = xk + pk (successful step).

The value of ∆k is updated in the following manner, depending on
the value of ρk:

µ <
ρk ≤ µ =⇒ ∆k+1 = 1

2∆k,
ρk < η =⇒ ∆k+1 = ∆k,
ρk ≥ η =⇒ ∆k+1 = 2∆k.

Here, 0 < µ < η < 1, with typical choices being µ = 1
4 and η = 3

4 ; µ is a
bound used for deciding when the model can or cannot be trusted even
within the region given, while η is used for deciding when the model is
good enough to be used in a larger neighbourhood.

Figure 11.6 illustrates the trust region subproblem.

11.8 Conjugate gradient methods

When applied to nonlinear unconstrained optimization problems conju-
gate direction methods are methods intermediate between the steepest
descent and Newton methods. The motivation behind them is simi-
lar to that for quasi-Newton methods: accelerating the steepest descent
method but avoid the evaluation, storage and inversion of the Hessian
matrix. They are analyzed for quadratic problems only; extensions to
non-quadratic problems utilize that close to an optimal solution every
problem is nearly quadratic. Even for non-quadratic problems, the last
few decades of developments have resulted in conjugate direction meth-
ods being one of the most efficient general methodologies available.

295

Draft from February 22, 2005

Unconstrained optimization

xk

x∗

Figure 11.6: Trust region and line search step. The dashed ellipses
are two level curves of the quadratic model constructed at xk, while the
dotted circle is the boundary of the trust region. A step to the minimum
of the quadratic model is here clearly inferior to the step taken within
the trust region.

11.8.1 Conjugate directions

Definition 11.8 (conjugate direction) Let Q ∈ Rn×n be symmetric. Two
vectors p1 and p2 in Rn are Q-orthogonal, or, conjugate with respect to
Q, if pT

1 Qp2 = 0.

Note that if Q is the zero matrix then every pair of vectors in Rn are
conjugate; when Q is the unit matrix, conjugacy reduces to orthogonal-
ity. The following result is easy to prove (see Exercise 11.14).

Proposition 11.9 (conjugate vectors are linearly independent) If Q ∈ Rn×n

is positive definite and the collection p1,p2, . . . ,pk are mutually conju-
gate with respect to Q, then they are also linearly independent.

The usefulness of conjugate directions for the quadratic problem to

minimize
x∈Rn

f(x) := xTQx − qTx, (11.14)

296

Draft from February 22, 2005

Conjugate gradient methods

where from now on Q is symmetric and positive definite, is clear from the
following identification: if the vectors p0,p1, . . . ,pn−1 are Q-orthogonal,
then Proposition 11.9 implies that there exists a vector w ∈ Rn with

x∗ =
n−1∑

i=0

wipi; (11.15)

multiplying the equation by Q and scalar multiplying the result by pi

yields

wi =
pT

i Qx∗

pT
i Qpi

=
pT

i q

pT
i Qpi

, (11.16)

so that

x∗ =

n−1∑

i=0

pT
i q

pT
i Qpi

pi. (11.17)

Two ideas are embedded in (11.17): by selecting a proper set of orthog-
onal vectors pi, and by taking the appropriate scalar product all terms
but i in (11.15) disappear. This could be accomplished by using any n or-
thogonal vectors, but (11.16) shows that by making them Q-orthogonal
we can express wi without knowing x∗.

11.8.2 Conjugate direction methods

The corresponding conjugate direction method for (11.14) is given by

xk+1 = xk + αkpk, k = 0, . . . , n− 1,

where x0 ∈ Rn is arbitrary and αk is obtained from an exact line search
with respect to f in the direction of pk; cf. (11.9). The principal result
about conjugate direction methods is that successive iterates minimize
f over a progressively expanding linear manifold, or subspace, that after
at most n iterations includes the minimizer of f over Rn. In other words,
defining

Mk := {x ∈ Rn | x = x0 + subspace spanned by {p0,p1, . . . ,pn−1} },

{xk+1} = argminimum
x∈Mk

f(x) (11.18)

holds.
To show this, note that by the exact line search rule, for all i,

∂f(xi + αpi)

∂α

∣∣∣∣
α=αi

= ∇f(xi+1)
Tpi = 0.

297

Draft from February 22, 2005

Unconstrained optimization

and for i = 0, 1, . . . , k − 1,

∇f(xk+1)
Tpi = (Qxk+1 − q)Tpi

=



xi+1 +

k∑

j=i+1

αjpj




T

Qpi − qTpi

= xT
i+1Qpi − qTpi

= ∇f(xi+1)
Tpi,

where we used the conjugacy of pi and pj , j 6= i. Hence, ∇f(xk+1)
Tpi =

0 for every i = 0, 1, . . . , k, which verifies (11.18).
It is easy to get a picture of what is going on if we look at the case

where Q = In and q = 0n; since the level curves are circles, minimizing
over the n coordinates one by one gives us x∗ in n steps; in each iteration
we also identify the optimal value of one of the variables. Conjugate
directions in effect does this, although in a transformed space.5

The discussion so far has been based on an arbitrary selection of
conjugate directions. There are many ways in which conjugate direc-
tions could be generated. For example, we could let the vectors pi,
i = 0, . . . , n − 1 be defined by the eigenvectors of Q, as they are mutu-
ally orthogonal as well as conjugate with respect to Q. (Why?) Such a
procedure would however be too costly in large-scale applications. The
remarkable feature of the conjugate gradient method to be presented be-
low is that the new vector pk can be generated directly from the vector
pk−1—there is no need to remember any of the vectors p0, . . . ,pk−2, and
yet pk will be conjugate to them all.

11.8.3 Generating conjugate directions

Given a set of linearly independent vectors d0,d1, . . . ,dk we can generate
a set of mutually Q-orthogonal vectors p0,p1, . . . ,pk such that they span
the same subspace, by using the Gram–Schmidt procedure. We start the
recursion with p0 = d0. Suppose that for i < k we have d0,d1, . . . ,di

such that they span the same subspace as p0,p1, . . . ,pi. Then, let pi+1

take the following form:

pi+1 = di+1 +

i∑

m=0

ci+1
m dm,

5Compare this to Newton’s method as applied to the problem (11.14); its conver-
gence in one step corresponds to the convergence in one step of the steepest descent
method when we first have performed a coordinate transformation such that the level
curves become circular.

298

Draft from February 22, 2005

Conjugate gradient methods

choosing ci+1
m so that pi+1 is Q-orthogonal to p0,p1, . . . ,pi. This will

be true if, for j = 0, 1, . . . , i,

pT
i+1Qpj = dT

i+1Qpj +

(
i∑

m=0

ci+1
m pm

)T

Qpj = 0.

Since p0,p1, . . . ,pi are Q-orthogonal we have that pT
mQpj = 0 if m 6= j,

so

ci+1
j = −dT

i+1Qpj

pT
j Qpj

, j = 0, 1, . . . , i.

Some notes are in order regarding the above development: (a) it
holds that pT

j Qpj 6= 0. (b) pi+1 6= 0n; otherwise it would contradict
the linear independence of d0,d1, . . . ,dk. (c) Finally, di+1 lies in the
subspace spanned by p0,p1, . . . ,pi+1, while pi+1 lies in the subspace
spanned by d0,d1, . . . ,di+1, since these vectors span the same space.
Therefore, the subspace identification above is true for i + 1, and we
have shown that the Gram–Schmidt procedure has the property asked
for.

11.8.4 Conjugate gradient methods

The conjugate gradient method applies the above Gram–Schmidt proce-
dure to the vectors

d0 = −∇f(x0), d1 = −∇f(x1), . . . , dn−1 = −∇f(xn−1).

Thus, the conjugate gradient method is to take xk+1 = xk + αkpk,
where αk is determined through an exact line search and pk is ob-
tained through step k of the Gram–Schmidt procedure to the vector
dk = −∇f(xk) and the previous vectors p0,p1, . . . ,pk−1. In particular,

pk = −∇f(xk) +
k−1∑

j=0

∇f(xk)TQpj

pT
j Qpj

pj . (11.19)

It holds that p0 = −∇f(x0), and termination occurs at step k if ∇f(xk) =
0n; the latter happens exactly when pk = 0n. (Why?)

[Note: the search directions are based on negative gradients of f ,

−∇f(xk) = q − Qxk,

which are identical to the residual in the linear system

Qx = q

299

Draft from February 22, 2005

Unconstrained optimization

that identifies the optimal solution to (11.14).]
The formula (11.19) can in fact be simplified. The reason is that,

because of the successive optimization over subspaces, ∇f(xk) is or-
thogonal to the subspace spanned by p0,p1, . . . ,pk−1.

Proposition 11.10 (the conjugate gradient method) The directions of
the conjugate gradient method are generated by

p0 = −∇f(x0); (11.20a)

pk = −∇f(xk) + βkpk−1, k = 1, 2, . . . , n− 1, (11.20b)

where

βk =
∇f(xk)T∇f(xk)

∇f(xk−1)T∇f(xk−1)
. (11.20c)

Moreover, the method terminates after at most n steps.

Proof. We first use induction to show that the gradients ∇f(xk) are lin-
early independent. It is clearly true for k = 0. Suppose that the method
has not terminated after k steps, and that ∇f(x0),∇f(x1), . . . ,∇f(xk−1)
are linearly independent. Being a conjugate gradient method we know
that the subspace spanned by these vectors is the same as that spanned
by the vectors p0,p1, . . . ,pk−1:

span (p0,p1, . . . ,pk−1) = span (∇f(x0),∇f(x1), . . . ,∇f(xk−1)).
(11.21)

Two cases are possible: either ∇f(xk) = 0n, whence the algorithm
terminates at the optimal solution, or ∇f(xk) 6= 0n, in which case (by
the expanding manifold property) it is orthogonal to p0,p1, . . . ,pk−1. By
(11.21)∇f(xk) is linearly independent of ∇f(x0),∇f(x1), . . . ,∇f(xk−1),
completing the induction. Since we have at most n linearly independent
vectors in Rn the algorithm must stop after at most n steps.

The proof is completed by showing that the simplification in (11.20c)
is possible. For all j with ∇f(xj) 6= 0n we have that

∇f(xj+1) −∇f(xj) = Q(xj+1 − xj) = αjQpj ,

and, since αj 6= 0,

∇f(xi)
TQpj =

1

αj
∇f(xi)

T[∇f(xj+1) −∇f(xj)]

=

{
0, if j = 0, 1, . . . , i− 2,
1

αj
∇f(xi)

T∇f(xi), if j = i− 1,

300

Draft from February 22, 2005

Conjugate gradient methods

and also that

pT
j Qpj =

1

αj
pT

j [∇f(xj+1) −∇f(xj)].

Substituting these two relations into the Gram–Schmidt formula, we
obtain that (11.20b) holds, with

βk =
∇f(xk)T∇f(xk)

pT
k−1(pk − pk−1)

.

From (11.20b) follows that pk−1 = −∇f(xk−1) + βk−1pk−2. Using this
equation and the orthogonality of ∇f(xk) and ∇f(xk−1) we can write
the denominator in the expression for βk as desired. We are done.

We can deduce also further interesting properties of the algorithm.
If the matrix Q has the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, we have the
following estimate of the distance to the optimal solution after iteration
k + 1:

‖xk+1 − x∗‖2
Q ≤

(
λn−k − λ1

λn−k + λ1

)2

‖x0 − x∗‖2
Q ,

where ‖z‖2
Q = zTQz, z ∈ Rn. What does this estimate tell us about

the behaviour of the conjugate gradient algorithm? Suppose that we
have a situation where the matrix Q has m large eigenvalues, and the
remaining n−m eigenvalues all are approximately equal to 1. Then the
above tells us that after m+1 steps of the conjugate gradient algorithm,

‖xm+1 − x∗‖Q ≈ (λn−m − λ1)‖x0 − x∗‖Q .

For a small value of λn−m − λ1 this implies that the algorithm gives a
good estimate of x∗ already after m+ 1 steps. The conjugate gradient
algorithm hence eliminates the effect of the largest eigenvalues first, as
the convergence rate after the first m+ 1 steps does not depend on the
m+ 1 largest eigenvalues.

The exercises offer additional insight into this convergence theory.
This is in sharp contrast with the convergence rate of the steepest

descent algorithm, which is known to be

‖xk+1 − x∗‖2
Q ≤

(
λn − λ1

λn + λ1

)2

‖xk − x∗‖2
Q ;

in other words, the rate of convergence worsens as the condition number
of the matrix Q, κ(Q) := λn/λ1, increases.6

6This type of bound on the convergence rate of the steepest descent method can

301

Draft from February 22, 2005

Unconstrained optimization

Nevertheless, the conjugate gradient method often comes with a pre-
conditioning, which means that the system system solved is not Qx = q

but MQx = Mq for some invertible square matrix M , constructed
such that the eigenvalues of MQ are better clustered than Q itself. (In
other words, the condition number is reduced.)

11.8.5 Extension to non-quadratic problems

Due to the orthogonality of ∇f(xk) and ∇f(xk−1), we could rewrite
(11.20c) as

βk =
∇f(xk)T[∇f(xk) −∇f(xk−1)]

∇f(xk−1)T∇f(xk−1)
. (11.22)

The formula (11.20c) is often referred to as the Fletcher–Reeves formula
(after the paper [FlR64]), while the formula (11.22) is referred to as the
Polak–Ribière formula (after the paper [PoR69]).

For the quadratic programming problem, the two formulas are iden-
tical. However, they would not produce the same sequence of iterates
if f were non-quadratic, and the conjugate gradient method has been
extended also to such cases. The normal procedure is then to utilize
the above algorithm for k < n steps, after which a restart is made at
the current iterate using the steepest descent direction; that is, we use
the conjugate gradient algorithm several times in succession, in order to
not lose conjugacy. The algorithm is not any more guaranteed to termi-
nate after n steps, of course, but the algorithm has been observed to be
quite efficient when the objective function and gradient values are cheap
to evaluate; especially, this is true when comparing the algorithm class
to that of quasi-Newton. (See [Lue84, Ber99] for further discussions on
such computational issues.) It is also remarked in several sources that
the Polak–Ribière formula (11.22) is preferable in the non-quadratic case.

also be extended to non-quadratic problems: suppose x∗ is the unique optimal solu-
tion to the problem of minimizing the C2 function f and that ∇2f(x∗) is positive
definite. Then, with 0 < λ1 ≤ · · · ≤ λn being the eigenvalues of ∇2f(x∗) we have
that for all k,

f(xk+1) − f(x∗) ≤

�

λn − λ1

λn + λ1

�2

[f(xk) − f(x∗)].

302

Draft from February 22, 2005

A quasi-Newton method

11.9 A quasi-Newton method

11.9.1 Introduction

As we have already touched upon in Section 11.2.2, most quasi-Newton
methods are based on the idea to try to construct the (inverse) Hessian,
or an approximation of it, through the use of information gathered in the
process of solving the problem; the algorithm then works as a deflected
gradient method where the matrix scaling of the negative of the gradient
vector is the current approximation of the inverse Hessian matrix.

The BFGS updating formula that was given in Section 11.2.2 is a
rank-two update of the Hessian matrix. There are several other versions
of the quasi-Newton method, the most popular being based on rank-two
updates but of the inverse of the Hessian rather than the Hessian matrix
itself. We present one such method below.

11.9.2 The Davidon–Fletcher–Powell method

This algorithm is given in the two papers [Dav59, FlP63]. The algorithm
is of interest to us here especially because we can show that through a
special choice of matrix update, the quasi-Newton method implemented
with an exact line search works exactly like a conjugate gradient method!
Moreover, since quasi-Newton methods do not rely on exact line searches
for convergence, we learn that quasi-Newton methods are, in this sense,
more general than conjugate gradient methods.

The algorithm can be explained like this: start with a positive definite
matrix H0 ∈ Rn×n, a point x0 ∈ Rn, and with k = 0; then set

pk = −Hk∇f(xk); (11.23a)

{αk} = argminimum
α≥0

f(xk + αpk); (11.23b)

xk+1 = xk + αkpk; (11.23c)

qk = ∇f(xk+1) −∇f(xk); (11.23d)

Hk+1 = Hk +
pkpT

k

pT
k qk

− (Hkqk)(qT
k Hk)

qT
k Hkqk

, (11.23e)

and with k := k + 1 repeat.

We note that the matrix update in (11.23e) is a rank two update,
since the two matrices added to Hk both are defined by the outer product
of a given vector with itself.

We first demonstrate that the matrices Hk are positive definite. For

303

Draft from February 22, 2005

Unconstrained optimization

any x ∈ Rn we have

xTHk+1x = xTHkx +
(xTpk)2

pkqk

− (xTHkqk)2

qT
k Hkqk

.

Defining a = H
1/2
k x and b = H

1/2
k qk we can write this as

xTHk+1x =
(aTa)(bTb) − (aTb)2

bTb
+

(xTpk)2

pT
k qk

.

We also have that

pT
k qk = pT

k ∇f(xk+1) − pT
k ∇f(xk+1) = −pT

k ∇f(xk),

since
pT

k ∇f(xk+1) = 0 (11.24)

due to the line search being exact. Therefore, by the definition of pk,

pT
k ∇f(xk) = αk∇f(xk)THk∇f(xk),

and hence

xTHk+1x =
(aTa)(bTb) − (aTb)2

bTb
+

(xTpk)2

αk∇f(xk)THk∇f(xk)
.

Both terms in the right-hand side are non-negative (Why?). We must
finally show that not both can be zero at the same time. The first term
disappears precisely when a and b are proportional. This in turn implies
that x and qk are proportional, say, x = βqk for some β ∈ R. But this
would mean that

pT
k x = βpT

k qk = βαk∇f(xk)THk∇f(xk) 6= 0,

whence xTHk+1x > 0 holds.
Notice that the fact that the line search is exact is not actually used;

it is enough that the αk chosen yields that pT
k qk > 0.

The following proposition shows that the Davidon–Fletcher–Powell
(DFP) algorithm (11.23) is a conjugate gradient algorithm which pro-
vides an optimal solution to (11.14) in at most n steps.

Theorem 11.11 (finite convergence of the DFP algorithm) Consider the
algorithm (11.23) for the problem (11.14). Then,

pT
i Qpj = 0, 0 ≤ i < j ≤ k, (11.25a)

HT
k+1Qpi = pi, 0 ≤ i ≤ k (11.25b)

holds.

304

Draft from February 22, 2005

A quasi-Newton method

Proof. We have that

qk = ∇f(xk+1) −∇f(xk) = Qxk+1 − Qxk = Qpk, (11.26)

and
Hk+1Qpk = Hk+1qk = pk, (11.27)

the latter from (11.23e).
Proving (11.25) by induction, we see from the above equation that it

is true for k = 0. Assume (11.25) true for k − 1. We have that

∇f(xk) = ∇f(xi+1) + Q(pi+1 + · · · + pk−1).

Therefore, from (11.25a) and (11.24),

pT
i ∇f(xk) = pT

i ∇f(xi+1) = 0, 0 ≤ i < k.

Hence from (11.25b)

pT
i QHkpk = 0, i < k, (11.28)

which proves (11.25a) for k.
Now, since from (11.25b) for k − 1, (11.26), and (11.28)

qT
k HkQpi = qT

k pi = pT
k Qpi = 0, 0 ≤ i < k,

we have that

Hk+1Qpi = HkQpi = pi, 0 ≤ i < k.

This together with (11.27) proves (11.25b) for k.

Since the pk-vectors are Q-orthogonal and since we minimize f suc-
cessively over these directions, the DFP algorithm is a conjugate direc-
tion method. Especially, if the initial matrix H0 is taken to be the unit
matrix, it becomes the conjugate gradient method. In any case, however,
convergence is obtained after at most n steps.

Finally, we note that (11.25b) shows that the vectors p0,p1, . . . ,pk

are eigenvectors corresponding to unity eigenvalues of the matrix Hk+1Q.
These eigenvectors are linearly independent, since they are Q-orthogonal,
and therefore we have that

Hn = Q−1.

In other words, with any choice of initial matrix H0 (as long as it is
positive definite) n steps of the 2-rank updates in (11.23e) result in the
final matrix being identical to the inverse of the Hessian.

305

Draft from February 22, 2005

Unconstrained optimization

11.10 Convergence rates

The local convergence rate is a statement about the speed in which one
iteration takes the guess closer to the solution.

Definition 11.12 (local convergence rate) Suppose that Rn ⊃ {xk} →
x∗. Consider for large k the quotients

qk :=
‖xk+1 − x∗‖
‖xk − x∗‖ .

(a) [linear convergence rate] We say that the speed of convergence is
linear if

lim sup
k→∞

qk < 1.

A linear convergence rate is roughly equivalent to the statement that we
get one new correct digit per iteration.

(b) [superlinear convergence rate] We say that the speed of convergence
is superlinear if

lim
k→∞

qk = 0.

(c) [quadratic convergence rate] We say that the speed of convergence
is quadratic if

lim sup
k→∞

qk
‖xk − x∗‖ ≤ c, c ≥ 0.

A linear convergence rate is roughly equivalent to the statement that the
number of correct digits is doubled in every iteration.

The steepest descent method has, at most, a linear rate of conver-
gence, moreover often with a constant qk near unity. Newton-like al-
gorithms have, however, superlinear convergence if ∇2f(x∗) is positive
definite, and even quadratic local convergence can be achieved for New-
ton’s method if ∇2f is Lipschitz continuous in a neighbourhood of x∗.

11.11 Implicit functions

Suppose that the value of f(x) is given through a simulation procedure:

x ∈ Rn

> Simulation > y ∈ Rm, f(x,y(x))

If the response y(x) from the input x is unknown explicitly, then we
cannot differentiate x 7→ f(x,y(x)) with respect to x. If, however, we

306

Draft from February 22, 2005

Notes and further reading

believe that y(·) is differentiable, which means that y is very stable with
respect to changes in x, then ∇xy(x), and hence ∇xf(x,y(x)) can be
calculated numerically. The use of the Taylor expansion technique that
follows is only practical if y(x) is “cheap”; if it takes an hour or more
to run the simulation, then it is probably too costly.

Let ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T be the unit vector in Rn where the
only non-zero entry is in position i. Then,

f(x + αei) = f(x) + αeT
i ∇f(x) + (α2/2)eT

i ∇2f(x)ei + . . .

= f(x) + α∂f(x)/∂xi + (α2/2)∂2f(x)/∂x2
i + . . .

So, for small α > 0,

∂f(x)

∂xi
≈ f(x + αei) − f(x)

α
(forward difference)

∂f(x)

∂xi
≈ f(x + αei) − f(x − αei)

2α
(central difference)

The value of α is typically set to a function of the machine precision; if
chosen too large, we get a bad approximation of the partial derivative,
while a too small value might result in numerical cancellation.

11.12 Notes and further reading

The material of this chapter is mostly classic; text books covering similar
material in more depth include [DeS83, Lue84, Fle87, BSS93, BGLS03].
Line search methods were first developed by Newton [New1687], and the
steepest descent method is due to Cauchy [Cau1847]. The Armijo rule is
due to Armijo [Arm66], and the Wolfe condition is due to Wolfe [Wol69].
The classic book by Brent [Bre73] analyzes algorithms that do not use
derivatives, especially line search methods.

Rademacher’s Theorem, which states that a Lipschitz continuous
function is differentiable everywhere except on sets of Lebesgue mea-
sure zero, is due to Rademacher [Rad19]. The Lipschitz condition is
due to Lipschitz [Lip1877]. Algorithms for the minimization of non-
differentiable convex functions are given in [Sho85, HiL93, Ber99, BGLS03].

Trust region methods are given a thorough treatment in the book
[CGT00]. The material on the conjugate gradient and BFGS methods
was collected from [Lue84, Ber99]; another good source is [NoW99].

An increasingly popular class of algorithms for problems with an
implicit objective function is the class of pattern search methods. With
such algorithms the search for a good gradient-like direction is replaced
by calculations of the objective function along directions specified by

307

Draft from February 22, 2005

Unconstrained optimization

a pattern of possible points. For a good introduction to this field, see
[KLT03].

11.13 Exercises

Exercise 11.1 (well-posedness of the Armijo rule) Establish the follow-
ing, through an argument by contradiction: If f ∈ C1, xk ∈ Rn and
pk ∈ Rn satisfies ∇f(xk)Tpk < 0, then for every choice of µ ∈ (0, 1)
there exists ᾱ > 0 such that every α ∈ (0, ᾱ] satisfies (11.12). In other
words, which ever positive first trial step length α we choose, we will
find a step length that satisfies (11.12) in a finite number of trials.

Exercise 11.2 (descent direction) Investigate whether the direction of
p = (2,−1)T is a direction of descent with respect to the function

f(x) = x2
1 + x1x2 − 4x2

2 + 10

at x = (1, 1)T.

Exercise 11.3 (Newton’s method) Suppose that you wish to solve the
unconstrained problem to

minimize
x∈Rn

f(x),

where f is twice continuously differentiable. You are naturally interested
in using Newton’s method (with line searches).

(a) At some iteration you get the error message, “Step length is zero.”
Which reason(s) can there be for such a message?

(b) At some iteration you get the error message, “Search direction
does not exist.” Which reason(s) can there be for such a message?

(c) Describe at least one means to modify Newton’s method such
that neither of the above two error message will ever appear.

Exercise 11.4 (Steepest descent) Is it possible to reach the (unique)
optimal solution to the problem of minimizing the function f(x) :=
(x1−2)2+5(x2+6)2 over R2 by the use of the steepest descent algorithm,
if we first perform a variable substitution? If so, perform it and thus find
the optimal solution.

Exercise 11.5 (Steepest descent with exact line search) Consider the prob-
lem to

minimize
x∈Rn

f(x) := (2x2
1 − x2)

2 + 3x2
1 − x2.

308

Draft from February 22, 2005

Exercises

(a) Perform one iteration of the steepest descent method, starting at
x0 := (1/2, 5/4)T.

(b) Is the function convex around x1?
(c) Will the method converge to a global optimum? Why/why not?

Exercise 11.6 (Newton’s method with exact line search) Consider the prob-
lem to

minimize
x∈Rn

f(x) := (x1 + 2x2 − 3)2 + (x1 − 2)2.

(a) Start from x0 := (0, 0)T, and perform one iteration of Newton’s
method with an exact line search.

(b) Are there any descent directions from x1?
(c) Is x1 optimal? Why/why not?

Exercise 11.7 (Newton’s method with Armijo line search) Consider the
problem to

minimize
x∈Rn

f(x) :=
1

2
(x1 − 2x2)

2 + x4
1.

(a) Start from x0 := (2, 1)T, and perform one iteration of Newton’s
method with the Armijo rule, using the fraction requirement µ = 0.1.

(b) Determine the values of µ ∈ (0, 1) such that the step length α = 1
will be accepted.

Exercise 11.8 (Newton’s method for nonlinear equations) Suppose the func-
tion f : Rn → Rn is continuously differentiable and consider the follow-
ing system of nonlinear equations:

f(x) = 0n.

Newton’s method for the solution of unconstrained optimization prob-
lems has its correspondence for the above problem.

Given an iterate xk we construct a linear approximation of the nonlin-
ear function; this approximation results in an approximate linear system
of equations of the form

f(xk) + ∇f(xk)(x − xk) = 0n,

or, equivalently,

∇f(xk)x = ∇f(xk)xk − f (xk),

where

∇f (x) =




∇f1(x)T

∇f2(x)T

...
∇fn(x)T




309

Draft from February 22, 2005

Unconstrained optimization

is the Jacobian of f at x. Assuming that the Jacobian is non-singular,
the above linear system has a unique solution, which defines the new
iterate, xk+1, that is,

xk+1 = xk −∇f(xk)−1f(xk).

(One can show that if f satisfies some additional requirements, this
sequence of iterates will converge to a solution to the original nonlinear
system, either from any starting point—global convergence—or from a
point sufficiently closed to a solution—local convergence.)

(a) Consider the nonlinear system

f (x1, x2) =

(
f1(x1, x2)
f2(x1, x2)

)
=

(
2(x1 − 2)3 + x1 − 2x2

4x2 − 2x1

)
=

(
0
0

)
.

Perform one iteration of the above algorithm, starting from x0 = (1, 0)T.
Calculate the value of

‖f(x1, x2)‖ =
√
f1(x1, x2)2 + f2(x1, x2)2

both at x0 and x1. (Observe that ‖f(x)‖ = 0 if and only if f (x) = 0n,
whence the values of ‖f(xk)‖, k = 1, 2, . . . can be used as a measure of
convergence of the iterates.)

(b) Explain why the above method generalizes Newton’s method for
unconstrained optimization to a larger class of problems.

Exercise 11.9 (over-determined linear equations) Consider the problem
to

minimize
x∈Rn

1

2
‖Ax − b‖2,

where A is an m× n matrix and b ∈ Rm. Assume that m ≥ n and that
the rank of A is n.

(a) Write down the necessary optimality conditions for this problem.
Are they also necessary for global optimality? Why/why not?

(b) Write down the globally optimal solution in closed form.

Exercise 11.10 (sufficient descent conditions) Consider the sufficient de-
scent condition (11.5). Why does it have that form, and why is the
alternative form

−∇f(xk)Tpk ≥ s1

not acceptable?

Exercise 11.11 (Newton’s method under affine transformations) Suppose
that we make the following change of variables: y = Ax + b, where

310

Draft from February 22, 2005

Exercises

A ∈ Rn×n is invertible. Show that if we apply Newton’s method to the
problem in y, we obtain exactly the same sequence as when applying
the method in the original space. In other words, show that Newton’s
method is invariant to such changes of variables.

Exercise 11.12 (Levenberg–Marquardt, exam 990308) Consider the un-
constrained optimization problem to

minimize f(x) := qTx +
1

2
xTQx, (11.29a)

subject to x ∈ Rn, (11.29b)

where Q ∈ Rn×n is positive semi-definite but not positive definite. We
attack the problem through a Levenberg–Marquardt strategy, that is,
we utilize a Newton-type method where a multiple γ > 0 of the unit
matrix is added to the Hessian of f (that is, to the matrix Q) in order
to guarantee that the (modified) Newton equation is uniquely solvable.
(See Section 11.2.2.) This implies that, given an iteration point xk, the
search direction pk is determined by solving the linear system

[∇2f(xk) + γIn]p = −∇f(xk), (11.30)

that is,
[Q + γIn]p = −(Qxk + q).

(a) Consider the formula

xk+1 := xk + pk, k = 0, 1, . . . , (11.31)

that is, the algorithm that is obtained by utilizing the Newton-like search
direction pk from (11.30) and the step length 1 in every iteration. Show
that this iterative step is the same as that to let xk+1 be given by the
solution to the problem to

minimize f(y) +
γ

2
‖y − xk‖2, (11.32a)

subject to y ∈ Rn. (11.32b)

(b) Suppose that an optimal solution to (11.29) exists. Suppose also
that the sequence {xk} generated by the algorithm (11.31) converges to
a point x∞. (This can actually be shown to hold.) Show that x∞ is an
optimal solution to (11.29).

[Note: This algorithm is in fact a special case of the proximal point
algorithm. Suppose that f is a convex function on Rn and the variables
are constrained to a non-empty, closed and convex set S ⊆ Rn.

311

Draft from February 22, 2005

Unconstrained optimization

We extend the iteration formula (11.32) to the following:

minimize f(y) +
γk

2
‖y − xk‖2, (11.33a)

subject to y ∈ S, (11.33b)

where {γk} ⊂ (0, 2) is a sequence of positive numbers that is bounded
away from zero, and where xk+1 is taken as the unique vector y solving
(11.33). If an optimal solution exists, it is possible to show that the
sequence given by (11.33) converges to a solution. See [Pat98, Ber99] for
overviews of this class of methods. (It is called “proximal point” because
of the above interpretation: that the next iterate is close, proximal, to
the previous one.)]

Exercise 11.13 (unconstrained optimization algorithms, exam 980819) Consider
the unconstrained optimization problem to

minimize f(x),

subject to x ∈ Rn,

where f : Rn → R is in C1.
Let {xk} be a sequence of iteration points generated by some algo-

rithm for solving this problem, and suppose that it holds that {∇f(xk)} →
0n, that is, the gradient value tends to zero (which of course is a favourable
behaviour of the algorithm). The question is what this means in terms
of the convergence of the more important sequence {xk}.

Consider therefore the sequence {xk}, and also the sequence {f(xk)}
of function values. Given the assumption that {∇f(xk)} → 0n, is it true
that {xk} and/or {f(xk)} converges or are even bounded? Provide every
possible case in terms of the convergence of these two sequences, and give
examples, preferably simple ones for n = 1.

Exercise 11.14 (conjugate directions) Prove Proposition 11.9.

Exercise 11.15 (conjugate gradient method) Apply the conjugate gra-
dient method to the system Qx = q, where

Q =




2 1 0
1 2 1
0 1 2


 and q =




1
1
1


 .

Exercise 11.16 (convergence of the conjugate gradient method, I) In the
conjugate gradient method, prove that the vector pi can be written as

312

Draft from February 22, 2005

Exercises

a linear combination of the set of vectors {q,Qq,Q2q, . . . ,Qiq}. Also
prove that xi+1 minimizes the quadratic function Rn ∋ x 7→ f(x) :=
1
2xTQx − qTx over all the linear combinations of these vectors.

Exercise 11.17 (convergence of the conjugate gradient method, II) Use the
result of the previous problem to establish that the conjugate gradient
method converges in a number of iterations equal to the number of dis-
tinct eigenvalues of the matrix Q.

313

Draft from February 22, 2005

Unconstrained optimization

314

Draft from February 22, 2005

Optimization over
convex sets

XII

12.1 Feasible direction methods

Consider the problem to

minimize f(x), (12.1a)

subject to x ∈ X, (12.1b)

where X ⊆ Rn is a nonempty, closed and convex set and f : Rn →
R ∪ {+∞} is a C1 function on X .

In almost all cases, algorithms for this problem will not be based on
staying feasible (xk ∈ X) but rather to reach feasibility and optimality
at the same time. Why? If X is defined by (convex) inequalities of
the form “gi(x) ≤ bi,” where gi is nonlinear, then checking, for example,
whether p is a feasible direction at x, or what the maximum feasible step
from x in the direction of p is, is very difficult. For example, in the latter
case, for which step length α > 0 does it happen that gi(x + αp) = bi?
This is a nonlinear equation!

The notable exception is when X is a polyhedral set, which we from
here on in this chapter will assume is the case. How to characterize a
feasible direction in the polyhedral case has already been analyzed in
Example 4.21.

A general framework of feasible-direction methods for the problem
(12.1) can be extended from the unconstrained world as follows (notice
the difference to the description given in Section 11.1):

Feasible descent algorithm:

Step 0 (initialization). Determine a starting point x0 ∈ Rn such that
x0 ∈ X . Set k := 0.

Draft from February 22, 2005

Optimization over convex sets

Step 1 (feasible descent direction generation). Determine a search direc-
tion pk ∈ Rn such that pk is a feasible direction.

Step 2 (line search). Determine a step length αk > 0 such that f(xk +
αkpk) < f(xk) and xk + αkpk ∈ X .

Step 3 (update). Let xk+1 := xk + αkpk.

Step 4 (termination check). If a termination criterion is fulfilled, then
stop! Otherwise, let k := k + 1 and go to step 1.

This type of algorithm is local, just as in the unconstrained case, and
there are more difficulties, compared to the unconstrained case, asso-
ciated with generating search directions pk: they must simultaneously
be feasible directions and descent directions. The linearity of the con-
straints however ensures that it is possible to solve approximations of the
original problem, such as approximations based on a Taylor expansion
of f around the current iterate xk, or to determine the active constraint
set at xk and generating a feasible search direction in a neighbourhood
determined by them. Moreover, we also need to determine a maximum
step length in the line search, and the termination criteria need to be
different from those in the unconstrained case because the gradient of f
need not be zero at a stationary point.

In the following, we will analyze three natural algorithms for the solu-
tion of the problem (12.1). The first two, the Frank–Wolfe and Simplicial
decomposition algorithms, are based on generating search directions pk

by solving linear problems, while the third one, the gradient projection
algorithm, corresponds to solving a more difficult, yet related, convex
quadratic problem to generate pk. In each of these cases, the algorithms
are derived from the necessary optimality conditions associated with the
problem (12.1), which can be found in Section 4.4, and are based on
Taylor expansions of f .

We will establish convergence for a general case, where all that can
be guaranteed is that any limit point of the sequence {xk} is stationary.
We will however also establish what can be achieved in addition when
the problem is convex. It is then not only the (obvious) case that ev-
ery limit point then is globally optimal, but we can on occasion prove
something stronger. In the Frank–Wolfe method, we can utilize simpler
step length rules than the Armijo rule; in the simplicial decomposition
method, we can establish finite convergence even when previous informa-
tion is discarded; and in the gradient projection method, we can prove
convergence to a single optimal solution. The latter has interesting con-
sequences for iterative methods, like the steepest descent algorithm, in
the unconstrained case, which it generalizes to the constrained case.

316

Draft from February 22, 2005

The Frank–Wolfe method

12.2 The Frank–Wolfe method

Consider the problem (12.1). We suppose that S ⊂ Rn is a polyhedron,
and also that it is bounded, for the simplicity of the presentation. (See
however Exercise 12.1.) We suppose further that f : Rn → R is a
continuously differentiable function.

The Frank–Wolfe algorithm works as follows:

Frank–Wolfe algorithm:

Step 0 (initialization). Generate the starting point x0 ∈ X (for example
by letting it be any extreme point in X). Set k := 0.

Step 1 (feasible descent direction generation). Solve the problem to

minimize
y∈X

zk(y) := ∇f(xk)T(y − xk). (12.2)

Let yk be a solution to this LP problem, and pk := yk −xk be the
search direction.

Step 2 (line search). Approximately solve the one-dimensional problem
to minimize f(xk + αpk) over α ∈ [0, 1]. Let αk be the resulting
step length.

Step 3 (update). Let xk+1 := xk + αkpk.

Step 4 (termination check). If, for example, zk(yk) or αk is close to zero,
then terminate! Otherwise, let k := k + 1 and go to Step 1.

It should be clear that pk is a feasible direction: note that we can
write the new point xk+1 as αyk + (1 − α)xk for some α ∈ [0, 1], that
is, we construct an optimal convex combination of two feasible points.

In Step 2, we can utilize the Armijo step length rule or a more accu-
rate line search such as one based on a quadratic interpolation.

The first-order expansion of f defining the LP subproblem (12.2)
was introduced already in Section 4.4, cf., for example, (4.14). It was
also there shown that zk(yk) < 0 holds if and only if xk is not station-
ary. Hence, we have shown that the Frank–Wolfe algorithm is a descent
algorithm.

We have also shown in Section 4.4 that a lower bound on the optimal
value f∗ is available whenever f is convex. The termination criterion in
Step 4 then states that this lower bound is close enough to f∗.

The following is a basic convergence result for the Frank–Wolfe algo-
rithm.

Theorem 12.1 (convergence of the Frank–Wolfe algorithm) Suppose that
X ⊆ Rn is a nonempty, bounded polyhedron, and that the function

317

Draft from February 22, 2005

Optimization over convex sets

f : Rn → R is in C1 on X . Suppose that in Step 2 of the Frank–Wolfe
algorithm, we either use an exact line search or the Armijo step length
rule. Then, the sequence {xk} is bounded, and every limit point (at
least one exists) is stationary; further, the sequence {zk(yk)} → 0.

If f is convex on X , then every limit point is globally optimal.

Proof. The boundedness of X ensures that the two sequences {xk} and
{yk} are bounded. Let x∞ and y∞ be arbitrary limit points. It follows
of course also that the sequence {pk} is bounded. We first show that

{∇f(xk)Tpk} → 0 (12.3)

holds.
If {pk} → 0n holds then (12.3) holds by the boundedness of {∇f(xk)}.

Assume therefore that {pk} 6→ 0. By the descent property of pk,

f(xk+1) − f(xk) ≤ µαk∇f(xk)Tpk < 0, k = 0, 1, (12.4)

If {pk} 6→ 0n, then as {f(xk+1) − f(xk)} → 0 holds, there must be
a subsequence K such that {αk}K → 0. There must then be an index κ
such that for every k ≥ κ in K, the initial step length is not accepted by
the Armijo rule, that is,

f(xk + (αk/β)pk) − f(xk) > µ(αk/β)∇f(xk)Tpk, k ≥ κ, k ∈ K.

Dividing both sides of this inequality by αk/β, in the limit of K of
the resulting inequality we reach the conclusion that ∇f(x∞)Tp∞ ≥ 0,
where p∞ := y∞ − x∞, while in the limit of the descent inequality
∇f(xk)Tpk < 0, the reverse inequality is obtained. The accumulation
points were chosen arbitrarily, whence (12.3) follows.

From the above follows that ∇f(x∞)T(y∞ − x∞) = 0, whence sta-
tionarity follows for every limit point of {xk} , as well as {zk(yk)} → 0.

We have above established the result for the Armijo rule. To establish
the result for the case of the exact line search, it suffices to remark that
the exact line search yields a step length with a reduction in f that is at
least as great as in the Armijo rule itself, so the acceptance inequality
(11.12) in the Armijo rule is also valid for the exact line search; the above
proof therefore goes through in verbatim also for the exact line search.

The second part of the theorem follows from Theorem 4.23.

Figure 12.1 illustrates the LP subproblem in Step 1 at a non-stationary
point xk, the resulting extreme point yk and search direction pk.

Under the assumption that f is convex, several additional techniques
for choosing the step lengths are available; see the notes for references.
We refer to one such choice below.

318

Draft from February 22, 2005

The Frank–Wolfe method

−5 0 5 10
−5

0

5

10

15

20

xk

yk

pk

∇f(xk)

X

Figure 12.1: Step 2 of the Frank–Wolfe algorithm.

Theorem 12.2 (convergence of the Frank–Wolfe algorithm) Suppose that
X ⊂ Rn is nonempty, convex closed and bounded and f : Rn → R is
convex.

(a) In the Frank–Wolfe algorithm, suppose the step lengths αk ∈
(0, 1] satisfy the conditions that, for some C > 0 and every k sufficiently
large,1

αk ≤ C/k, (12.5a)

1 − αk+1 =
αk+1

αk
. (12.5b)

If the sequence {xk} is finite, then the last iterate solves (12.1). Other-
wise, {zk(yk)} → 0 holds; further, the sequence {xk} converges to the
set of solutions to (12.1). In particular, any limit point of {xk} solves
(12.1).

(b) Suppose that, in addition to the above conditions on f , ∇f is
Lipschitz continuous on X . In the Frank–Wolfe algorithm, suppose the
step lengths αk ∈ (0, 1] are chosen according to the quadratically con-
vergent divergent step length rule (6.42), (6.43). Then, the conclusions
in (a) hold.

1According to this step length rule, αk ≈ 1/k for large k.

319

Draft from February 22, 2005

Optimization over convex sets

12.3 The simplicial decomposition method

Consider the problem (12.1) under the same conditions as stated in Sec-
tion 12.2. The simplicial decomposition algorithm builds on the Repre-
sentation Theorem 3.22.

In the below description we let P denote the set of extreme points
of X . We also denote by Pk a subset of the extreme points which has
been generated prior to iteration k and which are kept in memory; an
element of this set is denoted by yi in order to not mix these extreme
points with the vectors yk solving the LP subproblem.

The simplicial decomposition algorithm works as follows:

Simplicial decomposition algorithm:

Step 0 (initialization). Generate the starting point x0 ∈ X (for example

by letting it be any extreme point in X). Set k := 0. Let P̂0 =
P0 := ∅. Let x̄0 = x0.

Step 1 (feasible descent direction generation). Let yk be a solution to
the LP problem (12.2).

Let Pk+1 := P̂k ∪ {k}, for some subset P̂k of Pk.

Step 2 (multidimensional line search). Let νk+1 be an approximate so-
lution to the restricted master problem to

minimize
ν

f


x̄k +

∑

i∈Pk+1

νi(y
i − x̄k)


 , (12.6a)

subject to
∑

i∈Pk+1

νi ≤ 1, (12.6b)

νi ≥ 0, i ∈ Pk+1, (12.6c)

where x̄k ∈ Xk := conv (x̄k−1, {yi | i ∈ Pk}).
Step 3 (update). Let xk+1 := x̄k +

∑
i∈Pk+1

(νk+1)i(y
i − x̄k).

Step 4 (termination check). If, for example, zk(yk) is close to zero, or
if Pk+1 = Pk, then terminate! Otherwise, let k := k + 1 and go to
Step 1.

The description of the simplicial decomposition algorithm does not
completely specify the sets Pk or the points x̄k. We say that we use
column dropping in Step 2 of the algorithm when P̂k+1 ⊂ Pk. Three
classic column dropping rules are given below.

To begin with, suppose that we use the principle in (a). According
to this principle, we run the algorithm by adding one new extreme point
to the previous set of extreme points known so far, solve the problem to

320

Draft from February 22, 2005

The simplicial decomposition method

Table 12.1: Some column dropping principles for Step 2

(a) [No column dropping]: For all k, P̂k := Pk, and x̄k := xk.

(b) [Zero weight column dropping]: For k ≥ 1,

P̂k := { i ∈ Pk | (νk)i > 0 } .

For all k, x̄k := x0.

(c) [Bounded size of Pk]: Let r be a positive integer. For k ≥ 1, let

P̂k := { i ∈ Pk | (νk)i > 0 } .

If |P̂k| < r, then let x̄k := x̄k−1. If |P̂k| = r, then let

P̂k := P̂k \ arg minimum
i∈ bPk

{(νk−1)i}

and x̄k := xk.

(d) [Frank–Wolfe]: For all k, P̂k := ∅ and x̄k := xk.

minimize f over the convex hull of them, and repeat until we either get
close enough to a stationary point or if the last LP did not give us a new
extreme point. (In the latter case we are at a stationary point! Why?)

Suppose instead that we drop every extreme point that got a zero
weight in the last restricted master problem, that is, we work according
to the principle in (b). We then remove all the extreme points that we
believe will not be useful in order to describe the optimal solution as a
convex combination of them.

The algorithm corresponding to the principle in (c) is normally called
the restricted simplicial decomposition algorithm; it allows us to drop
extreme points in order to keep the memory requirements below a certain
threshold. In order to do so, we may need to also throw away an extreme
point that had a positive weight at the optimal solution to the previous
restricted master problem, and we implement this by removing the one
with the least weight.

The most extreme case of the principle in (c) is to throw away every
point that was previously generated, and keep only the most recent one.
(It corresponds to letting r = 1.) Then, according to the principle in
(d), we are back at the Frank–Wolfe algorithm!

321

Draft from February 22, 2005

Optimization over convex sets

The restricted master problem (12.6) does not contain the slack vari-
able associated with the convexity weight for the vector x̄k. Introducing
it as µ ≥ 0, we obtain the equivalent statement of the problem to

minimize
(µ,ν)

f



µx̄k +
∑

i∈Pk+1

νiy
i



 , (12.7a)

subject to µ+
∑

i∈Pk+1

νi = 1, (12.7b)

µ, νi ≥ 0, i ∈ Pk+1. (12.7c)

We then recognize the feasible set of the restricted master problem
as the particular explicit convex hull that it actually is.

The advantage of using an inner representation of X and to algorith-
mically improve it is that it is much simpler to deal with in an optimiza-
tion algorithm than the linear constraints that define X above.

The disadvantage of the representation is that the set P of extreme
points is both very large for a large-scale problem, and it is not known;
compare with the case of the simplex method, where we cannot simply
enumerate the extreme points in order to then pick the best one. In
this nonlinear case, we may also need a large number of them in order
to span an optimal solution. The trick that makes the algorithm work
well is the column dropping in Step 1, which keeps down the size of the
problems to be solved.

The simplicial decomposition algorithm is quite similar to the Frank–
Wolfe algorithm (notice this from (12.7) when |Pk+1| = 1). The main,
and very important, difference, is that the Frank–Wolfe algorithm drops
all the previous extreme points visited, and only optimizes over line seg-
ments. In Simplicial decomposition, the information is kept—we could
say that the algorithm has a memory of where it has been—and thanks
to this extra information the algorithm can make much better progress:
instead of the line search in the Frank–Wolfe algorithm, Step 2 is a
multidimensional search over the convex hull of all the extreme points
generated. The method therefore becomes much more efficient than the
Frank–Wolfe algorithm in practice.

As far as convergence is concerned, the algorithm clearly does at
least as well as the Frank–Wolfe algorithm does. In fact, if we use the
principle (a) in Table 12.1 then we always add an extreme point in each
iteration, and hence we must arrive at a stationary point in a finite
number of iterations since P is finite. If we use the principle in (b)
finite convergence is still ensured under mild additional conditions on
f , while for finite convergence under the principle in (c) the value of r
is crucial: it must be at least as large as the number of extreme points

322

Draft from February 22, 2005

The simplicial decomposition method

needed to describe the optimal solution. In other words, we must have
memory enough to be able to span x∗! If the value is too small, then
the algorithm cannot converge finitely, and then the behaviour can be as
bad as in the Frank–Wolfe algorithm, which is rather bad indeed. (The
convergence rate cannot even be linear!)

We finally note that in both of the Frank–Wolfe and simplicial decom-
position algorithms, the convergence of the sequence {f(xk)} is mono-
tone, in the sense that it is strictly monotonically decreasing provided
that the line search is exact enough; on the other hand, the sequence
{zk(yk)} is non-monotone in general, although the limit always is zero.
We refer to Theorem 12.1 for the corresponding result for the Frank–
Wolfe algorithm. The result for simplicial decomposition is the same,
except for the cases when convergence to a stationary point is finite, as
discussed above.2

Example 12.3 (a computational comparison) In Section 4.6.3 we described
and analyzed a model describing the steady-state situation in an ur-
ban traffic network resulting from network users’ decision on the routes
to travel given that everyone else is also making that choice. If the
demand of transport is fixed and the travel times are increasing func-
tions of the volumes in the links of the network, a solution to this non-
cooperative game problem is found by solving the convex optimization
problem (4.33), wherein the variables are the flows in the links and routes
for each pair of origin and destination. When solving this problem by us-
ing the Frank–Wolfe or the Simplicial decomposition method the search
directions in Step 2 correspond to a very special problem: if the cur-
rent traffic volume is vk then the solution yk to the LP subproblem is
found by assigning, for each OD pair (p, q) ∈ C, the demand dpq onto the
shortest route between the origin and destination node given the fixed
link costs tl((vk)l) for each l ∈ L, and then aggregating these route flows
through the constraint (4.33d); for each OD pair, the shortest route is
found by using, for example, Dijkstra’s algorithm.

A Matlab implementation of the two algorithm were devised and
tested on a classic traffic assignment problem, modelling the small city of
Sioux Falls in North Dakota, USA, whose traffic network representation
has 24 nodes, 76 links, and 528 OD pairs. In the Simplicial decompo-
sition algorithm, we tested three algorithms for the RMPs—a Newton

2The line segment representing the feasible set in the line search problem in Step 2
of the Frank–Wolfe algorithm satisfies [xk, yk] ⊂ Xk+1, that is, the restricted master
problem in the simplicial decomposition algorithm is always defined over a set that
is at least as large. As a consequence, the latter algorithm always will be able to
achieve an improvement in the value of the objective function that is at least as great
as that of the latter. From this observation it is relatively easy to establish a basic
convergence result along the lines of Theorem 12.1.

323

Draft from February 22, 2005

Optimization over convex sets

method and two gradient projection methods (see Section 12.4 for a de-
scription of the latter). In Figure 12.2 we illustrate the solution times
necessary for reaching a given accuracy; accuracy is here measured in
terms of the relative error stemming from the lower and upper bounds
on the optimal value.

0 10 20 30 40 50 60 70 80 90 100
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sioux Falls network

CPU time (s)

M
ax

 r
el

at
iv

e
ob

je
ct

iv
e

fu
nc

tio
n

er
ro

r

SD/Gradient P−1
SD/Gradient P−2
SD/Newton
Frank−−Wolfe

Figure 12.2: The performance of DSD vs. FW on the Sioux Falls network.

It is clear that the Frank–Wolfe algorithm is extremely slow in com-
parison with the Simplicial decomposition algorihmt, regardless of the
method used for solving the restricted master problems. An analysis of
the algorithm’s behaviour reveals that very small step lengths are taken
quite early on in the solution process.

12.4 The gradient projection algorithm

12.4.1 The algorithm and its convergence

As was observed in Exercise 4.5 the result of the operation

y = ProjX [x −∇f(x)]

at x ∈ X is that y = x if and only if x is a stationary point and if it
is not then p := y − x defines a descent direction with respect to f at

324

Draft from February 22, 2005

The gradient projection algorithm

x. This characterization is true also if we introduce an arbitrary scalar
α > 0 as follows:

y = ProjX [x − α∇f(x)].

(Why?) In other words, supposing that xk is not stationary, we generate
the next iteration point as follows:

xk+1 := ProjX [xk − αk∇f(xk)], k = 1, . . . , (12.8)

where {αk} ∈ R++. As the vector pk := ProjX [xk − αk∇f(xk)] − xk

defines a feasible descent direction with respect to f at xk it follows
that f(xk+1) < f(xk) provided that αk > 0 is sufficiently small. The
gradient projection algorithm is based on this observation. How do we
choose the step length αk and what does it mean to perform a line search
in αk?

We propose here to utilize the Armijo rule, which was introduced for
unconstrained optimization in (11.12). It is however modified such that
the trial points are not xk −α∇f(xk) as in the steepest descent method,
but the projected, feasible, points ProjX [xk−α∇f(xk)]. Starting with a
trial step ᾱ > 0, we check the Armijo criterion in (11.12) for the feasible
point ProjX [xk−ᾱ∇f(xk)], and then replace ᾱ by ᾱβ for some β ∈ (0, 1)
if it is not satisfied, and so on, until the Armijo rule is satisfied. The
resulting step length then is αk = ᾱβi for some integer i ≥ 0 (zero if the
initial step is accepted, otherwise positive), and the new iteration point
is the last point projected, xk+1 := ProjX [xk − (ᾱβi)∇f(xk)].

Consider Figure 12.3. It illustrates a case where we imagine that
the initial step ᾱ has to be halved twice (if β = 1

2) before the step is
accepted by the Armijo rule. As we can see from the figure the “line
search” is not really a line search, since the feasible points checked rather
follow a piece-wise linear curve than a line; in this example we trace the
boundary of X , and we some times refer to this type of line search by
the term boundary search or a search along the projection arc.

Although the technique looks more complex than the use of the
Armijo rule for the steepest descent method, their convergence behaviour
are the same. Theorem 11.4 on the convergence of gradient related meth-
ods in unconstrained optimization can be extended to the case of the
gradient projection method, to state the following (see Exercise 12.5):

Theorem 12.4 (convergence of a gradient projection algorithm) Suppose
that X ⊆ Rn is nonempty, closed and convex, and that the function
f : Rn → R is in C1 on X . Suppose further that for the starting point
x0 it holds that the level set levf (f(x0)) intersected with X is bounded.
Consider the iterative algorithm defined by the iteration (12.8), where
the step length αk is determined by the Armijo step length rule along

325

Draft from February 22, 2005

Optimization over convex sets

X

xk

xk − ᾱ∇f(xk)

xk − (ᾱ/2)∇f(xk)

xk − (ᾱ/4)∇f(xk)

xk − α∇f(xk)

Figure 12.3: Trial steps in a line search within the gradient projection
method.

the projection arc. Then, the sequence {xk} is bounded, the sequence
{f(xk)} is descending, lower bounded and therefore has a limit, and
every limit point of {xk} is stationary.

The following theorem shows that the gradient projection method
has a much stronger convergence property in the convex case.

Theorem 12.5 (convergence of a gradient projection algorithm) Suppose
that X ⊆ Rn is nonempty, closed and convex, and that the function
f : Rn → R is in C1 on X . Suppose further that f is convex and that
the problem (12.1) has at least one optimal solution. Consider the iter-
ative algorithm defined by the iteration (12.8), where the step length αk

is determined by the Armijo step length rule along the projection arc.
Then, the sequence {xk} → x∗ for some optimal solution x∗ to (12.1).

Proof. If {xk} is finite, then the stopping criterion implies that the last
iterate is optimal. Suppose therefore that the sequence is infinite.

Let x∗ be an arbitrary optimal solution to (12.1). From the iteration
formula,

‖xk+1−xk‖2+‖xk−x∗‖2−‖xk+1−x∗‖2 =2(xk+1−xk)T(x∗−xk). (12.9)

Further, from the characterization of xk+1 in terms of a projection fol-

326

Draft from February 22, 2005

The gradient projection algorithm

lows that

0 ≤ [xk+1 − xk + αk∇f(xk)]T(x∗ − xk+1)

= [xk+1 − xk + αk∇f(xk)]T(x∗ − xk)

+ [xk+1 − xk + αk∇f(xk)]T(xk − xk+1),

which yields

(xk+1−xk)T(x∗ − xk) ≥ αk∇f(xk)T(xk−x∗)

−[xk+1−xk+αk∇f(xk)]T(xk−xk+1)

≥ αk[f(xk)−f(x∗)]

+[xk+1−xk+αk∇f(xk)]T(xk+1−xk)

= ‖xk+1−xk‖2+αk∇f(xk)T(xk+1−xk),
(12.10)

where we used the convexity characterization in Theorem 3.40(a) in the
second inequality, and the optimality of x∗ in the third. Combining
(12.9) and (12.10) now yields that

‖xk+1−xk‖2+‖xk−x∗‖2−‖xk+1−x∗‖2 ≥ 2[‖xk+1 − xk‖2

+αk∇f(xk)T(xk+1−xk)].

Rearranging terms yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 − 2αk∇f(xk)T(xk+1 − xk)

≤ ‖xk − x∗‖2 − 2αk∇f(xk)T(xk+1 − xk)

= ‖xk − x∗‖2 + εk, (12.11)

where

εk := 2αk∇f(xk)T(xk − ProjX [xk − αk∇f(xk)]), k = 0, 1,

Note that by the descent property of the algorithm, εk ≥ 0 for all k.
In view of the Armijo rule,

µ∇f(xk)T(xk − ProjX [xk − αk∇f(xk)]) ≤ f(xk) − f(xk+1).

Combining the above two inequalities,

εk ≤ αk

βµ
[f(xk) − f(xk+1)] ≤

ᾱ

βµ
[f(xk) − f(xk+1)]. (12.12)

327

Draft from February 22, 2005

Optimization over convex sets

By (12.12),

∞∑

k=0

εk ≤ ᾱ

βµ
[f(x0) − f(x∗)] <∞.

We say that the sequence {εk} is summable. The consequence for the
inequality (12.11) will become apparent from the following technical
lemma.

Lemma 12.6 (quasi-Fejér convergence) Let S ⊂ Rn be nonempty and
{ak} ⊂ Rn be a sequence such that for all x ∈ S and all k,

‖ak+1 − x‖2 ≤ ‖ak − x‖2 + εk, (12.13)

where {εk} is a summable sequence in R+.
(a) Then, {ak} is bounded; and
(b) if a limit point ā of {ak} belongs to S then {ak} → ā.

Proof. (a) Fix some x ∈ S. Applying (12.13) iteratively yields, for
some C ∈ R+,

‖ak − x‖2 ≤ ‖a0 − x‖2 +

k−1∑

j=0

εk

≤ ‖a0 − x‖2 +

∞∑

j=0

εk

≤ C <∞.

Hence, {ak} is bounded.
(b) Let ā ∈ S be a limit point of {ak}. Take δ > 0. Let {alk} be

a subsequence of {ak} which converges to ā. Since {εk} is a summable
sequence, there exists k0 such that

∑∞
j=k0

εj ≤ δ/2, and there exists k1

such that lk1
≥ k0 and ‖alk − ā‖2 < δ/2 for any k ≥ k1. Then, for any

k > lk1
,

‖ak − ā‖2 ≤ ‖alk1
− ā‖2 +

k−1∑

j=lk1

εj

≤ ‖alk1
− ā‖2 +

∞∑

j=lk1

εj

< δ/2 + δ/2 = δ.

328

Draft from February 22, 2005

The gradient projection algorithm

We conclude that {ak} → ā.

By the above lemma, we conclude that {xk} is convergent to a vector
x∞. This vector is stationary, which means, by convexity, that it is also
globally optimal. We are done.

Suppose now that X = Rn. Then the gradient projection algorithm
reduces to the steepest descent method in unconstrained optimization,
and the Armijo step length rule along the projection arc reduces to classic
Armijo rule. The above result then states that the steepest descent
algorithm converges to an optimal solution whenever f is convex and
there exist optimal solutions. It is also possible to extend this result,
and the above proof, to the case where the steepest descent direction is
replaced by gradient-related directions.

12.4.2 A method for the projection problem

Finally, we consider the problem of actually performing the Euclidean
projection. This is a strictly convex quadratic programming problem of
the form (4.12). We will show that we can utilize the Phase I procedure
of the simplex method (see Section 9.1.2) from linear programming in
order to solve this problem. We take a slightly more general viewpoint
here, and present the algorithm for a general strictly convex quadratic
program.

Consider then the problem to

minimize f(x) :=
1

2
xTQx − qTx, (12.14a)

subject to Ax ≤ b, (12.14b)

x ≥ 0n, (12.14c)

where Q ∈ Rn×n is symmetric and positive definite. Assuming that there
exists a feasible solution to this problem, its unique optimal solution x∗

is characterized by its KKT conditions as follows:

Qx + ATy − v = q, (12.15a)

Ax ≤ b, (12.15b)

yT(Ax − b) = 0, (12.15c)

vTx = 0, (12.15d)

x,y,v ≥ 0, (12.15e)

where y and v are the vectors of Lagrange multipliers for the constraints
(12.14b) and (12.14c), respectively. We introduce a slack variable vector

329

Draft from February 22, 2005

Optimization over convex sets

s in (12.15b), and can therefore write the above system equivalently as

Qx + ATy − v = q, (12.16a)

Ax + Ims = b, (12.16b)

yTs = 0, (12.16c)

vTx = 0, (12.16d)

x, s,y,v ≥ 0. (12.16e)

Disregarding the complementarity conditions (12.16c), (12.16d), this is
a set of linear equations over nonnegative variables a solution to which
can be found by using the Phase I procedure of linear programming (see
Section 9.1). We propose to take the conditions (12.16c), (12.16d) into
account implicitly, in the following way.

Introducing artificial variables in the equation system (12.16a), (12.16b),
multiplying before-hand any equation with a negative right-hand side qj
or bi by −1, we let the artificial variables define the starting BFS in the
Phase I problem of minimizing their sum. When deciding on the incom-
ing variable, we then introduce the following rule which makes sure that
the conditions (12.16c), (12.16d) are always satisfied:

(a) If a variable xj (respectively, vj), j = 1, . . . , n, is already
in the basis, then the variable vj (respectively, xj) is not
admissible to enter the basis.

(b) If a variable si (respectively, yi), i = 1, . . . ,m, is already
in the basis, then the variable yi (respectively, si) is not ad-
missible to enter the basis.

It is not straightforward to argue why it is still possible to reach the
optimal solution when we restrict the incoming rule in this way. The
interested reader is referred to the classic linear programming text by
Dantzig [Dan63, Section 24.4], in which the above method is proven to
yield convergence in a finite number of iterations provided that Q is
positive semi-definite.

12.5 Notes and further reading

Algorithms for linearly constrained optimization problems are disappear-
ing from modern text books on optimization. It is perhaps a sign of ma-
turity, as we are now better at solving optimization problem with gen-
eral constraints, and therefore do no longer have to especially consider
the class of linearly constrained optimization problems. Nevertheless we

330

Draft from February 22, 2005

Exercises

feel that it provides a link between linear programming and nonlinear
optimization problem with general constraints, being a subclass of non-
linear optimization problems for which primal feasibility can be retained
throughout the procedure.

The Frank–Wolfe method was developed for QP problems in [FrW56],
and later for more general problems, including non-polyhedral sets, in
[Gil66] and [PsD78, Section III.3], among others. The latter source in-
cludes several convergence results for the method under different step
length rules, assuming that ∇f is Lipschitz continuous, for example a
Newton-type step length rule. The convergence Theorem 12.1 for the
Frank–Wolfe algorithm was taken from [Pat98, Theorem 5.8]. The con-
vergence result for convex problems given in Theorem 12.2 is due to
Dunn and Harshbarger [DuH78]. The version of the Frank–Wolfe algo-
rithm produced by the selection αk = 1/k is known as the method of
successive averages (MSA)..

The simplicial decomposition algorithm is developed in [vHo77]. Re-
stricted simplicial decomposition methods have been developed in [HLV87,
Pat98].

The gradient projection method presented here was first given in
[Gol64, LeP66]; see also the textbook [Ber99]. Theorem 12.5 is due to
[Ius03], while Lemma 12.6 is due to [BGIS95].

Apart from the algorithms developed here, there are other classical
algorithms for linearly constrained problems, including the reduced gra-
dient method, Rosen’s gradient projection method, active set methods,
and other sub-manifold methods. They are not treated here, as some of
them have fallen out of popularity. Reduced gradient methods still con-
stitute the main building block of some commercial software, however.

12.6 Exercises

Exercise 12.1 (extensions of the Frank–Wolfe algorithm to unbounded sets)
Develop an extension to the above description that is applicable to cases
where X may be unbounded. Which steps need to be changed? What
can go wrong?

Exercise 12.2 (numerical example of the Frank–Wolfe algorithm) Consider
the problem to

minimize f(x) := (x1 + 2x2 − 6)2 + (2x1 − x2 − 2)2,

subject to 2x1 + 3x2 ≤ 9,

x1 ≤ 3,

x1, x2 ≥ 0.

331

Draft from February 22, 2005

Optimization over convex sets

(a) Show that the problem is convex.
(b) Apply one step of the Frank–Wolfe algorithm to this problem.

starting at the origin. Provide an interval wherein the optimal value
lies.

Exercise 12.3 (numerical example of the Frank–Wolfe algorithm) Consider
the problem to

maximize f(x) := −x2
1 − 4x2

2 + 16x1 + 24x2,

subject to x1 + x2 ≤ 6,

x1 − x2 ≤ 3,

x1, x2 ≥ 0.

(a) Show that the problem is convex.
(b) Solve the problem by using the Frank–Wolfe algorithm, starting

at the origin.

Exercise 12.4 (numerical example of the Frank–Wolfe algorithm) Consider
the problem to

minimize f(x) := −1

2

(
x1 −

1

2

)2

+
1

2
x2

2,

subject to x1 ≤ 1,

x2 ≤ 1,

x1, x2 ≥ 0.

Apply two iterations of the Frank–Wolfe algorithm, starting at x0 =
(1, 1)T. Give upper and lower bounds on the optimal value.

Exercise 12.5 (convergence of a gradient projection algorithm) Establish
Theorem 12.4.

Exercise 12.6 (numerical example of the Simplicial decomposition algorithm)
Solve the problem in Exercise 12.2 by using the Simplicial decomposition
algorithm.

Exercise 12.7 (numerical example of the Simplicial decomposition algorithm)
Solve the problem in Exercise 12.3 by using the Simplicial decomposition
algorithm.

Exercise 12.8 (numerical example of the Simplicial decomposition algorithm)
On the problem in Exercise 12.4 apply two iterations of the Simplicial
decomposition algorithm. Is x2 optimal? Why/why not?

332

Draft from February 22, 2005

Part VI

Optimization over
General Sets

Draft from February 22, 2005 Draft from February 22, 2005

Constrained
optimization

XIII

In this chapter, we will discuss the conversion of nonlinear programming
problems with inequality and equality constraints into (in some sense)
equivalent unconstrained problems or problems with simple constraints.
In practice, a sequence of such equivalent (or, approximating) problems
is solved because of computational considerations.

13.1 Penalty methods

Let us consider a general optimization problem, see (4.1):

minimize f(x),

subject to x ∈ S,
(13.1)

where S ⊂ Rn is a nonempty, closed set and f : Rn → R is a given
differentiable function. The basic idea behind all penalty algorithms is
to replace the problem (13.1) with the equivalent unconstrained one:

minimize f(x) + χS(x), (13.2)

where

χS(x) =

{
0, if x ∈ S,

+∞, otherwise.

The role of χS , which in the optimization community is known as the
indicator function of the set S, is to make sure that feasibility is top
priority, and only when achieving feasibility do we concentrate on opti-
mizing the function f . Of course, the so defined χS is rather bizarre from
the computational point of view: it is non-differentiable, discontinuous,
and even not finite (though it is convex provided S is). Thus, from the

Draft from February 22, 2005

Constrained optimization

practical point of view we would like to replace the additional term χS

with a numerically better behaving function.
There are two alternative approaches achieving this. The first is

called the penalty, or the exterior penalty method, in which we add
a penalty to the objective function for points not lying in the feasible
set and thus violating some of the constraints. This method typically
generates a sequence of infeasible points, approaching optimal solutions
to the original problem from the outside (exterior) of the feasible set,
whence the name of the method. The function χS is approximated “from
below” in these methods.

Alternatively, in the barrier, or interior point methods, we add a con-
tinuous barrier term that equals +∞ everywhere except in the interior
of the feasible set and thus ensure that globally optimal solutions to the
approximating unconstrained problems do not escape the feasible set of
the original constrained problem. The method thus generates a sequence
of interior points, whose limit is an optimal solution to the original con-
strained problem. The function χS is approximated “from above” in
these methods.

Clearly we would like to transfer “nice” properties of original con-
strained problems, such as convexity, smoothness, to penalized problems
as well. We easily achieve this by carefully choosing penalty functions;
use Exercises 13.1 and 13.2 to verify that convexity may be easily trans-
ferred to penalized problems.

13.1.1 Exterior penalty methods

We assume that the feasible set S of the optimization problem (13.1) is
given by a system of inequality and equality constraints:

S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ }, (13.3)

where gi ∈ C(Rn), i = 1, . . . ,m, hj ∈ C(Rn), j = 1, . . . , ℓ. In this case,
we can choose a continuous function ψ : R → R+ such that ψ(s) = 0
if and only if s = 0 (typical examples of ψ(·) will be ψ1(s) = |s|, or
ψ2(s) = s2), and try the approximation:

χS(x) ≈ νχ̌S(x) := ν

(m∑

i=1

ψ
(
max{0, gi(x)}

)
+

ℓ∑

j=1

ψ
(
hj(x)

))
, (13.4)

where the real number ν > 0 is called the penalty parameter. The
different treatment of inequality and equality constraints in the equa-
tion (13.4) stems from the fact that equality constraints are violated at

336

Draft from February 22, 2005

Penalty methods

Figure 13.1: The graph of χ̌S and the feasible set S (black).

x whenever hj(x) 6= 0 for some j = 1, . . . , ℓ, while inequality constraints
are violated only when gi(x) > 0 for some i = 1, . . . ,m; the latter fact
can be equivalently expressed as max{0, gi(x)} 6= 0.

Example 13.1 We repeat the settings of Example 5.7. Let S = {x ∈
R2 | −x2 ≤ 0, (x1−1)2+x2

2 = 1 }. Let ψ(s) = s2. Then, in this example,

χ̌S(x) = [max{0,−x2}]2 + [(x1 − 1)2 + x2
2 − 1]2.

The graph of the function χ̌S , together with the feasible set S, is shown
in Figure 13.1.

To exclude trivial cases, we assume that the original constrained
problem (13.1), and thus its equivalent reformulation (13.2), has an op-
timal solution x∗. Furthermore, we assume that for every ν > 0 the
approximating optimization problem to

minimize
x∈Rn

f(x) + νχ̌S(x) (13.5)

has at least one optimal solution x∗
ν .

Clearly, χ̌S is non-negative and, furthermore, χ̌S(x) = 0 if and only
if x ∈ S. Therefore, from the Relaxation Theorem (Theorem 6.1) we
know that the inequality f(x∗

ν1
) + ν1χ̌(x∗

ν1
) ≤ f(x∗

ν2
) + ν2χ̌(x∗

ν2
) ≤

f(x∗) + χS(x∗) = f(x∗) holds for every positive ν1 ≤ ν2. In fact, we

337

Draft from February 22, 2005

Constrained optimization

can establish an even stronger inequality, which will be used later; see
the following lemma.

Lemma 13.2 The inequality f(x∗
ν1

) ≤ f(x∗
ν2

) holds for every positive
ν1 ≤ ν2.

Proof. The claim is trivial for ν1 = ν2, thus we assume that ν1 <
ν2. Since x∗

ν1
minimizes f(x) + ν1χ̌S(x), and x∗

ν2
is feasible in this

(unconstrained) optimization problem, it holds that

f(x∗
ν1

) + ν1χ̌S(x∗
ν1

) ≤ f(x∗
ν2

) + ν1χ̌S(x∗
ν2

). (13.6)

Similarly,

f(x∗
ν2

) + ν2χ̌S(x∗
ν2

) ≤ f(x∗
ν1

) + ν2χ̌S(x∗
ν1

).

Adding the two inequalities, we conclude that

(ν2 − ν1)[χ̌S(x∗
ν2

) − χ̌S(x∗
ν1

)] ≤ 0,

which, substituted into (13.6), implies the claim, because ν2 − ν1 > 0.

Now we are ready to show that every limit point of the sequence
{x∗

ν}, as ν converges to infinity, is optimal in the problem (13.1). Thus,
the family of problems (13.5) is indeed an approximation of the original
problem (13.1), and setting ν to a “large enough” value we can solve the
problem (13.5) in place of (13.1).

Theorem 13.3 Assume that the original constrained problem (13.1)
possesses optimal solutions. Then, every limit point of the sequence
{x∗

ν}, ν → +∞, of globally optimal solutions to (13.5) is globally optimal
in the problem (13.1).

Proof. Let x∗ denote an arbitrary globally optimal solution to (13.1).
From the following inequality (which is one of the consequences of

the Relaxation Theorem 6.1):

f(x∗
ν) + νχ̌S(x∗

ν) ≤ f(x∗), (13.7)

and Lemma 13.2, we obtain uniform bounds on the penalty term νχ̌S(x∗
ν)

for all ν ≥ 1:
0 ≤ νχ̌S(x∗

ν) ≤ f(x∗) − f(x∗
1).

Thus, χ̌S(x∗
ν) converges to zero as ν converges to +∞, and, owing to the

continuity of χ̌S , every limit point of the sequence {x∗
ν} must be feasible

in (13.1).

338

Draft from February 22, 2005

Penalty methods

Now, let x̂ denote an arbitrary limit point of {x∗
ν}, that is,

lim
k→∞

x∗
νk

= x̂,

for some sequence {νk} converging to infinity. Then, we have the follow-
ing chain of inequalities:

f(x̂) = lim
k→+∞

f(x∗
νk

) ≤ lim
k→+∞

{f(x∗
νk

) + νkχ̌S(x∗
νk

)} ≤ f(x∗),

where the last inequality follows from (13.7). However, owing to the
feasibility of x̂ in (13.1) the reverse inequality f(x∗) ≤ f(x̂) must also
hold. The two inequalities combined imply the required claim.

We emphasize that Theorem 13.3 establishes the convergence of glob-
ally optimal solutions only; the result may therefore be of limited prac-
tical value for nonconvex nonlinear programs. However, assuming more
regularity of the stationary points, such as LICQ (see Definition 5.41),
and using specific continuously differentiable penalty functions, such as
ψ(s) = s2, we can show that every limit point of sequences of station-
ary points of (13.5) also is stationary (i.e., a KKT point) in (13.1).
Furthermore, we easily obtain estimates of the corresponding Lagrange
multipliers (µ̂, λ̂).

Theorem 13.4 Let the objective function f : Rn → R and the func-
tions gi : Rn → R, i = 1, . . . ,m, and hj : Rn → R, j = 1, . . . , ℓ, defining
the inequality and equality constraints of (13.1) be continuously dif-
ferentiable. Further assume that the penalty function ψ : R → R+ is
continuously differentiable and that ψ′(s) ≥ 0 for all s ≥ 0.

Consider a sequence {xk} of points that are stationary for the se-
quence of problems (13.5), for some positive sequence of penalty param-
eters {νk} converging to +∞. Assume that limk→+∞ xk = x̂, and that
LICQ holds at x̂. Then, if x̂ is feasible in (13.1) it must also verify the
KKT-conditions.

Proof. [Sketch] Owing to the optimality conditions (4.13) for uncon-
strained optimization we know that every point xk, k = 1, 2, . . . , neces-
sarily satisfies the equation

∇[f(xk) + νkχ̌S(xk)] = ∇f(xk) (13.8a)

+
m∑

i=1

νkψ
′[max{0, gi(xk)}]∇gi(xk) (13.8b)

+

ℓ∑

j=1

νkψ
′[hj(xk)]∇hj(xk) = 0n. (13.8c)

339

Draft from February 22, 2005

Constrained optimization

Let, as before, I(x̂) denote the index set of active inequality constraints
at x. If i 6∈ I(x̂) then gi(xk) < 0 for all large k, and the terms corre-
sponding to this index do not contribute to (13.8).

Since LICQ holds at x̂, we know that the vectors {∇gi(x̂),∇hj(x̂) |
i ∈ I(x̂), j = 1, . . . , ℓ } are linearly independent. Therefore, we can easily
show that the sequence {νkψ

′[max{0, gi(xk)}]} must converge to some
limit µ̂i as k → +∞ for all i ∈ I(x̂). Similarly, limk→+∞ νkψ

′[hj(xk)] =

λ̂j , j = 1, . . . , ℓ. At last, since νkψ
′[max{0, gi(xk)}] ≥ 0 for all k =

1, 2, . . . , i ∈ I(x̂) it follows that µ̂ ≥ 0|I(x̂)|.
Passing to the limit as k → +∞ in (13.8) we deduce that

∇f(x̂) +
∑

i∈I(x̂)

µ̂i∇gi(x̂) +

ℓ∑

j=1

λ̂j∇hj(x̂) = 0n,

i.e., x̂ is a KKT-point for (13.1) with Lagrange multipliers (µ̂, λ̂).

Notice that if the original problem (13.1) is convex and verifies LICQ,
and if every penalized problem is also convex (cf. Exercise 13.1), then
Theorems 13.3 and 13.4 essentially work with the same sequences: under
convexity and LICQ globally optimal solutions are KKT-points and vice
versa. Therefore, in this case we automatically get feasibility of limit
points in Theorem 13.4, as well as expressions for estimating Lagrange
multimpliers in Theorem 13.4.

13.1.2 Interior penalty methods

While the idea behind exterior penalty functions it to nicely approximate
χS on the whole of Rn, interior penalty, or barrier, function methods
construct approximations only inside the feasible set and set a barrier
against leaving it. If a globally optimal solution to (13.1) happens to be
located on the boundary of the feasible region, then the method generates
a sequence of interior points that converges to it.

In this section we assume that the feasible set S of the optimization
problem (13.1) has the following form:

S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m }. (13.9)

For the method to work, we need to assume that there exists a strictly
feasible point x̂ ∈ Rn, that is, such that gi(x̂) < 0, i = 1, . . . ,m. Thus, in
contrast with the exterior penalty algorithms, we cannot include equality
constraints into the penalty term. While it is possible to extend the
discussion to allow for equality constraints, we prefer to keep the notation
simple and assume that equality constraints are not present.

340

Draft from February 22, 2005

Penalty methods

−0.5 0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

χ S

x

ν=1
ν=0.1
ν=0.01

Figure 13.2: The graph of νχ̂S for various choices of ν. Note the loga-
rithmic scale.

To formulate a barrier problem, we consider the following approxi-
mation of χS :

χS(x) ≈ νχ̂S(x) :=

{
ν
∑m

i=1 φ[gi(x)], if gi(x) < 0, i = 1, . . . ,m,

+∞, otherwise,

(13.10)
and the function φ : R− → R+ is a continuous nonnegative function such
that φ(sk) → ∞ for all negative sequences {sk} converging to zero. Typ-
ical examples φ are φ1(s) = −s−1, and φ2(s) = − log[min{1,−s}]. Note
that φ2 is not differentiable at the point s = −1. However, dropping the
nonnegativity requirement on φ, the famous differentiable logarithmic
barrier function φ̃2(s) = − log(−s) gives rise to the same convergence
theory as we are going to present.

Example 13.5 Consider the simple one-dimensional set S = { x ∈ R |
−x ≤ 0 }. Choosing φ = φ1 = −s−1, the graph of the barrier function
νχ̂S is shown in Figure 13.2 for various values of ν. Note how νχ̂S

converges towards χS as ν ↓ 0.

Having chosen the function φ and a penalty parameter ν > 0, we are
going to solve the following problem:

minimize
x∈Rn

f(x) + νχ̂S(x). (13.11)

341

Draft from February 22, 2005

Constrained optimization

Similarly to the case of exterior penalty functions discussed in the
previous section, we can prove the convergence to globally optimal solu-
tions (however, in this case we need to assume the regularity assumption
S = cl{x ∈ Rn | gi(x) < 0, i = 1, . . . ,m }). Rather, we proceed directly
to establish a convergence result for stationary points, similar to Theo-
rem 13.4. Not only is this result more practical than the one concerning
globally optimal solutions, but also the interior point algorithms are most
often applied to convex optimization problems, and thus stationarity im-
plies global optimality (see Section 5.8). The reason is that interior point
algorithms are especially efficient both practically and theoretically for
convex optimization problems. In fact, one can show that the number of
computational steps an interior point algorithm needs in order to achieve
a prescribed accuracy ε > 0 is bounded by a polynomial function of the
“size” of the problem (that is, the number of variables and constraints)
and ε−1. For non-convex problems, on the contrary, it is known that the
number of steps necessary can grow exponentially. For other algorithms
that can be applied to convex optimization problems, for example, for
exterior penalty methods, no well-developed complexity theory exists.

The proof of the general convergence theorems for barrier methods
goes in parallel with the corresponding results for exterior penalty meth-
ods. The vital difference, though, is that now the constrained prob-
lem (13.1) is the relaxation of (13.11) for every ν > 0, and the conver-
gence is studied as ν ↓ 0.

Theorem 13.6 Let the objective function f : Rn → R and the func-
tions gi, i = 1, . . . ,m, defining the inequality constraints of (13.9) be
continuously differentiable. Further assume that the barrier function
φ : R → R+ is continuously differentiable and that φ′(s) ≥ 0 for all
s < 0.

Consider a sequence {xk} of points that are stationary for the se-
quence of problems (13.11) with ν = νk, for some positive sequence of
penalty parameters {νk} converging to 0. Assume that limk→+∞ xk = x̂,
and that LICQ holds at x̂. Then, x̂ is a KKT-point for (13.1).

Proof. [Sketch] Owing to the optimality conditions (4.13) for uncon-
strained optimization we know that every point xk, k = 1, 2, . . . , neces-
sarily satisfies the equation

∇[f(xk) + νkχ̂S(xk)] =

∇f(xk) +
m∑

i=1

νkφ
′[gi(xk)]∇gi(xk) = 0n.

(13.12)

Because every point xk is strictly feasible in (13.1), the limit x̂ is

342

Draft from February 22, 2005

Penalty methods

clearly feasible in (13.1). Let I(x̂) denote the index set of active in-
equality constraints at x̂.

If i 6∈ I(x̂) then gi(xk) < 0 for all large k, and νkφ
′[gi(xk)] → 0 as

νk ↓ 0.
Since LICQ holds at x̂, we know that the vectors {∇gi(x̂) | i ∈

I(x̂) } are linearly independent. Therefore, we can easily show that the
sequence {νkφ

′[gi(xk)]} must converge to some limit µ̂i as k → +∞ for
all i ∈ I(x̂). At last, since νkφ

′[gi(xk)] ≥ 0 for all k = 1, 2, . . . , i ∈ I(x̂),
it follows that µ̂ ≥ 0|I(x̂)|.

Passing to the limit as k → +∞ in (13.12) we deduce that

∇f(x̂) +
∑

i∈I(x̂)

µ̂i∇gi(x̂) = 0n,

that is, x̂ is a KKT-point for (13.1) with Lagrange multiplier vector µ̂.

For example, if we use φ(s) = φ1(s) = −1/s, then φ′(s) = 1/s2 in
Theorem 13.6, and the sequence {νk/g

2
i (xk)} converges to the Lagrange

multiplier µ̂i corresponding to the constraint i (i = 1, . . . ,m).

13.1.3 Computational considerations

As the penalty parameter increases in the exterior penalty methods,
or decreases in the interior penalty methods, the approximating prob-
lem (13.5) [respectively, (13.11)] becomes more and more ill-conditioned.
Therefore, a typical computational strategy is to start from “safe” val-
ues of the penalty parameter (relatively small for exterior penalties, or
relatively large for barriers), and then proceed step after step slightly
modifying the penalty parameter (e.g., multiplying it with some number
close to 1).

It is natural to use the optimal solution x∗
νk

as a starting point for an
iterative algorithm used to solve the approximating problem correspond-
ing to the next value νk+1 of the penalty parameter. The idea behind
such a “warm start” is that, typically, νk ≈ νk+1 implies x∗

νk
≈ x∗

νk+1
.

In fact, in many cases we can perform only few (maybe, only one)
steps of an iterative algorithm starting at xνk

to obtain a satisfac-
tory approximation xνk+1

of an optimal solution corresponding to the
penalty parameter νk+1, and still preserve the convergence xνk

→ x∗,
as k → +∞, towards optimal solutions of the original constrained prob-
lem (13.1). This technique is especially applicable to convex optimiza-
tion problems, and all the complexity estimates for interior penalty al-
gorithms depend on this fact.

343

Draft from February 22, 2005

Constrained optimization

13.1.4 Applications and examples

Example 13.7 (exterior penalty) Consider the problem to

minimize f(x) =
1

2
(x2

1 + x2
2) + 2x2,

subject to x2 = 0.
(13.13)

The problem is convex with affine constraints; therefore, the KKT con-
ditions are both necessary and sufficient for the global optimality. The
KKT system is in this case reduces to: x2 = 0 and

(
x1

x2 + 2

)
+ λ

(
0
1

)
=

(
0
0

)
.

The only solution to this system is x = 02, λ = −2.
Let us use the exterior penalty method with quadratic penalty ψ(s) =

s2 to solve this problem. That is, we want to

minimize
1

2
(x2

1 + x2
2) + 2x2 + νx2

2,

where ν > 0 is a penalty parameter. This problem is convex as well, so
that stationarity is both necessary and sufficient for global optimality:

(
x1

(1 + 2ν)x2 + 2

)
=

(
0
0

)
,

which has the unique solution x∗
ν = (0,−2/(1 + 2ν))T for every ν > 0.

Note that limν→+∞ x∗
ν = 02 is a globally optimal solution to (13.13),

and that

lim
ν→+∞

νψ′[(x∗
ν)2] = lim

ν→+∞
−4ν

1 + 2ν
= −2 = λ,

where λ is the Lagrange multiplier corresponding to the equality con-
straint x2 = 0.

Example 13.8 (interior penalty) Consider the problem to

minimize f(x) = x2
1 + x2,

subject to x2
1 + x2

2 − 1 ≤ 0.
(13.14)

The problem is convex and verifies Slater’s CQ (see Definition 5.38);
therefore, the KKT conditions are both necessary and sufficient for global
optimality. The KKT system in this case reduces to: x2

1 + x2
2 ≤ 1 and

(
2x1

1

)
+ µ

(
2x1

2x2

)
=

(
0
0

)
,

µ ≥ 0,

µ(x2
1 + x2

2 − 1) = 0.

344

Draft from February 22, 2005

Penalty methods

After easy calculations, which the reader is encouraged to perform, we
can see that the only solution to this system is x∗ = (0,−1)T, µ = 1/2.

Now, let us use the barrier method with the barrier function φ(s) =
− log(−s). That is, we want to

minimize x2
1 + x2 − ν log(1 − x2

1 − x2
2),

where ν > 0 is a penalty parameter. This problem is convex as well
(verify this!), so that stationarity (restricted to the interior of the feasible
set, {x ∈ R2 | x2

1 + x2
2 < 1 }) is both necessary and sufficient for global

optimality: (
2x1

1

)
+

ν

1 − x2
1 − x2

2

(
2x1

2x2

)
=

(
0
0

)
.

Again, after some transformations we can verify that this system has
two solutions xν = (0, ν−

√
ν2 + 1)T and yν = (0, ν+

√
ν2 + 1)T, out of

which only xν is (strictly) feasible. We can easily see that limν→+0 xν =
(0,−1)T is a globally optimal solution to (13.14), and that

lim
ν→+0

νφ′[(xν)21 + (xν)22 − 1] = lim
ν→+0

ν

1 − (ν −
√
ν2 + 1)2

= lim
ν→+0

1

2
√
ν2 + 1 − 2ν

=
1

2
= µ,

where µ is the Lagrange multiplier corresponding to the inequality con-
straint x2

1 + x2
2 − 1 ≤ 0.

Example 13.9 (linear programming) Consider a linear programming prob-
lem in the following form:

maximize bTy,

subject to ATy ≤ c,
(13.15)

where b,y ∈ Rm, c ∈ Rn, and A ∈ Rm×n. Using the standard linear
programming theory (see Theorem 10.14), we can write the primal–dual
optimality conditions for this problem in the form:

ATy ≤ c,

Ax = b,

x ≥ 0n,

xT(c − ATy) = 0,

(13.16)

where x ∈ Rn is the vector of Lagrange multipliers for the inequality
constraints, or just a vector of dual variables as it is customary called in
the linear programming literature.

345

Draft from February 22, 2005

Constrained optimization

Introducing a vector s ∈ Rn of slack variables for the inequality
constraints into the problem (13.15), it assumes the form

maximize bTy,

subject to ATy + s = c,

s ≥ 0n,

(13.17)

and the corresponding system of optimality conditions will be:

ATy + s = c,

Ax = b,

x ≥ 0n, s ≥ 0n, xTs = 0.

(13.18)

Now, let us apply the barrier method to the optimization prob-
lem (13.17). It has equality constraints, which we do not move into the
penalty function, but rather leave them as they are. Thus, we consider
the following problem with equality constraints only:

minimize −bTy − ν

n∑

j=1

log(sj),

subject to ATy + s = c,

(13.19)

where we use the logarithmic barrier function, ν > 0 is a penalty pa-
rameter, and we have multiplied the original objective function with
−1 to change the maximization problem into a minimization one. The
problem (13.19) is convex with affine constraints, therefore the KKT
conditions are both necessary and sufficient for the global optimality.
The KKT system in this case is: ATy + s = c, and




−b

−ν/s1
...

−ν/sn


+

(
A

In

)
x =

(
0m

0n

)
, (13.20)

where x ∈ Rn is a vector of Lagrange multipliers for the equality con-
straints in the problem (13.19). Further, the system (13.20) can be
rewritten in the following more convenient form:

ATy + s = c,

Ax = b,

xjsj = ν, j = 1, . . . , n.

(13.21)

346

Draft from February 22, 2005

Penalty methods

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

s

ν = .1
ν = .01
ν = .001
ν=0

Figure 13.3: The approximation of the complementarity constraint re-
sulting from the use of logarithmic barrier functions in linear program-
ming.

Recalling that due to the presence of the barrier the vector s must be
strictly feasible, that is, s > 0n, and that the penalty parameter ν
is positive, the last equation in (13.21) does in fact imply the strict
inequality x > 0n.

Therefore, comparing (13.21) and (13.18) we see that for linear pro-
grams the introduction of a logarithmic barrier amounts to a small per-
turbation of the complementarity condition. Namely, instead of the re-
quirement

x ≥ 0n, s ≥ 0n, xjsj = 0, j = 1, . . . , n,

we get a similar one (for small ν > 0):

x > 0n, s > 0n, xjsj = ν, j = 1, . . . , n.

For the case n = 1 the difference between the two is shown in Figure 13.3.
Note the smoothing effect on the feasible set introduced by the interior
penalty algorithm. We can use Newton’s method to solve the system of
nonlinear equations (13.21), but not (13.18).

347

Draft from February 22, 2005

Constrained optimization

13.2 Sequential quadratic programming

13.2.1 Introduction

We begin by studying the equality constrained problem to

minimize f(x), (13.22a)

subject to hj(x) = 0, j = 1, . . . , ℓ, (13.22b)

where f : Rn → R and hj : Rn → R are given functions in C1 on
Rn. The Karush–Kuhn–Tucker conditions for this problem state (cf.
Theorem 5.33) that at a local minimum x∗ of f over the feasible set,
where x∗ satisfies some constraint qualification, it must be the case that
there exists a vector λ∗ ∈ Rℓ such that

∇xL(x∗,λ∗) := ∇f(x∗) +
ℓ∑

j=1

λ∗j∇hj(x
∗) = 0n, (13.23a)

∇λL(x∗,λ∗) := h(x∗) = 0ℓ. (13.23b)

It is an appealing idea to find such a point by directly attacking
this system of nonlinear equations, which has n + ℓ unknowns as well
as equations. Newton’s method is then the natural choice. Let us see
what the Newton subproblem looks like. We now assume, for the time
being, that f and hj (j = 1, . . . , ℓ) are in C2 on Rn. Suppose we have an
iteration point (xk,λk) ∈ Rn × Rℓ. Then, since Newton’s method takes
a unit step in the direction towards the approximate problem’s solution,
we obtain the following characterization of the next iterate (xk+1,λk+1):
(xk+1,λk+1) = (xk,λk) + (pk,vk), where (pk,vk) ∈ Rn × Rℓ solves the
second-order approximation of the stationary point condition for the
Lagrange function:

∇2L(xk,λk)

(
pk

vk

)
= −∇L(xk,λk),

that is,

[
∇2

xxL(xk,λk) ∇h(xk)T

∇h(xk) 0m×m

](
pk

vk

)
=

(
−∇xL(xk,λk)

−h(xk)

)
, (13.24)

where the matrix ∇h(xk)T is the Jacobian of h at xk, comprised of the
rows ∇hj(xk)T for j = 1, . . . , ℓ.

This system of linear equations has a nice interpretation, namely as
the KKT system corresponding to the quadratic programming problem

348

Draft from February 22, 2005

Sequential quadratic programming

to

minimize
p

1

2
pT∇2

xxL(xk,λk)p + ∇xL(xk,λk)p, (13.25a)

subject to hj(xk) + ∇hj(xk)Tp = 0, j = 1, . . . , ℓ. (13.25b)

This approximate problem has as its objective a second-order approx-
imation of the Lagrange function with respect to the primal variables
x,1 and the original constraints have been replaced by their first-order
approximations at xk. The Lagrange multiplier vector vk appearing in
(13.24) is the vector of Lagrange multipliers for the constraints (13.25b).

As for Newton methods in unconstrained optimization, convergence
to a stationary point of the Lagrangian in Rn×Rm requires (unless some
sort of line search is introduced) that we start the algorithm close to such
a point and where also the Hessian of the Lagrangian is invertible so that
the algorithm is well-defined. Under the additional conditions that the
stationary point x∗ is a strict minimum of f over the feasible set, that
it satisfies the linear independence constraint qualification LICQ (see
Definition 5.41), and that it together with the KKT multiplier vector λ∗

satisfies a second-order sufficient condition (compare Theorem 4.16), the
sequence {(xk,λk)} converges towards the KKT point (x∗)T, (λ∗)T)T,
with a superlinear rate (cf. Section 11.10). (The proof is quite similar to
that from the unconstrained case, and is not given here.)

We remark that the convergence theory presented for the above rudi-
mentary Newton method is far from satisfactory, for several reasons:� Convergence is only local, which means that the algorithm must be

combined with an algorithm that converges to a KKT point from
any starting vector, that is, a global algorithm;� The algorithm requires strong assumptions about the problem,
such as that the functions f and hj are in C2 and that the Hessian
of the Lagrangian is positive definite, in order for the solution to
(13.25) to be well-defined.

In the next section, we will therefore develop a modification of the
above algorithm, which is globally convergent to stationary points. More-
over, we will work also with inequality constraints, which is not imme-
diate to incorporate into the above Newton-like framework.

1Add the constant term L(xk,�k) to the objective function for clarity.

349

Draft from February 22, 2005

Constrained optimization

13.2.2 A penalty-function based SQP algorithm

In order to introduce a penalty function into the discussion, let us con-
sider first the following one:

P (x,λ) := ‖∇L(x,λ)‖2 = ‖∇xL(x,λ)‖2 + ‖h(x)‖2. (13.26)

This is an exact penalty function, because its unconstrained minima are
(or, strongly relate to) optimal solutions and/or Lagrange multipliers of
the constrained problem. The exact penalty function (13.26) has been
used extensively in cases where ℓ = n and the problem is to find a
solution to hj(x) = 0 for all j. The function has significant drawbacks,
however: it does not distinguish between local minima and maxima, and
it may have local minima that are not global and even do not correspond
to vectors where the value of P is zero; in other words, it may have local
minima that are even infeasible in the original problem.

The above case of penalty function is differentiable; in fact, the more
popular penalty functions are non-differentiable. We present such a one
next.

Consider now the constrained optimization problem to

minimize f(x), (13.27a)

subject to gi(x) ≤ 0, i = 1, . . . ,m, (13.27b)

hj(x) = 0, j = 1, . . . , ℓ, (13.27c)

where f : Rn → R, gi, and hj : Rn → R are given functions in C1 on
Rn. We introduce the l1 penalty function [cf. (13.4)]

χ̌S(x) :=

m∑

i=1

maximum {0, gi(x)} +

ℓ∑

j=1

|hj(x)|, (13.28)

and the associated exact penalty function

Pe(x) := f(x) + νχ̌S(x), (13.29)

where ν > 0.
For this problem and penalty function, we can establish the following

result.

Proposition 13.10 (an exact penalty function) Suppose that x∗ satis-
fies the KKT conditions (5.17) of the problem (13.27), together with
Lagrange multipliers (µ∗,λ∗). Suppose further that the functions f and
gi, i ∈ I(x∗), all are convex, and that hj , j = 1, . . . , ℓ, are affine. Then,
if the value of ν is large enough such that

ν ≥ maximum{µ∗
i , i ∈ I(x∗); |λ∗j |, j = 1, . . . , ℓ }

then the vector x∗ is also a global minimum of the function Pe.

350

Draft from February 22, 2005

Sequential quadratic programming

Proof. [Sketch] Consider the problem of minimizing Pe over Rn. We
can rewrite this problem as follows:

minimize f(x) + ν




m∑

i=1

yi +

ℓ∑

j=1

zj


 , (13.30a)

subject to yi ≥ gi(x) and yi ≥ 0, i = 1, . . . ,m, (13.30b)
zj ≥ hj(x) and zi ≥ −hj(x), j = 1, . . . , ℓ. (13.30c)

Analyzing the KKT conditions for this problem, we can construct mul-
tipliers for the problem (13.30) from the multiplier vectors (µ∗,λ∗) and
show that x∗ is a globally optimal solution to it (note the convexity as-
sumptions).

There are similar results also for more general, non-convex, problems
that establish that if x∗ is a (strict) local minimum to (13.27) then it is
also a (strict) local minimum of the exact penalty function.

We must note, however, that the implication is in a somewhat un-
satisfactory direction: there may exist local minima of Pe that do not
correspond to constrained local minima in the original problem, for any
value of ν. The theory is however much more satisfactory in the convex
case, as usual.

We develop a penalty SQP algorithm, known as the MSQP method
(as in Merit SQP, merit function being synonymous with objective func-
tion), for solving the general problem (13.27). Given an iterate xk ∈ Rn

and a vector (µk,λk) ∈ Rm
+ ×Rℓ, suppose we choose a positive definite,

symmetric matrix Bk ∈ Rn×n; for example, it can be an approximation
of ∇2

xxL(xk,µk,λk). We then solve the following subproblem:

minimize
p

1

2
pTBkp + ∇f(xk)Tp, (13.31a)

subject to gi(xk) + ∇gi(xk)Tp ≤ 0, i = 1, . . . ,m, (13.31b)

hj(xk) + ∇hj(xk)Tp = 0, j = 1, . . . , ℓ. (13.31c)

Note that if we were to utilize Bk = ∇2
xxL(xk,µk,λk) then the prob-

lem (13.31) would be the optimization problem associated with a second-
order approximation of the KKT conditions for the original problem
(13.27); the close connection to quasi-Newton methods in unconstrained
optimization should be obvious.

We also took the liberty to replace the term ∇xL(xk,µk,λk)Tp by
the term ∇f(xk)Tp. This is without any loss of generality, as the KKT
conditions for the problem (13.31) imply that they can be interchanged
without any loss of generality—the only difference in the two objectives
lies in the constant term which plays no role in the optimization.

351

Draft from February 22, 2005

Constrained optimization

A quasi-Newton type method based on the subproblem (13.31) fol-
lowed by a unit step and a proper update of the matrix Bk, as in the
BFGS algorithm, is locally convergent with a superlinear speed, just
as in the unconstrained case. But we are still interested in a globally
convergent version, whence we develop the theory of an algorithm that
utilizes the exact penalty function (13.29) in a line search rather than
taking a unit step. Our first result shows when the subproblem solution
provides a descent direction with respect to this function.

Lemma 13.11 (a descent property) Given xk ∈ Rn consider the strictly
convex quadratic problem (13.31), where Bk ∈ Rn×n is positive definite.
Suppose that pk solves this problem together with the multipliers µ and
λ. Assume that pk 6= 0n. Then, if ν ≥ maximum {µ1, . . . , µm, |λ1|, . . . , |λℓ|}
the vector pk is a direction of descent with respect to the l1 penalty func-
tion (13.29) at (xk,µk,λk).

Proof. Using the KKT conditions of the problem (13.31) we obtain that

∇f(xk)Tp = −pTBkp −
m∑

i=1

µi∇gi(xk)Tp −
ℓ∑

j=1

λj∇hj(xk)Tp

= −pTBkp +

m∑

i=1

µigi(xk) +

ℓ∑

j=1

λjhj(xk)

≤ −pTBkp +

m∑

i=1

µi maximum {0, gi(xk)} +

ℓ∑

j=1

|λj ||hj(xk)|

≤ −pTBkp + ν




m∑

i=1

maximum {0, gi(xk)} +

ℓ∑

j=1

|hj(xk)|



 .

In order to investigate the descent properties of pk with respect to
Pe at xk, we next note that

Pe(xk)−Pe(xk+αpk) = f(xk) − f(xk + αpk)

+ ν

m∑

i=1

[max {0, gi(xk)}−max{0, gi(xk+αpk)}]

+ ν

ℓ∑

j=1

[|hj(xk)| − |hj(xk + αpk)|].

Let Oi (respectively, Oj) denote functions from R to R each function
Or having the property that limα→∞Or(α) = 0. Then, for α > 0 small

352

Draft from February 22, 2005

Sequential quadratic programming

enough,

f(xk + αpk) = f(xk) + α∇f(xk)Tpk + αO0(α).

Also, gi(xk + αpk) = gi(xk) + α∇gi(xk)Tpk + αOi(α) ≤ gi(xk) −
αgi(xk) + αOi(α) holds by the KKT conditions of the problem (13.31).
Hence,

maximum {0, gi(xk + αpk)} ≤ (1 − α)maximum {0, gi(xk)} + α|Oi(α)|.

Similarly we obtain that hj(xk + αpk) = hj(xk) + α∇hj(xk)Tpk +
αOj(α) = (1 − α)hj(xk) + αOj(α), and hence

|hj(xk + αpk)| ≤ (1 − α)|hj(xk)| + α|Oj(α)|.

Using these three expressions in the expression for Pe(xk) − Pe(xk +
αpk) we obtain that for small enough α > 0, Pe(xk) − Pe(xk + αpk) ≥
α[−∇f(xk)Tpk+ν

∑m
i=1 maximum {0, gi(xk)}+ν

∑ℓ
j=1 |hj(xk)|+O(α)].

Hence, we obtain that

Pe(xk) − Pe(xk + αpk) ≥ α[pT
k Bkpk +O(α)] > 0

for every α > 0 small enough, due to the positive definiteness of the
matrix Bk. We are done.

The MSQP algorithm then works as follows. At some iteration k,
we have at hand a vector xk. Select a positive definite matrix Bk ∈
Rn×n. Solve the QP problem (13.31) in order to obtain the vector pk

and multipliers (µk+1,λk+1). If pk = 0n we stop with xk being a
KKT point for the original problem (13.27) together with the multipliers
(µk+1,λk+1). (Why?) Otherwise, find xk+1 = xk + αkpk where αk

minimizes Pe(xk + αpk) over α ≥ 0. Increase k by one and repeat.
Convergence of this rudimentary algorithm follows from the below

result.

Theorem 13.12 (convergence of the MSQP method) The algorithm MSQP
either terminates finitely at a KKT point for the problem (13.27) or it
produces an infinite sequence {xk}. In the latter case, we assume that
{xk} lies in a compact set X ⊂ Rn and that for every x ∈ X and positive
definite matrix Bk the QP (13.31) has a unique solution, and also unique
multiplier vectors µ and λ satisfying ν ≥ maximum {µ1, . . . , µm, |λ1|, . . . , |λℓ|},
where ν > 0 is the penalty parameter. Furthermore, assume that the se-
quence {Bk} of matrices is bounded and that every accumulation point
of this sequence is positive definite (or, the sequence {B−1

k } of matrices
is bounded). Then, every accumulation point of {xk} is a KKT point
for the problem (13.27).

353

Draft from February 22, 2005

Constrained optimization

Proof. The following is a proof sketch, establishing that the proper-
ties stated in the theorem yields a descent algorithm with reasonable
properties. A formal proof is given in [BSS93, Theorem 10.4.2].

Clearly, the algorithm stops precisely at KKT points, so we concen-
trate on the case where {xk} is an infinite sequence. We can consider an
iteration as a descent step wherein we first construct a descent direction
pk, followed by a line search in the continuous function Pe, and followed
by an update of the matrix Bk. By the properties stated, each of these
steps is well defined.

Since the sequence {xk} is bounded, it has an accumulation point,
say x∞. By the assumptions stated, also the sequence {pk} must be
bounded (why?). Suppose that p∞ is one such point. Suppose that it
is non-zero. By assumption the sequence {Bk} also has accumulation
points, all of which are positive definite. Suppose B∞ is one such matrix.
Then, by Lemma 13.11 the vector p∞ must define a descent direction for
Pe. This contradicts the assumption that x∞ is an accumulation point.
(Why?) Therefore, it must be the case that p∞ = 0n, in which case x∞

is stationary, that is, a KKT point. We are done.

Note that we here have not described any rules for selecting the
value of ν. Clearly, this is a difficult task, which must be decided from
experiments including the results from the line above line searches with
respect to the merit function Pe. Note further that we have no guarantees
that the QP subproblems (13.31) are feasible; in the above theorem we
assumed that the problem is well-defined. Further still, we note that Pe

is only continuous, whence we cannot utilize several of the step length
rules devised in Section 11.3. Local superlinear or quadratic convergence
of this algorithm can actually be impaired due to the use of this merit
function, as it is possible to construct examples where a unit step does
not reduce its value even very close to an optimal solution. (This is
known as the Maratos effect, after [Mar78].) The notes lead to further
reading on these issues.

13.2.3 A numerical example on the MSQP algorithm

Consider the two-dimensional optimization problem to

minimize f(x) := 2x2
1 + 2x2

2 − 2x1x2 − 4x1 − 6x2, (13.32a)

subject to g1(x) := 2x2
1 − x2 ≤ 0, (13.32b)

g2(x) := x1 + 5x2 − 5 ≤ 0, (13.32c)

g3(x) := −x1 ≤ 0, (13.32d)

g4(x) := −x2 ≤ 0. (13.32e)

354

Draft from February 22, 2005

Sequential quadratic programming

Check that the vector x∗ = (7
3 ,

8
3)T is an unconstrained globally optimal

solution, which however is infeasible.
Suppose we wish to utilize the MSQP algorithm for solving this

problem. We choose ν = 10, Bk to always be the partial Hessian
∇2

xxL(xk,µk) of the Lagrangian (notice that it always is positive definite
due to the strong convexity properties of the problem), and the starting
point x0 = (0, 1)T, which is feasible. Hence, f(x0) = Pe(x0) = −4. We
also select µ0 = 04. Setting up the first QP subproblem accordingly, we
obtain the problem to

minimize
1

2
(4p2

1 + 4p2
2 − 4p1p2) − 6p1 − 2p2, (13.33a)

subject to − 1 − p2 ≤ 0, (13.33b)

p1 + 5p2 ≤ 0, (13.33c)

− p1 ≤ 0, (13.33d)

− 1 − p2 ≤ 0. (13.33e)

Solving this problem yields the solution p1 = (35
31 ,− 7

31)T and the multi-
plier vector µ1 ≈ (0, 1.032258, 0, 0)T.

We next perform a line search in the exact penalty function:

minimize
α≥0

Pe(x0 + αp1) = 3.1612897α2 − 6.3225804α− 4

+ 10 max{0, 2.5494274α2 + 0.2258064α− 1}
+ 10 max{0, 0} + 10 max{0,−1.1290322α}
+ 10 max{0,−1 + 0.2258064α}.

We obtain that α1 ≈ 0.5835726. (Note that the unconstrained mini-
mum of α 7→ f(x0 +αp1) is α = 1, which however leads to an infeasible
point having a too high penalty.)

This produces the next iterate, x1 ≈ (0.6588722, 0.8682256)T.
We ask the reader to confirm that this is a near-optimal solution by

checking the KKT conditions , and to confirm that the next QP problem
verifies this.

We were able to find the optimal solution this quickly, due to the
facts that the problem is quadratic and that the value ν = 10 is large
enough. (Check the value of the Lagrange multipliers.)

13.2.4 On recent developments in SQP algorithms

We have seen that the SQP algorithm above has an inherent decision
problem, namely to choose the right value of the penalty parameter ν.
In recent years, there has been a development of algorithms where the

355

Draft from February 22, 2005

Constrained optimization

penalty parameter is avoided altogether. We call such methods filter-
SQP methods.

In such methods we borrow a term from multi-objective optimization,
and say that x1 dominates x2 if χ̌(x1) ≤ χ̌(x2) and f(x1) ≤ f(x2)
[where χ̌ = χ̌S is our measure of infeasibility], that is, if x1 is better
both in terms of feasibility and optimality. A filter is a list of pairs
(χ̌i, fi) such that χ̌i < χ̌j or fi < fj for all j 6= i in the list. By adding
elements to the filter, we build up an efficient frontier in the bi-criterion
problem of simultaneously finding low objective values and reduce the
infeasibility. The filter is used in place of the penalty function, when the
standard Newton-like step cannot be computed, for example because the
subproblem is infeasible.

This algorithm class is quickly becoming popular, and has already
been found to be among the best general algorithms in nonlinear pro-
gramming, especially because it does not rely on any parameters that
need to be estimated.

13.3 A summary and comparison

Quite a few algorithms of the penalty and SQP type exist, of which only
a few could be summarized here. Which are the relative strengths and
weaknesses of these methods?

First, we may contrast the two types of methods with regards to
their ill-conditioning. The barrier methods of Section 13.1.2 solve a se-
quence of unconstrained optimization problems that become more and
more ill-conditioned. In contrast, exact penalty methods need not be
ill-conditioned and moreover only one approximate problem is, at least
in principle, enough to solve the original problem. However, it is known
at least for linear and quadratic programming problems that the in-
herent ill-conditioning of barrier methods can be eliminated (we say the
ill-conditioning is benign), because of the special structure of these prob-
lems and their optimality conditions.

Among the features of SQP methods is that they can deal with
very large classes of problems, including those with nonlinear equal-
ity constraints, and they do not rely on the existence of second-order
derivatives—although they can make good use of them. While it is
known from practice that the number of quadratic subproblems can
be rather small before reaching a near-locally optimal solution, these
subproblems can be costly to solve. A major development has been
made of specialized quadratic programming methods for solving and re-
optimizing large-scale quadratic SQP subproblems, and the most recent
codes are quite robust. Still, which methods to prefer depend on many

356

Draft from February 22, 2005

Notes and further reading

factors.
It is also an issue whether one wants to solve just one problem or a

whole series of problems with marginally different data; if this is the case,
then the problem of finding good penalty parameter values becomes less
serious, as we then have access to good starting values from previous
runs.

The solver fmincon in the Matlab Optimization Toolbox is an SQP
method.

13.4 Notes and further reading

Exterior and interior penalty methods were popularized by the publi-
cation of the book Nonlinear Programming: Sequential Unconstrained
Minimization Technique by Fiacco and McCormick in 1968 ([FiM68]), al-
though barrier methods had been presented already in 1961 and exterior
penalty methods were developed by Courant much earlier still (in 1943).
Their name for many years was “SUMT”, after the title of the book.
These methods lost popularity when the classes of SQP and augmented
Lagrangian methods (see Exercise 13.8 below) had begun to mature, but
following the discovery of the polynomial complexity of certain interior
point methods for LP, and in particular the discovery that some of them
could be derived as special barrier methods where the barrier parameter
is updated in a special way, made them popular again. Most text books
on nonlinear optimization concentrate on these two classes of methods;
see [Lue84, Fle87, BSS93, Ber99, NoW99].

In linear programming, several recent text books offer descriptions of
interior point methods; see, e.g., [Pad99, Van01].

Sequential quadratic programming (SQP) methods were first devel-
oped by Wilson [Wil63]. Sequential linear programming (SLP) methods
(cf. Exercise 13.7 below), which are based on first-order approximations
of the KKT conditions, were developed by staff in the chemical (espe-
cially oil) industry; one reason why SLP methods are effective in such ap-
plications is that some important blending problems are only mildly non-
linear. The MSQP method described here stems from [Han75, Pow78].
The issue of feasibility of the SQP subproblems is taken up in [Fle87].
The boundedness of the subproblem solution is often ensured by com-
bining SQP with a trust region method (cf. Section 11.7), such that
the QP subproblem is further constrained. The Maratos effect has been
overcome during the last decade of research; cf. [PaT91, Fac95].

Filter-SQP algorithms offer a substantial development over the stan-
dard SQP methods. Good references to this rapidly developing class of
methods are [FLT02, UUV04].

357

Draft from February 22, 2005

Constrained optimization

13.5 Exercises

Exercise 13.1 (convexity, exterior penalty method) Assume that the prob-
lem (13.3) is convex. Show that with the choice φ(s) = s2 [where φ
enters the definition of the penalty function via (13.4)], for every ν > 0
the problem (13.5) is convex.

Exercise 13.2 (convexity, interior penalty method) Assume that the prob-
lem (13.3) is convex. Show that with the choice φ(s) = − log(−s) [where
φ enters the definition of the penalty function via (13.10)], for every ν > 0
the problem (13.11) is convex.

Exercise 13.3 (numerical example, exterior penalty method) Consider the
problem to

minimize f(x) :=
1

2

(
x2

1 + x2
2

)
,

subject to x1 = 1.

Apply the exterior penalty method with the standard quadratic penalty
function.

Exercise 13.4 (numerical example, logarithmic barrier method) Consider
the problem to

minimize f(x) :=
1

2

(
x2

1 + x2
2

)
,

subject to x1 ≤ 1.

Apply the interior penalty method with a logarithmic penalty function
on the constraint.

Exercise 13.5 (logarithmic barrier, exam 990827) Consider the problem
to

minimize f(x) :=
1

2
x2

1 + x2
2,

subject to x1 + 2x2 ≥ 10.

Attack this problem with a logarithmic barrier method. Describe ex-
plicitly the trajectory the method follows, as a function of the barrier
parameter. Confirm that the limit point of the trajectory solves the
problem.

358

Draft from February 22, 2005

Exercises

Exercise 13.6 (logarithmic barrier method in linear programming) Consider
the linear programming problem to

minimize f(x) := −y1 + y2,

subject to y2 ≤ 1,

−y1 ≤ −1,

y ≥ 02.

Apply the interior penalty method with a logarithmic penalty function
on the non-negativity restrictions on the slack variables.

Exercise 13.7 (sequential linear programming) Consider the optimization
problem to

minimize
x

f(x), (13.34a)

subject to gi(x) ≤ 0, i = 1, . . . ,m, (13.34b)
hj(x) = 0, j = 1, . . . , ℓ, (13.34c)

where the functions f , gi (i = 1, . . . ,m), and hj (j = 1, . . . , ℓ) are
continuously differentiable on Rn.

Suppose that x̄ is feasible in the problem (13.34). Prove the following
statement by using linear programming duality: x̄ satisfies the Karush–
Kuhn–Tucker (KKT) conditions if and only if the following LP problem
has the optimal value zero:

minimize
p

∇f(x̄)Tp,

subject to gi(x̄) + ∇gi(x̄)Tp ≤ 0, i = 1, . . . ,m,
hj(x̄) + ∇hj(x̄)Tp = 0, j = 1, . . . , ℓ.

Describe briefly how this LP problem could be used to devise an
iterative method for the problem (13.34).

[Note: Algorithms in this class of methods are referred to as Sequen-
tial Linear Programming (SLP) methods.]

Exercise 13.8 (augmented Lagrangian) Consider the problem

f∗ := infimum f(x), (P)

subject to x ∈ X,

and

l∗ := infimum l(x), (R)

subject to x ∈ G.

359

Draft from February 22, 2005

Constrained optimization

If X ⊆ G and l(x) ≤ f(x) for all x ∈ X we say that (R) is a relaxation
of (P); cf. Section 6.1. Conversely, (P) is then a restrification of (R).

Consider the problem of the form

f∗ := infimum f(x),

subject to gi(x) = 0, i = 1, . . . ,m,

where x ∈ Rn and f and gi, i = 1, . . . ,m, are continuous functions
on Rn. Let µi, i = 1, . . . ,m, be real multipliers (dual variables) for
the constraints and let P : Rm → R+ be a continuous exterior penalty
function, that is, a function such that

P (y)

{
= 0, if y = 0m,

> 0, if y 6= 0m.

Consider the penalized problem

θ∗ = infimum
x∈Rn

θ(x) := f(x) +

m∑

i=1

µigi(x) + νP (g(x)),

where g(x) is the m-vector of gi(x) and where ν > 0. Show that this
problem is a relaxation of the original one.

[Note: Algorithms based on the relaxation (R)—which linearly com-
bines the objective function with the Lagrangian and a penalty funciton—
are known as augmented Lagrangian methods, and the function θ is
known as the augmented Lagrangian function. They constitute an al-
ternative to the exact penalty methods, in that they also can be made
convergent without having to let the penalty parameter tend to infinity,
in this case because of the Lagrangian term; in augmented Lagrangian
algorithms the multiplier µ plays a much more active role than in SQP
methods.]

360

Draft from February 22, 2005

Part VII

Appendix

Draft from February 22, 2005 Draft from February 22, 2005

Answers to the
exercises

I

Chapter 1: Modelling and classification

Exercise 1.1
Variables:

xj = number of units produced in process j, j = 1, 2;

y = number of half hours hiring the model.

Optimization model:

maximize f(x, y) := 50(3x1 + 5x2) − 3(x1 + 2x2) − 2(2x1 + 3x2) − 5000y,

subject to x1 + 2x2 ≤ 20, 000,

2x1 + 3x2 ≤ 35, 000,

3x1 + 5x2 ≤ 1, 000 + 200y

x1 ≥ 0,

x2 ≥ 0,

0 ≤ y ≤ 6.

Exercise 1.2
Variables:

xj = number of trainees trained during month j, j = 1, . . . , 5;

yj = number of technicians available at the beginning of month j, j = 1, . . . , 5.

Optimization model:

Draft from February 22, 2005

Answers to the exercises

minimize z =
5∑

j=1

(15000yj + 7500xj)

subject to 160y1 − 50x1 ≥ 6000
160y2 − 50x2 ≥ 7000
160y3 − 50x3 ≥ 8000
160y4 − 50x4 ≥ 9500
160y5 − 50x5 ≥ 11, 500
0.95y1 + x1 = y2
0.95y2 + x2 = y3
0.95y3 + x3 = y4
0.95y4 + x4 = y5

y1 = 50
yj, xj ≥ 0, j = 1, . . . , 5.

Exercise 1.3 We declare the following indices:� i, i = 1, . . . , 3: Work place,� k, k = 1, . . . , 2: Connection point,

and variables� (xi, yi): Coordinates for work place i;� ti,k: Indicator variable; its value is defined as 1 if work place i is
connected to the connection point k, and as 0 otherwise;� z: The longest distance to the window.

The problem to minimize the maximum distance to the window is
that to

minimize z, (A.1)

subject to the work spaces being inside the rectangle:

d

2
≤ xi ≤ l − d

2
, i = 1, . . . , 3, (A.2)

d

2
≤ yi ≤ b− d

2
, i = 1, . . . , 3, (A.3)

that the work spaces do not overlap:

(xi − xj)
2 + (yi − yj)

2 ≥ d2, i = 1, . . . , 3, j = 1, . . . , 3, i 6= j, (A.4)

364

Draft from February 22, 2005

Answers to the exercises

that the cables are long enough:

t1,k

[
(xi −

l

2
)2 + (yi − 0)2

]
≤ a2

i , i = 1, . . . , 3, (A.5)

t2,k

[
(xi − l)2 + (yi −

b

2
)2
]
≤ a2

i , i = 1, . . . , 3, (A.6)

that each work space must be connected to a connection point:

ti,1 + ti,2 = 1, i = 1, . . . , 3, (A.7)

ti,k ∈ {0, 1}, i = 1, . . . , 3, k = 1, 2, (A.8)

and finally that the value of z is at least as high as the longest distance
to the window:

b− yi ≥ z, i = 1, . . . , 3. (A.9)

The problem hence is to minimize the objective function in (A.1)
under the constraints (A.2)–(A.9).

Exercise 1.4 We declare the following indices:� i: Warehouses (i = 1, . . . , 10),� j: Department stores (j = 1, . . . , 30),

and variables:� xij : portion (between 0 and 1) of the total demand at department
store j which is served from warehouse i,� yi: Indicator variable; its value is defined as 1 if warehouse i is
built, and 0 otherwise.

We also need the following constants, describing the department
stores that are within the specified maximum distance from a warehouse:

aij :=

{
1, if dij ≤ D,

0, otherwise,
i = 1, . . . , 10, j = 1, . . . , 30.

365

Draft from February 22, 2005

Answers to the exercises

(a) The problem becomes:

minimize

10∑

i=1

ciyi,

subject to xij ≤ aijyi, i = 1, . . . , 10, j = 1, . . . , 30,

30∑

j=1

ejxij ≤ kiyi, i = 1, . . . , 10,

10∑

i=1

xij = 1, j = 1, . . . , 30,

xij ≥ 0, j = 1, . . . , 30,

yi ∈ {0, 1}, i = 1, . . . , 10.

The first constraint makes sure that only warehouses that are built
and which lie sufficiently close to a department store can supply any
goods to it.

The second constraint describes the capacity of each warehouse, and
the demand at the various department stores.

The third and fourth constraints describe that the total demand at a
department store must be a non-negative (in fact, convex) combination
of the contributions from the different warehouses.

(b) Additional constraints: xij ∈ {0, 1} for all i and j.

Chapter 3: Convexity

Exercise 3.1 Use the definition of convexity (Definition 3.1).

Exercise 3.2 a) S is a polyhedron. It is the parallelogram with the
corners a1+a2, a1−a2,−a1+a2,−a1−a2, that is, S = conv {a1+a2, a1−
a2,−a1 + a2,−a1 − a2} which is a polytope and hence a polyhedron.

b) S is a polyhedron.
c) S is not a polyhedron. Note that although S is defined as an

intersection of halfspaces it is not a polyhedron, since we need infinitely
many halfspaces.

d) S = {x ∈ Rn | −1n ≤ x ≤ 1n}, that is, a polyhedron.
e) S is a polyhedron. By squaring both sides of the inequality, it

follows that −2(x0−x1)Tx ≤ ‖x1‖2
2−‖x0‖2

2, so S is in fact a halfspace.
f) S is a polyhedron. Similarly as in e) above it follows that S is the

366

Draft from February 22, 2005

Answers to the exercises

intersection of the halfspaces

−2(x0 − xi)Tx ≤ ‖xi‖2
2 − ‖x0‖2

2, i = 1, . . . , k.

Exercise 3.3 a) x1 is not an extreme point. b) x2 is an extreme
point. This follows by checking the rank of the equality subsystem and
then using Theorem 3.17.

Exercise 3.4 Let

D =




A

−A

−In


 , d =




b

−b

0n


 .

Then P is defined by Dx ≤ d. Further, P is nonempty, so let x̃ ∈ P .
Now, if x̃ is not an extreme point of P , then the rank of equality subsys-
tem i lower than n. By using this it is possible to construct an x′ ∈ P
such that the rank of the equality subsystem of x′ is at least one larger
than the rank of the equality subsystem of x̃. If this argument is used
repeatedly we end up with an extreme point of P .

Exercise 3.5 We have that
(

1
1

)
= 0.5

(
0
1

)
+ 0.5

(
1
0

)
+ 0.5

(
1
1

)
,

and since (0, 1)T, (1, 0)T ∈ Q and (1, 1)T ∈ C we are done.

Exercise 3.6 Assume that a1, a2, a3, b ∈ R satisfy

a1x1 + a2x2 + a3x3 ≤ b, ∀x ∈ A, (A.10)

a1x1 + a2x2 + a3x3 ≥ b, ∀x ∈ B. (A.11)

From (A.10) it follows that a2 = 0 and that a3 ≤ b. Further, since
(1/n, n, 1)T ∈ B for all n > 0, from (A.11) we have that a3 ≥ b. Hence,
it holds that a3 = b. Since (0, 0, 0)T, (1, n2, n)T ∈ B for all n ≥ 0, in-
equality (A.11) shows that b ≤ 0 and a3 ≥ 0. Hence a2 = a3 = b = 0,
and it follows that H = {x ∈ R3} | x1 = 0} is the only hyperplane that
separates A and B. Finally, A ⊆ H and (0, 0, 0)T ∈ H ∩B, so H meets
both A and B.

Exercise 3.7 Let B be the intersection of all closed halfspaces in
Rn containing A. It follows easely that A ⊆ B. In order to show that

367

Draft from February 22, 2005

Answers to the exercises

B ⊆ A, show that Ac ⊆ Bc by using the Separation Theorem 3.24.

Exercise 3.8 Assume that P 6= ∅. Then, by using Farkas’ Lemma
(Theorem 3.30), show that there exists a p 6= 0m such that p ≥ 0m

and Bp ≥ 0m. From this it follows that P is unbounded and hence not
compact.

Exercise 3.10 The function is strictly convex on R2.

Exercise 3.11 a) Not convex; b)–f) strictly convex.

Exercise 3.12 a)–f) Strictly convex.

Exercise 3.13 a)

f(x, y) =
1

2
(x, y)

[
4 −2
−2 1

] [
x
y

]
+ (3,−1)

[
x
y

]
.

b) Yes. c) Yes.

Exercise 3.14 a) Non-convex; b) convex; c) non-convex; d) convex;
e) convex.

Exercise 3.15 Yes.

Exercise 3.16 Yes.

Exercise 3.17 We will try to apply Definition 3.45. It is clear that
the objective function can be written as the minimization of a (strictly)
convex function. The constraints are analyzed thus: the first and third,
taken together and applying also Example 3.37(c), describe a closed and
convex set; the second and fourth constraint describes a (convex) poly-
hedron. By Proposition 3.3 we therefore are done. The answer is Yes.

Exercise 3.18 The first constraint is redundant; the feasible set hence
is a nonempty polyedron. Regarding the objective function, it is defined
only for positive x1; the objective function is strictly convex on R++,
since its second derivative there equals 1/x1 > 0 [cf. Theorem 3.41(b)].
We may extend the definition of x1 lnx1 to a continuous (in fact convex)
function, on the whole of R+ by defining 0 ln 0 = 0. With this classic
extension, together with the constraint, we see that it is the problem of
maximizing a convex function over a closed convex set. This is not a
convex problem. The answer is No.

368

Draft from February 22, 2005

Answers to the exercises

Chapter 4: An introduction to optimality
conditions

Exercise 4.1 The claim is False.

Exercise 4.2 Investigating the Hessian matrix yields that a ∈ (−4, 2)
and b ∈ R implies that the objective function is strictly convex (in fact,
strongly convex, because it is quadratic).

[Note: It would be a mistake to here perform a classic transforma-
tion, namely to observe that the problem is symmetric in x1 and x2 and
utilize this to eliminate one of the variables through the identification
x∗1 = x∗2. Suppose we do so. We then reduce the problem to that of
minimizing the one-dimensional function x 7→ (4 + a)x2 − 2x+ b over R.
The condition for this function to be strictly convex, and therefore have
a unique solution (see the above remark on strong convexity), is that
a > −4, which is a milder condition than the above. However, if the
value of a is larger than 2 the original problem has no solution! Indeed,
suppose we look at the direction x ∈ R2 in which x1 = −x2 = p. Then,
the function f(x) behaves like (2 − a)p2 − 2p + b which clearly tends
to minus infinity whenever |p| tends to infinity, whenever a > 2. It is
important to notice that the transformation works when the problem
has a solution; otherwise, it is not.]

Exercise 4.3 Let ρ(x) := xTAx
xTx . Stationarity for ρ at x means that

2

xTx
(Ax − ρ(x) · x) = 0n.

If xi 6= 0n is an eigenvector of A, corresponding to the eigenvalue λi,
then ρ(xi) = λi holds. From the above two equations follow that for
x 6= 0n to be stationary it is both necessary and sufficient that x is an
eigenvector.

The global minimum is therefore an arbitrary nonzero eigenvector,
corresponding to the minimal eigenvalue λi of A.

Exercise 4.4 (a) The proof is by contradiction, so suppose that x̄ is
a local optimum, x∗ is a global optimum, and that f(x̄) < f(x∗) holds.
We first note that by the local optimality of x̄ and the affine nature of
the constraints, it must hold that

∇f(x̄)Tp = 0m, for all vectors p with Ap = 0m.

We will especially look at the vector p := x∗ − x̄.

369

Draft from February 22, 2005

Answers to the exercises

Next, by assumption, f(x̄) < f(x∗), which implies that (x̄−x∗)TQ(x̄−
x∗) < 0 holds. We utilize this strict inequality together with the above
to last establish that, for every γ > 0,

f(x̄ + γ(x̄ − x∗)) < f(x̄),

which contradicts the local optimality of x̄. We are done.

Exercise 4.5 Utilize the variational inequality characterization of the
projection operation.

Exercise 4.6 Utilize Proposition 4.22(b) for this special case of feasible
set. We obtain the following necessary conditions for x∗ ≥ 0n to be local
minimum:

0 ≤ x∗j ⊥ ∂f(x∗)

∂xj
≥ 0, j = 1, 2, . . . , n,

where (for real values a and b) a ⊥ b means the condition that a · b = 0
holds. In other words, if x∗j > 0 then the partial derivative of f at x∗

with respect to xj must be zero; conversely, if this partial derivative if
non-zero then the value of x∗j must be zero. (This is called complemen-
tarity.)

Exercise 4.7 By a logarithmic transformation, we may instead max-
imize the function f(x) =

∑n
j=1 aj log xj . The optimal solution is

x∗j =
aj∑n
i=1 ai

, j = 1, . . . , n.

(Check the optimality conditions for a problem defined over a simplex.)
We confirm that it is a unique optimal solution by checking that the

objective function is strictly concave where it is defined.

Chapter 5: Optimality conditions

Exercise 5.1 (2, 1)T is a KKT point for this problem with KKT
multipliers (1, 0)T. Since the problem is convex, this is also a globally
optimal solution (cf. Theorem 5.45). Slater’s CQ (and, in fact, LICQ as
well) is verified.

Exercise 5.2 (a) Feasible set of the problem consits of countably many
isolated points xk = −π/2 + 2πk, k = 1, 2, . . . , each of which is thus a

370

Draft from February 22, 2005

Answers to the exercises

locally optimal solution. The globally optimal solution is x∗ = −π/2.
KKT conditions are not satisfied at the points of local minimum and
therefore they are not necessary for optimality in this problem. (The
reason is of course that CQs are not verified.)

(b) It is easy to verify that FJ conditions are satisfied (as they should
be, cf. Theorems 5.8 and 5.15).

(c) The point (x, y) = (0, 0) is a FJ point, but it has nothing to do
with points of local minimum.

Exercise 5.3 KKT system:

Ax ≥ b,

λ ≥ 0,

c − ATλ = 0,

λT(Ax − b) = 0.

Combining the last two equations we obtain cTx − bTλ.

Exercise 5.4 (a) Clearly, two problems are equivelent. On the other
hand, ∇{∑m

i=1[hi(x)]2} = 2
∑m

i=1 hi(x)∇hi(x) = 0 at every feasible
solution. Therefore, MFCQ is violated at every feasible point of the
problem (5.22) (even though Slater’s CQ, LICQ, or at least MFCQ might
hold for the original problem).

(b) The objective function is non-differentiable (well, only direction-
ally differentiable). Therefore, we rewrite the problem as

minimize z,

subject to

{
f1(x) − z ≤ 0,

f2(x) − z ≤ 0,

The problem verifies MFCQ (e.g., the direction (0, 1)T ∈
◦
G(x, z) for all

feasible points (x, z). Therefore, KKT conditions are necessary for local
optimality; these conditions are exaclty what we need.

Exercise 5.5 Problem is convex + CQ =⇒ need to find an arbitrary
KKT-point. KKT system:

x + ATλ = 0,

Ax = b

Therefore, Ax+AATλ = 0, and AATλ = −b. Finally, x = AT(AAT)−1b.

371

Draft from February 22, 2005

Answers to the exercises

Exercise 5.6 (b) Show that KKT-multiplier λ is positive at every op-
timal solution. It means that

∑n
j=1 x

2
j = 1 is satisfied at every optimal

solution; use convexity to conclude that there may be only one optimal
solution.

Exercise 5.7 (a) Locally and globally optimal solutions may be found
using geometrical considerations; (x, y) = (2, 0) gives us a local min,
(x, y) = (3/2, 3/2) is a globally optimal solution. KKT system incidently
has two [in the space (x, y)] solutions, but at every point there are in-
finitely many KKT multipliers. Therefore, in this particular problem
KKT-conditions are both necessary and sufficient for local optimality.

(b) The gradients of constraints are linearly dependent at every fea-
sible point; thus LICQ is violated.

The fiasible set is a union of two convex sets F1 = { (x, y)T | y =
0, x − y ≥ 0 } and F2 = { (x, y)T | y ≥ 0, x − y = 0 }. Thus we can
solve two convex optimization problems to minimize f over F1, and to
minimize f over F2; then simply choose the best solution.

(c) The feasible set may be split into 2n convex parts FI , I ⊆
{ 1, . . . , n }, where

aT
i = bi, and xi ≥ 0, i ∈ I,

aT
i ≥ bi, and xi = 0, i 6∈ I.

Thus we (in principle) have reduced the original non-convex problem
that violates LICQ to 2n convex problems.

Exercise 5.8 Use KKT-conditions (convex problem+Slater’s CQ).
c ≤ −1.

Exercise 5.9 Slater’s CQ =⇒ KKT conditions are necessary for
optimality. Prove that x∗j > 0; then

x∗j =
Dcj∑n
j=1 cj

, j = 1, . . . , n.

Chapter 6: Lagrangian duality

Exercise 6.7

λ = 1 =⇒ x1 = 1, x2 = 2, infeasible, q(1) = 6;
λ = 2 =⇒ x1 = 1, x2 = 5/2, infeasible, q(2) = 43/4;
λ = 3 =⇒ x1 = 3, x2 = 3, feasible, q(3) = 9.

372

Draft from February 22, 2005

Answers to the exercises

Further, f(3, 3) = 21, so 43/4 ≤ f∗ ≤ 21.

Chapter 8: Linear programming models

Exercise 8.1 (a) Introduce the new variables y ∈ Rm. Then the
problem is equivalent to the linear program

minimize

m∑

i=1

yi

subject to − y ≤ Ax − b ≤ y,

− 1n ≤ x ≤ 1n.

(b) Introduce the new variables y ∈ Rm and t ∈ R. Then the problem
is equivalent to the linear program

minimize

m∑

i=1

yi + t

subject to − y ≤ Ax − b ≤ y,

− t1n ≤ x ≤ t1n.

Exercise 8.2 (a) Let

B =




−(v1)T 1
...

...
−(vk)T 1
(w1)T −1

...
...

(wl)T −1




, x =

(
a

b

)
.

Then from the rank assumption it follows that rankB = n + 1, which
means that x 6= 0n+1 implies that Bx 6= 0k+l. Hence the problem can
be solved by solving the linear program

minimize (0n+1)Tx

subject to Bx ≥ 0k+l,

(1k+l)TBx = 1.

373

Draft from February 22, 2005

Answers to the exercises

(b) Let α = R2 − ‖xc‖2
2. Then the problem can be solved by solving

the linear program

minimize (0n)Txc + 0α

subject to ‖vi‖2
2 − 2(vi)Txc ≤ α, i = 1, . . . , k,

‖wi‖2
2 − 2(wi)Txc ≥ α, i = 1, . . . , l,

and compute R as R =
√
α+ ‖xc‖2

2 (from the first set of inequalities in
the LP above it follows that α+ ‖xc‖2

2 ≥ 0 so this is well defined).

Exercise 8.3 Since P is bounded there exists no y 6= 0n such that
Ay ≤ 0m. Hence there exist no feasible solution to the system

Ay ≤ 0m,

dTy = 1,

which implies that z > 0 in every feasible solution to (8.9).
Further, let (y∗, z∗) be a feasible solution to (8.9). Then z∗ > 0 and

x∗ = y∗/z∗ is feasible to (8.8), and f(x∗) = g(y∗, z∗). Conversely, let x∗

be a feasible solution to (8.8). Then by the hypothesis dTx∗+β > 0. Let
z∗ = 1/(dTx∗ + β) and y∗ = z∗x∗. Then (y∗, z∗) is a feasible solution
to (8.9) and g(y∗, z∗) = f(x∗). These fact together imply the assertion.

Exercise 8.4 The problem can be transformed into the standard form:

minimize z′ = x′1 −5x+
2 +5x−2 −7x+

3 +7x−3
subject to 5x′1 −2x+

2 +2x−2 +6x+
3 −6x−3 −s1 = 15,

3x′1 +4x+
2 −4x−2 −9x+

3 +9x−3 = 9,

7x′1 +3x+
2 −3x−2 +5x+

3 −5x−3 +s2 = 23,

x′1, x+
2 , x−2 , x+

3 , x−3 , s1, s2 ≥ 0,

where x′1 = x1 + 2, x2 = x+
2 − x−2 , x3 = x+

3 − x−3 , and z′ = z − 2.

Exercise 8.5 (a) The first equality constraint gives that

x3 =
1

6
(11 − 2x1 − 4x2).

Now, by substituting x3 with this exression in the objective function and
the second equality constraint the problem is in standard form and x3

is eliminated.

374

Draft from February 22, 2005

Answers to the exercises

(b) If x3 ≥ 0, then we must add the constraint (11−2x1−4x2)/6 ≥ 0
to the problem. But this is an inequality, so in order to transform the
problem into standard form we must add a slackvarible.

Exercise 8.6 Assume that the column in the constraint matrix cor-
responding to the variable x+

j is aj . Then the column in the constraint

matrix corresponding to the variable x−j is −aj . The statement then
follows from the definition of basic feasible solution, since aj and −aj

are linearly dependent.

Exercise 8.7 Let P be the set of feasible solutions to (8.10) and Q
be the set of feasible solutions to (8.11). Obviously P ⊆ Q. In order to
show that Q ⊆ P assume that there exists an x ∈ Q such that x /∈ P
and derive a contradiction.

Chapter 9: The simplex method

Exercise 9.1 The phase I problem becomes

minimize w = a1 + a1

subject to − 3x1 − 2x2 + x3 − s1 + a1 = 3,

x1 + x2 − 2x3 − s2 + a2 = 1,

x1, x2, x3, s1, s2, a1, a2 ≥ 0.

From the equality constraints it follows that a1+a2 ≥ 4 for all x1, x2, x3, s1, s2 ≥
0. Hence, in particular, it follows that w ≥ 4 for all feasible solutions to
the phase I problem, which means that the original problem is infeasible.

Exercise 9.2 (a) The standard form is given by

minimize 3x1 + 2x2 + x3

subject to 2x1 + x3 − s1 = 3,

2x1 + 2x2 + x3 = 5,

x1, x2, x3, s1 ≥ 0.

By solving the phase I problem with the Simplex algorithm we get the
feasible basis xB = (x1, x2)

T. Then by solving the phase II problem with
the Simplex algorithm we get the optimal solution x∗ = (x1, x2, x3)

T =
(0, 1, 3)T.

375

Draft from February 22, 2005

Answers to the exercises

(b) No, the set of all optimal solution is given by the set

{x ∈ R3 | λ(0, 1, 3)T + (1 − λ)(0, 0, 5)T; λ ∈ [0, 1]}.

Exercise 9.3 The reduced cost for all the variables except for xj must
be greater than or equal to 0. Hence it follows that the current basis is
optimal to the problem that arises if xj is fixed to zero. The assertion
then follows from the fact that the current basis is non-degenerate.

Chapter 10: LP duality and sensitivity anal-
ysis

Exercise 10.1 The linear programming dual is given by

minimize 11y1+23y2+12y3

subject to 4y1 +3y2 +7y3 ≥ 6,

3y1 +2y2 +4y3 ≥−3,

−8y1 +7y2 +3y3 ≤−2,

7y1 +6y2 +2y3 = 5,

y2 ≤ 0,

y3 ≥ 0.

Exercise 10.2 (a) The linear programming dual is given by

maximize bTy1 +lTy2+uTy3

subject to ATy1+Iny2 +Iny3 =c,

y2 ≥0n,

y3 ≤0n.

(b) A feasible solution to the linear programming dual is given by

y1 = 0m,

y2 = (max{0, c1}, . . . ,max{0, cn})T,
y3 = (min{0, c1}, . . . ,min{0, cn})T.

376

Draft from February 22, 2005

Answers to the exercises

Exercise 10.3 First, check that y = (B−1)TcB is feasible to the LP
dual problem. Then show that bTy equals the optimal objective func-
tion value for the primal problem. The assertion then follows from the
Weak Duality Theorem.

Exercise 10.4 Use the Weak and Stong Duality Theorems.

Exercise 10.5 The LP dual is infeasible. Hence, from the Weak and
Strong Duality Theorems it follows that the primal problem is either
infesible or unbounded.

Exercise 10.6 By using the Strong Duality Theorem we get the
following polyhedron:

Ax ≥ b,

ATy ≤ c,

cTx = bTy,

x ≥ 0n,

y ≤ 0m.

Exercise 10.7 From the Strong Duality Theorem it follows that
cTx∗ = bTy∗. Use this to establish the statement.

Exercise 10.8 The dual problem only contains two varibles and hence
can be solved graphically. We get the optimal solution y∗ = (−2, 0)T.
The complementary slackness conditions then implies that x1 = x2 =
x3 = x5 = 0. Hence, let xB = (x4, x6)

T. The optimal solution is
x∗ = (x1, x2, x3, x4, x5, x6)

T = (0, 0, 0, 3, 0, 1)T.

Exercise 10.9 From the complementary slackness conditions and the
fact that c1/a1 ≥ · · · ≥ cn/an it follows that

u =
cr
ar
,

yj = cj −
cr
ar
aj , j = 1, . . . , r − 1,

yj = 0, j = r, . . . , n,

377

Draft from February 22, 2005

Answers to the exercises

is a dual feasible solution which together with the given primal solution
fulfil the LP primal-dual optimality conditions.

Exercise 10.14 The basis xB = (x1, x2)
T is optimal as long as c3 ≤ 5

and c4 ≥ 8.

Exercise 10.15 b) The basis xB = (x1, x3)
T is optimal for all

δ ≥ −6.5. c) The basis xB = (x1, x3) is not primal feasible for δ = −7,
but it is dual feasible, so by using the Dual Simplex method it follows
that xB = (x1, x5)

T is an optimal basis.

Chapter 11: Unconstrained optimization

Exercise 11.2 The directional derivative is 13 > 0; the answer is No.

Exercise 11.3 (a) The search direction is not a descent direction,
for example because the Hessian matrix is indefinite or negative definite.
(b) The linear system is unsolvable, for example because the Hessian
matrix is indefinite. [Note: Even for indefinite Hessians, the search
direction might exist for some right-hand sides.] (c) Use the Levenberg–
Marquardt modification.

Exercise 11.4 Let y1 := x1 − 2 and y2 :=
√

5(x2 + 6). We then get
f(x) = g(y) = y2

1 + y2
2. At every y ∈ R2 the negative gradient points

towards the optimum!

Exercise 11.5 (a) x1 = (1/2, 1)T. (b) The Hessian matrix is

∇2f(x1) =

(
10 −4
−4 2

)
.

The answer is Yes. (c) The answer is Yes.

Exercise 11.6 (a) x1 = (2, 1/2)T. (b) The answer is No. The gradi-
ent is zero. (c) The answer is Yes.

Exercise 11.7 (a) (b) µ ∈ (0, 0.6).

Exercise 11.8 (a) f(x0) = (−1,−2)T =⇒ ‖f(x0)‖ =
√

5; x1 =
(4/3, 2/3)T =⇒ ‖f(x1)‖ = 16/27. (b) If f is the gradient of a C2 func-
tion f : Rn 7→ R we obtain that ∇f = ∇2f , that is, Newton’s method

378

Draft from February 22, 2005

Answers to the exercises

for unconstrained optimization is obtained.

Exercise 11.9 (a) x∗ = (ATA)−1ATb. (b) The objective function is
convex, since the Hessian is ATA (which is always positive semi-definite;
check!). Therefore, the normal solution in (a) is globally optimal.

Exercise 11.12 (a) We have that

∇f(y) + γ(y − xk) = 0n ⇐⇒ Qy + q + γ(y − xk) = 0n ⇐⇒
(Q + γIn)y = γxk − q ⇐⇒ (Q + γIn)(y − xk).

Further,

(Q + γIn)(y − xk) = γxk − q − (Q + γIn)xk = −(Qxk + q).

(b) If {xk} converges to x∞ then {pk} = {xk+1 − xk} must con-
verge to zero. From the updating formula we obtain that pk = (Q +
γIn)−1∇f(xk) for every k. The sequence {∇f(xk)} converges to ∇f(x∞),
since f ∈ C1. If ∇f(x∞) 6= 0n it would hold that {pk} would converge
to (Q + γIn)−1∇f(x∞) 6= 0n, since (Q + γIn)−1 is positive definite
when Q + γIn is. This leads to a contradiction. Hence, ∇f(x∞) = 0n.
Since f is convex x∞ is a global minimum of f over Rn.

Exercise 11.13 Case I: {∇f(xk)} → 0n; {xk} and {f(xk)} diverge.
Example: f(x) = − log x; {xk} → ∞; {f(xk)} → −∞; {f ′(xk)} → 0.

Case II: {∇f(xk)} → 0n; {xk} diverges; {f(xk)} converges.
Example: f(x) = 1/x; {xk} → ∞; {f(xk)} → 0; {f(xk)} → 0.

Case III: {∇f(xk)} → 0n; {xk} is bounded; {f(xk)} is bounded.

Example: f(x) = 1
3x

3 − x; xk =

{
1 + 1/k, k even
−1 − 1/k k odd

{xk} has two limit points: ±1; {f(xk)} has two limit points: ±2/3.

Case IV: {∇f(xk)} → 0n; {xk} is bounded; {f(xk)} converges.
Example: f(x) = x2 − 1; xk as above; {f(xk)} → 0.

Case V: {∇f(xk)} → 0n; {xk} and {f(xk)} converge.
Example: f as in Case IV; xk = 1 + 1/k.

Chapter 12: Optimization over convex sets

Exercise 12.2 (b) x1 = (12/5, 4/5)T; UBD = f(x1) = 8. The LP
problem defined at x0 gives LBD = 0. Hence, f∗ ∈ [0, 8].

379

Draft from February 22, 2005

Answers to the exercises

Exercise 12.3 (b) x∗ = (4, 2)T; f∗ = 80.

Chapter 13: Constrained optimization

Exercise 13.5 For a given parameter value ν > 0 the unconstrained
problem to

minimize
x∈R2

f(x) − ν · log(x1 + 2x2 − 10)

uniquely solvable:

x1 −
ν

x1 + 2x2 − 10
= 0; 2x2 −

2ν

x1 + 2x2 − 10
= 0

yields that x1 = x2 must hold; the resulting quadratic equation 3x2
1 −

10x1 − ν = 0 has two roots, of which x1(ν) = 5/3 +
√

25/9 + ν/3 is
strictly feasible. As ν → 0, x1(ν) = x2(ν) tends to 10/3.

One then shows that x∗ = (10
3 ,

10
3)T is a KKT point. The constraint

is binding, and µ∗ = 10/3 ≥ 0. Since the problem is convex, x∗ is opti-
mal.

Exercise 13.7 Let us first rewrite the LP problem into the following
equivalent form, and note that hj(x̄) = 0 for all j, since x̄ is feasible:

minimize
p

∇f(x̄)Tp,

subject to −∇gi(x̄)Tp ≥ gi(x̄), i = 1, . . . ,m,

−∇hj(x̄)Tp = 0, j = 1, . . . , ℓ.

Letting µ ≥ 0m and λ ∈ Rℓ be the dual variable vector for the inequal-
ity and equality constraints, respectively, we obtain the following dual
program:

maximize
(µ,λ)

m∑

i=1

µigi(x̄),

subject to −
m∑

i=1

µi∇gi(x̄) −
ℓ∑

j=1

λj∇hj(x̄) = ∇f(x̄),

µi ≥ 0, i = 1, . . . ,m.

LP duality now establishes the result sought: First, suppose that
the optimal value of the above primal problem over p is zero. Then,
the same is true for the dual problem. Hence, by the sign conditions
µi ≥ 0 and gi(x) ≤ 0, each term in the sum must be zero. Hence, we

380

Draft from February 22, 2005

Answers to the exercises

established that complementarity holds. Next, the two constraints in the
dual problem are precisely the dual feasibility conditions, which hence
are fulfilled. Finally, primal feasibility of x̄ was assumed. It follows that
this vector indeed is a KKT point.

Conversely, if x̄ is a KKT point, then the dual problem above has a
feasible solution given by any KKT multiplier vector (µ,λ). The dual
objective is upper bounded by zero, since each term in the sum is non-
positive. On the other hand, there is a feasible solution with the objective
value 0, namely any KKT point! So, each KKT point must constitute
an optimal solution to this dual LP problem! It then follows by duality
theory that the dual of this problem, which is precisely the primal prob-
lem in p above, has a finite optimal solution, whose optimal value must
then be zero. We are done.

[Note: The LP problem given in the exercise is essentially the sub-
problem in the Sequential Linear Programming (SLP) algorithm. By the
above analysis, the optimal value must be negative if x̄ is not a KKT
point, and it must therefore also be negative (since a zero value is given
by setting p = 0n). The optimal value of p, if one exists, is therefore a
descent direction with respect to f at x̄. A convergent SLP method in-
troduces additional box constraints on p in the LP subproblem to make
sure that the solution is finite, and the update is made according to a
line search with respect to some penalty function.]

381

Draft from February 22, 2005

Answers to the exercises

382

Draft from February 22, 2005

References

[Aba67] J. Abadie, On the Kuhn–Tucker theorem, in Nonlinear Program-
ming (NATO Summer School, Menton, 1964), North-Holland,
Amsterdam, 1967, pp. 19–36.

[Arm66] L. Armijo, Minimization of functions having Lipschitz continuous

first partial derivatives, Pacific Journal of Mathematics, 16 (1966),
pp. 1–3.

[AHU58] K. J. Arrow, L. Hurwicz, and H. Uzawa, eds., Studies in

Linear and Non-Linear Programming, Stanford University Press,
Stanford, CA, 1958.

[AHU61] K. J. Arrow, L. Hurwicz, and H. Uzawa, Constraint qualifi-

cations in maximization problems, Naval Research Logistics Quar-
terly, 8 (1961), pp. 175–191.

[Avr76] M. Avriel, Nonlinear Programming: Analysis and Methods,
Prentice Hall Series in Automatic Computation, Prentice Hall,
Englewood Cliffs, NJ, 1976.

[Ban22] S. Banach, Sur les opérations dans les ensembles abstraits et leur

application aux équations intégrales, Fundamenta Mathematicae,
3 (1922), pp. 133–181.

[Bar71] R. H. Bartels, A stabilization of the simplex method, Numerische
Mathematik, 16 (1971), pp. 414–434.

[BaG69] R. H. Bartels and G. H. Golub, The simplex method of lin-

ear programming using LU-decomposition, Communications of the
ACM, 12 (1969), pp. 266–268 and 275–278.

[BSS93] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear

Programming: Theory and Algorithms, John Wiley & Sons, New
York, NY, second ed., 1993.

[Ben62] J. F. Benders, Partitioning procedures for solving mixed vari-

ables programming problems, Numerische Mathematik, 4 (1962),
pp. 238–252.

[Ber99] D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
Bellmont, MA, second ed., 1999.

Draft from February 22, 2005

References

[Ber04] , Lagrange multipliers with optimal sensitivity properties in

constrained optimization, Report LIDS 2632, Department of Elec-
trical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, 2004.

[BNO03] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex

Analysis and Optimization, Athena Scientific, Belmont, MA, 2003.

[BeT89] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed

Computation: Numerical Methods, Prentice Hall, London, U.K.,
1989.

[BeT00] D. P. Bertsekas and J. N. Tsitsiklis, Gradient convergence in

gradient methods with errors, SIAM Journal on Optimization, 10
(2000), pp. 627–642.

[Bla77] R. G. Bland, New finite pivoting rules for the simplex method,
Mathematics of Operations Research, 2 (1977), pp. 103–107.

[BlO72] E. Blum and W. Oettli, Direct proof of the existence theorem in

quadratic programming, Operations Research, 20 (1972), pp. 165–
167.

[BGLS03] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A.

Sagastizábal, Numerical Optimization: Theoretical and Practi-

cal Aspects, Universitext, Springer-Verlag, Berlin, 2003. Trans-
lated from the original French edition, published by Springer-
Verlag 1997.

[BoS00] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Op-

timization Problems, Springer Series in Operations Research,
Springer-Verlag, New York, NY, 2000.

[BoL00] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear

Optimization: Theory and Examples, CMS Books in Mathematics,
Springer-Verlag, New York, NY, 2000.

[BHM77] S. P. Bradley, A. C. Hax, and T. L. Magnanti, Applied

Mathematical Programming, Addison-Wesley, Reading, MA, 1977.

[Bre73] R. P. Brent, Algorithms for Minimization Without Derivatives,
Prentice Hall Series in Automatic Computation, Prentice Hall,
Englewood Cliffs, NJ, 1973. Reprinted by Dover Publications,
Inc., Mineola, NY, 2002.

[Bro09] L. E. J. Brouwer, On continuous vector distributions on sur-

faces, Amsterdam Proceedings, 11 (1909).

[Bro12] , Über Abbildung von Mannigfaltigkeiten, Mathematische
Annalen, 71 (1912), pp. 97–115.

[Bro70] C. G. Broyden, The convergence of single-rank quasi-Newton

methods, Mathematics of Computation, 24 (1970), pp. 365–382.

[BGIS95] R. Burachik, L. M. G. Drummond, A. N. Iusem, and B. F.

Svaiter, Full convergence of the steepest descent method with in-

exact line searches, Optimization, 32 (1995), pp. 137–146.

384

Draft from February 22, 2005

References

[BuF91] J. V. Burke and M. C. Ferris, Characterization of solution

sets of convex programs, Operations Research Letters, 10 (1991),
pp. 57–60.

[Car07] C. Carathéodory, Über den Variabilitätsbereich der Koeffizien-

ten von Potenzreihen, die gegebene Werte nicht annehmen, Math-
ematische Annalen, 64 (1907), pp. 95–115.

[Car11] , Über den Variabilitätsbereich der Fourier’schen Konstan-

ten von positiven harmonischen Funktionen, Rendiconti del Cir-
colo Matematico di Palermo, 32 (1911), pp. 193–217.

[Cau1847] A. Cauchy, Méthode générale pour la résolution des systèmes

d’équations simultanées, Comptes Rendus Hebdomadaires des
Séances de l’Académie des Sciences (Paris), Série A, 25 (1847),
pp. 536–538.

[Cha52] A. Charnes, Optimality and degeneracy in linear programming,
Econometrica, 20 (1952), pp. 160–170.

[Chv83] V. Chvátal, Linear Programming, Freeman, New York, 1983.

[CGT00] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region

Methods, vol. 1 of MPS/SIAM Series on Optimization, SIAM and
Mathematical Programming Society, Philadelphia, PA, 2000.

[Cro36] H. Cross, Analysis of flow in networks of conduits or conduc-

tors, Bulletin 286, Engineering Experiment Station, University of
Illinois, Urbana, IL, 1936.

[Dan51] G. B. Dantzig, Maximization of a linear function of variables

subject to linear inequalities, in Activity Analysis of Production
and Allocation, T. C. Koopmans, ed., New York, NY, 1951, John
Wiley & Sons, pp. 339–347.

[Dan53] , Computational algorithm of the revised simplex method, Re-
port RM 1266, The Rand Corporation, Santa Monica, CA, 1953.

[Dan57] , Concepts, origins, and use of linear programming, in Pro-
ceedings of the First International Conference on Operational Re-
search, Oxford, 1957, M. Davies, R. T. Eddison, and T. Page, eds.,
London, U.K., 1957, The English Universities Press, pp. 100–108.

[Dan63] , Linear Programming and Extensions, Princeton University
Press, Princeton, NJ, 1963.

[DOW55] G. B. Dantzig, A. Orden, and P. Wolfe, The generalized sim-

plex method for minimizing a linear form under linear inequality

restraints, Pacific Journal of Mathematics, 5 (1955), pp. 183–195.

[DaT97] G. B. Dantzig and M. N. Thapa, Linear programming 1: In-

troduction, Springer-Verlag, New York, NY, 1997.

[DaT03] , Linear programming 2: Theory and Extensions, Springer-
Verlag, New York, NY, 2003.

[DaW60] G. B. Dantzig and P. Wolfe, Decomposition principle for lin-

ear programs, Operations Research, 8 (1960), pp. 101–111.

385

Draft from February 22, 2005

References

[dAu47] A. d’Auriac, A propos de l’unicité de solution dans les problèmes

de réseaux maillés, La Houille Blanche, 2 (1947), pp. 209–211.

[Dav59] W. C. Davidon, Variable metric method for minimization, Re-
port ANL-5990 Rev, Argonne National Laboratories, Argonne,
IL, 1959. Also published in SIAM Journal on Optimization, 1
(1991), pp. 1–17.

[DeF49] B. De Finetti, Sulla stratificazioni convesse, Annali di Matem-
atica Pura ed Applicata, 30 (1949), pp. 173–183.

[Den59] J. B. Dennis, Mathematical Programming and Electrical Net-

works, John Wiley & Sons, New York, NY, 1959.

[DeS83] J. E. Dennis and R. E. Schnabel, Numerical Methods for Un-

constrained Optimization and Nonlinear Equations, Prentice Hall,
Englewood Cliffs, NJ, 1983.

[DiJ79] Y. M. I. Dirickx and L. P. Jennergren, Systems Analysis by

Multilevel Methods: With Applications to Economics and Manage-

ment, vol. 6 of International Series on Applied Systems Analysis,
John Wiley & Sons, Chichester, U.K., 1979.

[Duf46] R. J. Duffin, Nonlinear networks, I, Bulletin of the American
Mathematical Society, 52 (1946), pp. 833–838.

[Duf47] , Nonlinear networks, IIa, Bulletin of the American Mathe-
matical Society, 53 (1947), pp. 963–971.

[DuH78] J. C. Dunn and S. Harshbarger, Conditional gradient algo-

rithms with open loop step size rules, Journal of Mathematical
Analysis and Applications, 62 (1978), pp. 432–444.

[Eav71] B. C. Eaves, On quadratic programming, Management Science,
17 (1971), pp. 698–711.

[EHL01] T. F. Edgar, D. M. Himmelblau, and L. S. Lasdon, Op-

timization of Chemical Processes, McGraw-Hill, New York, NY,
second ed., 2001.

[Erm66] Y. M. Ermol’ev, Methods for solving nonlinear extremal prob-

lems, Kibernetika, 2 (1966), pp. 1–17. Translated in Cybernetics,
2 (1966), pp. 1–14.

[Eva70] J. P. Evans, On constraint qualifications in nonlinear program-

ming, Naval Research Logistics Quarterly, 17 (1970), pp. 281–286.

[Eve63] H. Everett, III, Generalized Lagrange multiplier method for

solving problems of optimum allocation of resources, Operations
Research, 11 (1963), pp. 399–417.

[Fac95] F. Facchinei, Minimization of SC1 functions and the Maratos

effect, Operations Research Letters, 17 (1995), pp. 131–137.

[Fal67] J. E. Falk, Lagrange multipliers and nonlinear programming,
Journal of Mathematical Analysis and Applications, 19 (1967),
pp. 141–159.

[Far1902] J. Farkas, Über die Theorie der einfachen Ungleichungen, Jour-
nal für die Reine und Angewandte Mathematik, 124 (1902), pp. 1–
24.

386

Draft from February 22, 2005

References

[Fen51] W. Fenchel, Convex cones, sets and functions, mimeographed
lecture notes, Princeton University, Princeton, NY, 1951.

[Fia83] A. V. Fiacco, Introduction to sensitivity and stability analysis in

nonlinear programming, vol. 165 of Mathematics in Science and
Engineering, Academic Press Inc., Orlando, FL, 1983.

[FiM68] A. V. Fiacco and G. P. McCormick, Nonlinear Programming:

Sequential Unconstrained Minimization Techniques, John Wiley &
Sons,, New York, NY, 1968. Also published as volume 4 in the
Classics in Applied Mathematics Series, SIAM, Philadelphia, PA,
1990.

[Fis81] M. L. Fisher, The Lagrangian relaxation method for solving inte-

ger programming problems, Management Science, 27 (1981), pp. 1–
18.

[Fis85] , An applications oriented guide to Lagrangian relaxation,
Interfaces, 15 (1985), pp. 10–21.

[Fle70] R. Fletcher, A new approach to variable metric algorithms,
Computer Journal, 13 (1970), pp. 317–322.

[Fle87] , Practical Methods of Optimization, John Wiley & Sons,
Chichester, U.K., second ed., 1987.

[FLT02] R. Fletcher, S. Leyffer, and P. L. Toint, On the global con-

vergence of a filter-SQP algorithm, SIAM Journal on Optimiza-
tion, 13 (2002), pp. 44–59.

[FlP63] R. Fletcher and M. J. D. Powell, A rapidly convergent

descent method for minimization, Computer Journal, 6 (1963),
pp. 163–168.

[FlR64] R. Fletcher and C. M. Reeves, Function minimization by con-

jugate gradients, Computer Journal, 7 (1964), pp. 149–154.

[FrW56] M. Frank and P. Wolfe, An algorithm for quadratic program-

ming, Naval Research Logistics Quarterly, 3 (1956), pp. 95–110.

[Geo74] A. M. Geoffrion, Lagrangean relaxation for integer program-

ming. Approaches to integer programming, Mathematical Pro-
gramming Study, 2 (1974), pp. 82–114.

[Gil66] E. G. Gilbert, An iterative procedure for computing the mini-

mum of a quadratic form on a convex set, SIAM Journal on Con-
trol, 4 (1966), pp. 61–80.

[GiM73] P. E. Gill and W. Murray, A numerically stable form of the

simplex algorithm, Linear Algebra and Its Applications, 7 (1973),
pp. 99–138.

[GMSW89] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright,
A practical anti-cycling procedure for linearly constrained opti-

mization, Mathematical Programming, 45 (1989), pp. 437–474.

[Gol70] D. Goldfarb, A family of variable-metric methods derived by

variational means, Mathematics of Computation, 24 (1970),
pp. 23–26.

387

Draft from February 22, 2005

References

[Gol64] A. A. Goldstein, Convex programming in Hilbert space, Bulletin
of the American Mathematical Society, 70 (1964), pp. 709–710.

[GrD03] A. Granas and J. Dugundji, Fixed Point Theory, Springer
Monographs in Mathematics, Springer-Verlag, New York, NY,
1969.

[Gui69] M. Guignard, Generalized Kuhn–Tucker conditions for mathe-

matical programming problems in a Banach space, SIAM Journal
on Control, 7 (1969), pp. 232–241.

[Had10] J. Hadamard, Sur quelques applications de l’indice de Kronecker,
in Introduction à la théorie des fonctions d’une variable, J. Tan-
nary, ed., vol. 2, Hermann, Paris, 1910, pp. 875–915.

[Han75] S. P. Han, Penalty Lagrangian methods in a quasi-Newton ap-

proach, Report TR 75-252, Computer Science, Cornell University,
Ithaca, NY, 1975.

[HaH96] G. K. Hauer and H. M. Hoganson, Tailoring a decomposition

method to a large forest management scheduling problem in north-

ern Ontario, INFOR, 34 (1996), pp. 209–231.

[HLV87] D. W. Hearn, S. Lawphongpanich, and J. A. Ventura, Re-

stricted simplicial decomposition: Computation and extensions,
Mathematical Programming Study, 31 (1987), pp. 99–118.

[HWC74] M. Held, P. Wolfe, and H. P. Crowder, Validation of subgra-

dient optimization, Mathematical Programming, 6 (1974), pp. 62–
88.

[HiL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis

and Minimization Algorithms, vol. 305–306 of Grundlehren der
mathematischen Wissenschaften, Springer-Verlag, Berlin, 1993.

[Hof53] A. Hoffman, Cycling in the simplex algorithm, Report 2974, Na-
tional Bureau of Standards, Gaithersburg, MD, 1953.

[Ius03] A. N. Iusem, On the convergence properties of the projected gradi-

ent method for convex optimization, Computational and Applied
Mathematics, 22 (2003), pp. 37–52.

[Joh48] F. John, Extremum problems with inequalities as subsidiary con-

ditions, in Studies and Essays Presented to R. Courant on his
60th Birthday, January 8, 1948, Interscience Publishers, Inc., New
York, NY, 1948, pp. 187–204.

[JoM74] L. A. Johnson and D. S. Montgomery, Operations Research

in Production Planning, Scheduling and Inventory Control, John
Wiley & Sons, New York, NY, 1974.

[Kar84a] N. Karmarkar, A new polynomial-time algorithm for linear pro-

gramming, in Proceedings of the Sixteenth Annual ACM Sympo-
sium on Theory of Computing, New York, 1984, The Association
for Computing Machinery, pp. 302–311.

[Kar84b] , A new polynomial-time algorithm for linear programming,
Combinatorica, 4 (1984), pp. 373–395.

388

Draft from February 22, 2005

References

[Kha79] L. G. Khachiyan, A polynomial algorithm in linear programming,
Doklady Akademii Nauk SSSR, 244 (1979), pp. 1093–1096.

[Kha80] , Polynomial algorithms in linear programming, Akademiya
Nauk SSSR. Zhurnal Vychislitel’nŏı Matematiki i Matematich-
eskŏı Fiziki, 20 (1980), pp. 51–68.

[Kir1847] G. Kirchhoff, Über die Ausflösung der Gleichungen auf welche

man bei der Untersuchungen der Linearen Vertheilung Galvan-

isher Ströme geführt wird, Pogendorff Annalen Der Physik, 72
(1847), pp. 497–508. English translation, IRE Transactions on
Circuit Theory, CT-5 (1958), pp. 4–8.

[KlM72] V. Klee and G. J. Minty, How good is the simplex algorithm?,
in Inequalities, III, New York, NY, 1972, Academic Press, pp. 159–
175.

[KLT03] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization

by direct search: New perspectives on some classical and modern

methods, SIAM Review, 45 (2003), pp. 385–482.

[Kre78] E. Kreyszig, Introductory Functional Analysis with Applications,
John Wiley & Sons, New York, NY, 1978.

[KuT51] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in
Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, 1950, Berkeley and Los Angeles, CA,
1951, University of California Press, pp. 481–492.

[LaP05] T. Larsson and M. Patriksson, Global optimality conditions

for discrete and nonconvex optimization—with applications to La-

grangian heuristics and column generation, tech. rep., Department
of Mathematics, Chalmers University of Technology, Gothenburg,
Sweden, 2005. To appear in Operations Research.

[LPS96] T. Larsson, M. Patriksson, and A.-B. Strömberg, Condi-

tional subgradient optimization—theory and applications, Euro-
pean Journal of Operational Research, 88 (1996), pp. 382–403.

[LPS99] , Ergodic, primal convergence in dual subgradient schemes

for convex programming, Mathematical Programming, 86 (1999),
pp. 283–312.

[Las70] L. S. Lasdon, Optimization Theory for Large Systems, Macmil-
lan, New York, NY, 1970.

[Law76] E. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, NY, 1976.

[LRS91] J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Schrijver,
eds., History of Mathematical Programming. A Collection of Per-

sonal Reminiscences, North-Holland, Amsterdam, 1991.

[LeP66] E. S. Levitin and B. T. Polyak, Constrained minimization

methods, USSR Computational Mathematics and Mathematical
Physics, 6 (1966), pp. 1–50.

[Lip1877] R. Lipschitz, Lehrbuch der Analysis, Cohn & Sohn, Leipzig, 1877.

389

Draft from February 22, 2005

References

[Lue84] D. G. Luenberger, Linear and Nonlinear Programming, Addison
Wesley, Reading, MA, second ed., 1984.

[Man65] O. L. Mangasarian, Pseudo-convex functions, SIAM Journal on
Control, 3 (1965), pp. 281–290.

[Man69] , Nonlinear Programming, McGraw-Hill, New York, NY,
1969. Also published as volume 10 in the Classics in Applied
Mathematics Series, SIAM, Philadelphia, PA, 1994.

[Man88] , A simple characterization of solution sets of convex pro-

grams, Operations Research Letters, 7 (1988), pp. 21–26.

[MaF67] O. L. Mangasarian and S. Fromovitz, The Fritz John neces-

sary optimality conditions in the presence of equality and inequal-

ity constraints, Journal of Mathematical Analysis and Applica-
tions, 17 (1967), pp. 37–47.

[Mar78] N. Maratos, Exact penalty function algorithms for finite dimen-

sional and control optimization problems, PhD thesis, Imperial
College of Science and Technology, University of London, London,
U.K., 1978.

[Max1865] J. C. Maxwell, A dynamical theory of the electromagnetic field,
Philosophical Transactions of the Royal Society of London, 155
(1865), pp. 459–512.

[Min10] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910.

[Min11] , Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911,
ch. Theorie der knovexen Körper, Insbesondere Begründung ihres
Ober flächenbegriffs.

[Mot36] T. Motzkin, Beiträge zur Theorie del linearen Ungleichungen,
Azriel, Israel, 1936.

[Mur83] K. G. Murty, Linear Programming, John Wiley & Sons, New
York, NY, 1983.

[Mur95] , Operations Research: Deterministic Optimization Models,
Prentice Hall, Englewood Cliffs, NJ, 1995.

[Nas50] J. F. Nash, Jr., Equilibrium points in n-person games, Proceed-
ings of the National Academy of Sciences of the United States of
America, 36 (1950), pp. 48–49.

[Nas51] , Non-cooperative games, Annals of Mathematics, 54 (1951),
pp. 286–295.

[NaS96] S. G. Nash and A. Sofer, Linear and Nonlinear Programming,
MacGraw-Hill, Singapore, 1996.

[NeW88] G. L. Nemhauser and L. Wolsey, Integer and Combinatorial

Optimization, Wiley-Interscience Series in Discrete Mathematics
and Optimization, John Wiley & Sons, New York, NY, 1988.

[New1687] I. S. Newton, Philosophiae Naturalis Principia Mathematica,
London, U.K., 1687.

[NoW99] J. Nocedal and S. J. Wright, Numerical Optimization,
Springer Series in Operations Research, Springer-Verlag, New
York, NY, 1999.

390

Draft from February 22, 2005

References

[Orc54] W. Orchard-Hays, Background, development and extensions of

the revised simplex method, Report RM 1433, The Rand Corpora-
tion, Santa Monica, CA, 1954.

[Pad99] M. Padberg, Linear Optimization and Extensions, no. 12 in Al-
gorithms and Combinatorics, Springer-Verlag, Berlin, second ed.,
1999.

[PaT91] E. R. Panier and A. L. Tits, Avoiding the Maratos effect by

means of a nonmonotone line search, I. General constrained prob-

lems, SIAM Journal on Numerical Analysis, 28 (1991), pp. 1183–
1195.

[PaS82] C. H. Papadimitriou and K. Steiglitz, Combinatorial Opti-

mization: Algorithms and Complexity, Prentice Hall, Englewood
Cliffs, 1982.

[Pat94] M. Patriksson, The Traffic Assignment Problem—Models and

Methods, Topics in Transportation, VSP BV, Utrecht, The Nether-
lands, 1994.

[Pat98] , Nonlinear Programming and Variational Inequalities: A

Unified Approach, vol. 23 of Applied Optimization, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1998.

[PoR69] E. Polak and G. Ribière, Note sur la convergence de

méthodes de directions conjuguées, Revue Française d’Information
et Recherche Opérationnelle, 3 (1969), pp. 35–43.

[Pol69] B. T. Polyak, Minimization of unsmooth functionals, USSR
Computational Mathematics and Mathematical Physics, 9 (1969),
pp. 14–29.

[Pow78] M. J. D. Powell, A fast algorithm for nonlinearly constrained

optimization calculations, in Numerical Analysis, Proceedings of
the Seventh Biennial Conference held at the University of Dundee,
Dundee, June 28–July 1, 1977, G. A. Watson, ed., vol. 630 of Lec-
ture Notes in Mathematics, Berlin, 1978, Springer-Verlag, pp. 144–
157.

[PsD78] B. N. Pshenichnyj and Y. M. Danilin, Numerical Methods in

Extremal Problems, MIR Publishers, Moscow, 1978.

[Rad19] H. Rademacher, Über partielle und totale Differenzierbarkeit von

Funktionen mehrerer Variabeln under über die Transformation der

Doppelintegrale, Mathematische Annalen, 79 (1919), pp. 340–359.

[Rar98] R. L. Rardin, Optimization in Operations Research, Prentice
Hall, Englewood Cliffs, NJ, 1998.

[Roc70] R. T. Rockafellar, Convex Analysis, Princeton University
Press, Princeton, NJ, 1970.

[RoW97] R. T. Rockafellar and R. J.-B. Wets, Variational Analy-

sis, vol. 317 of Grundlehren der mathematischen Wissenschaften,
Springer-Verlag, Berlin, 1997.

391

Draft from February 22, 2005

References

[Sau72] M. A. Saunders, Large-scale linear programming using the

Cholesky factorization, Tech. Rep. Stan-cs-72-252, Computer Sci-
ences Department, Stanford University, Stanford, 1972.

[Sch86] A. Schrijver, Theory of Linear and Integer Programming, Wiley,
Chichester, 1986.

[Sch03] , Combinatorial optimization, vol. 24 of Algorithms and
Combinatorics, Springer-Verlag, Berlin, 2003.

[Sha70] D. F. Shanno, Conditioning of quasi-Newton methods for func-

tion minimization, Mathematics of Computation, 24 (1970),
pp. 647–656.

[She85] Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis

with Mathematical Programming Methods, Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

[She76] M. A. Shepilov, Method of the generalized gradient for finding the

absolute minimum of a convex function, Cybernetics, 12 (1976),
pp. 547–553.

[Sho70a] N. Z. Shor, Convergence rate of the gradient descent method with

dilatation of the space, Cybernetics, 6 (1972), pp. 102–108.

[Sho70b] , Utilization of the operation of space dilatation in the min-

imization of convex functions, Cybernetics, 6 (1972), pp. 7–15.

[Sho77] , Cut-off method with space extension in convex programming

problems, Cybernetics, 13 (1977), pp. 94–96.

[Sho85] , Minimization Methods for Non-Differentiable Functions,
Springer-Verlag, Berlin, 1985. Translated from the Russian by
K. C. Kiwiel and A. Ruszczyński.

[StW70] J. Stoer and C. Witzgall, Convexity and Optimization in Fi-

nite Dimensions I, Springer-Verlag, Berlin, 1970.

[Tah03] H. A. Taha, Operations Research: An Introduction, Prentice Hall,
Englewood Cliffs, NJ, seventh ed., 2003.

[UUV04] M. Ulbrich, S. Ulbrich, and L. N. Vicente, A globally con-

vergent primal-dual interior-point filter method for nonlinear pro-

gramming, Mathematical Programming, 100 (2004), pp. 379–410.

[Van01] R. J. Vanderbei, Linear Programming. Foundations and Exten-

sions, vol. 37 of International Series in Operations Research &
Management Science, Kluwer Academic Publishers, Boston, MA,
second ed., 2001.

[vHo77] B. von Hohenbalken, Simplicial decomposition in nonlinear

programming algorithms, Mathematical Programming, 13 (1977),
pp. 49–68.

[vNe28] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Mathema-
tische Annalen, 100 (1928), pp. 295–320.

[vNM43] J. von Neumann and O. Morgenstern, Theory of Games and

Economic Behavior, Princeton University Press, Princeton, NJ,
1943.

392

Draft from February 22, 2005

References

[Wag75] H. M. Wagner, Principles of Operations Research: With Appli-

cations to Managerial Decisions, Prentice Hall, Englewood Cliffs,
NJ, second ed., 1975.

[War52] J. G. Wardrop, Some theoretical aspects of road traffic research,
Proceedings of the Institute of Civil Engineers, Part II, (1952),
pp. 325–378.

[Wil99] H. P. Williams, Model Building in Mathematical Programming,
John Wiley & Sons, Chichester, UK, fourth ed., 1999.

[Wil63] R. B. Wilson, A simplicial algorithm for concave programming,
PhD thesis, Graduate School of Business Administration, Harvard
University, Cambridge, MA, 1963.

[Wol69] P. Wolfe, Convergence conditions for ascent methods, SIAM Re-
view, 11 (1969), pp. 226–235.

[Wol75] , A method of conjugate subgradients for minimizing nondif-

ferentiable functions, Mathematical Programming Study, 3 (1975),
pp. 145–173.

[Wol98] L. A. Wolsey, Integer Programming, Wiley-Interscience Series
in Discrete Mathematics and Optimization, John Wiley & Sons,
New York, NY, 1998.

[YuN77] D. B. Yudin and A. S. Nemirovskii, Informational complexity

and efficient methods for the solution of convex extremal problems,
Matekon, 13 (1977), pp. 25–45.

[Zan69] W. I. Zangwill, Nonlinear Programming: A Unified Approach,
Prentice Hall, Englewood Cliffs, NJ, 1969.

393

Draft from February 22, 2005

References

394

Draft from February 22, 2005

Index

Abadie’s CQ, 129
active constraint (I(x)), 89
adjacent extreme points, 224
affine hull, 43
affine combination, 43
affine function, 12, 58
affine independence, 34
affine subspace, 34
affine transformation, 311
algebraic characterization of adja-

cency, 225
approximate line search, 286
Armijo step, 287, 308, 325
artificial variables, 237
augmented Lagrangian function, 360
augmented Lagrangian method, 360

Banach’s Theorem, 105
barrier function, 340
barrier problem, 341
basic feasible solution, 219
basic solution, 219
basic variables, 219
basis, 35
BFGS method, 283
Bland’s rule, 242
boundary, 38
bounded set, 37
Brouwer’s Theorem, 105
bundle method, 168

calculus rules, 39
canonical form, 249
Carathéodory’s Theorem, 45
Cartesian product set, 151

central difference formula, 307
characterization of nonsingular ma-

trices, 36
classification of optimization mod-

els, 11
closed mapping, 163
closed sets, 37
closure, 37
coercive function, 78
column dropping, 320
column generation, 7
combinatorial optimization, 187
complementarity, 151
Complementary Slackness Theorem,

257
composite function, 59
composite function, 107
composite operator, 107
concave function, 57
cone, 49
cone of feasible directions, 119
conjugate direction, 296, 304
conjugate gradient, 299
conjugate gradient method, 299
constraints, 4
continuity, 96
continuous function, 38
continuous relaxation, 188
continuously differentiable function,

39
contractive operator, 104
convergence rate, 306

geometric, 104, 172
linear, 306
quadratic, 306

Draft from February 22, 2005

Index

superlinear, 306
convex analysis, 41
convex combination, 43
convex function, 57, 96, 163
convex hull, 43
convex programming, 12
convex set, 41
coordinates, 35
CQ, 128

Danskin’s Theorem, 163
decision science, 10
decision variable, 6
degenerate solution, 219
descent direction, 85, 168
DFP method, 303
differentiability, 166
differentiable, 38
diode, 184
direction of unboundedness, 230
directional derivative, 38, 163
distance function, 67
divergent series step length rule, 168,

319
domination, 356
dual feasible basis, 260
dual infeasible basis, 260
dual linear program, 248
dual simplex algorithm, 262
dual Simplex method, 260
duality gap, 149

effective domain, 147
efficient frontier, 356
eigenvalues and eigenvectors, 36
electrical circuit, 184
electrical network, 184
epigraph, 60, 80
ε-optimal solution, 95
equality constraint, 11
equivalent systems, 228
Euclidean projection, 66
Everett’s Theorem, 179
exact penalty function, 350
existence of optimal solution, 222
extreme direction, 222
extreme point, 45

Farkas’ Lemma, 56, 256
feasibility heuristic, 190
feasible direction, 88
feasible solution, 5, 14
feasible-direction methods, 315
filter, 356
filter-SQP methods, 356
finite termination, 291
finitely generated cone, 55
fixed point, 104
Fletcher–Reeves formula, 302
forward difference formula, 307
Frank–Wolfe algorithm, 317
Frank–Wolfe Theorem, 82
Fritz–John conditions, 125

Gauss–Seidel method, 108
geometric convergence rate, 104, 172
global minimum, 76
global optimality conditions, 150
global optimum, 76

necessary and sufficient con-
ditions, 87, 91

Golden section, 286
gradient, 38
gradient projection algorithm, 325
gradient related, 280
gradient related method, 288, 290
Gram–Schmidt procedure, 298

hard constraint, 17
Hessian, 38

I(x), 89
identity matrix In, 36
ill-conditioning, 356
implicit function, 39, 306
Implicit Function Theorem, 167
indicator function (χS), 170, 335
inequality constraint, 11
infimum, 14
integer programming, 12
integrable function, 101
integrality property, 13
interior, 38
interior penalty function, 96
interior point algorithm, 243

396

Draft from February 22, 2005

Index

interpolation, 286

Jacobi method, 108

Karmarkar’s algorithm, 243
Kirchhoff’s laws, 184
KKT conditions, 129

Lagrange function, 146
Lagrange multiplier, 146, 182
Lagrange multipliers, 126
Lagrangian dual function, 147
Lagrangian dual problem, 147
Lagrangian relaxation, 18, 146
least-squares data fitting, 275
level set, 65, 78, 80
Levenberg–Marquardt, 282, 311
LICQ, 135
limit, 37
limit points, 37
line search, 285

approximate, 286
Armijo step length rule, 287,

308, 325
Golden section, 286
interpolation, 286
Newton’s method, 286

linear convergence rate, 306
linear function, 39
linear independence, 34
linear space, 34
linear-fractional programming, 227
Lipschitz continuity, 289
local convergence, 349
local minimum, 76
local optimum, 76

necessary conditions, 85, 86,
89

sufficient conditions, 87
logarithmic barrier, 341
logical constraint, 5
lower semi-continuity, 79

Maratos effect, 354
mathematical model, 4
mathematical programming, 9
matrices, 35

matrix inverse, 36
matrix game, 108
matrix norm, 35
matrix product, 35
matrix transpose, 35
max function, 163
mean-value theorem, 39
merit function, 351
method of successive averages (MSA),

331
MFCQ, 134
minimax theorem, 108
minimum, 14
minimum distance (distS), 169
multi-objective optimization, 14, 356

near-optimality, 95
negative curvature, 279
neighbourhood, 38
Newton’s method, 281, 286, 309
Newton–Raphson method, 108, 281
Nobel laureates, 11
non-basic variables, 219
non-coordinability, 178
non-differentiable function, 292
non-expansive operator, 102
nonsingular matrix, 36
norm, 34
normal cone (NX), 93

objective function, 4
open ball, 37
open set, 37
operations research, 10
optimal BFS, 230
optimal solution, 5
optimal value, 5
optimality, 10
optimization under uncertainty, 14
optimize, 3
orthogonality, 34, 151
orthonormal basis, 35

partial pricing, 234
pattern search methods, 307
penalty, 18
penalty function, 18

397

Draft from February 22, 2005

Index

penalty parameter, 336
perturbation function (p(b)), 253
perturbation function (p(u)), 181
Phase I, 329
Phase I problem, 237
physical constraint, 5
piece-wise linear function, 293
Polak–Ribière formula, 302
Polyak step, 168
polyhedral cone, 49
polyhedron, 47
polytope, 45
positive (semi-)definite matrices, 37
potential, 184
potential difference, 184
pre-conditioning, 302
primal infeasibility criterion, 261
primal Simplex method, 260
projection, 66
projection arc, 325
projection operator, 66, 91, 103
projection problem, 329
proof by contradiction, 33
proper function, 15, 170
proximal point algorithm, 311
pseudo-convex function, 112Q-orthogonal, 296
quadratic convergence rate, 306
quadratic function, 40, 64
quadratic programming, 329
quasi-convex function, 112
quasi-Newton methods, 283, 303,

351

Rademacher’s Theorem, 293
rank-two update, 303
recession cone, 81
reduced cost, 231
redundant constraint, 110
relaxation, 145
Relaxation Theorem, 145
Representation Theorem, 50, 222,

320
resistor, 185
restricted master problem, 320

restricted simplicial decomposition,
321

restrification, 360
revised simplex method, 243

saddle point, 109, 151
scalar product, 34
secant method, 283
sensitivity analysis, 180, 182
sensitivity analysis for LP, 264
separation of convex sets, 99
Separation Theorem, 52, 98, 166
sequential linear programming (SLP),

359
sequential quadratic programming

(SQP), 351
shadow price, 256
shortest route, 323
Simplex method, 229
simplex method, 10
simplicial decomposition algorithm,

320
slack variable, 7
Slater CQ, 135
SLP algorithm, 359
soft constraint, 18, 180
SQP algorithm, 351
stalling, 243
standard basis, 35
stationary point, 85, 90
steepest descent, 278
steepest-edge rule, 234
stochastic programming, 14
strict inequality, 81
strict local minimum, 76
strictly convex function, 58
strictly quasi-convex function, 286
strong duality, 152
Strong Duality Theorem, 153, 155–

157, 159, 254
sub-differentiability, 165
subdifferential, 162
subgradient, 162, 294
subgradient optimization, 168
subgradient projection method, 167
superlinear convergence rate, 306

398

Draft from February 22, 2005

Index

symmetric matrices, 36

tangent cone, 119
traffic assignment problem, 101
traffic equilibrium, 99
traveling salesman problem, 188
triangle inequality, 36
trust region methods, 294
twice differentiable, 38

unimodal function, 286
unique optimum, 83
upper semi-continuity, 79
user equilibrium, 99

variable, 4
variational inequality, 90, 107
vector, 34
vector-valued functions, 38
voltage source, 184
von Neumann’s Minimax Theorem,

108

Wardrop’s principle, 99
Weak Duality Theorem, 148, 253
weak sharp minimum, 174
weak Wolfe condition, 288
weakly coercive function, 78
Weierstrass’ Theorem, 80, 165
Wolfe condition, 288

399

