Lecture 12: Linearly constrained nonlinear optimization

Michael Patriksson

24 February 2005

Feasible-direction methods

• Consider the problem to find

$$f^* = \min f(\boldsymbol{x}), \qquad (1a)$$

subject to $\boldsymbol{x} \in X, \qquad (1b)$

 $X\subseteq \mathbb{R}^n$ nonempty, closed and convex; $f:\mathbb{R}^n\to \mathbb{R}$ is C^1 on X

• Most methods for (1) manipulate the constraints defining X; in some cases even such that the sequence $\{\boldsymbol{x}_k\}$ is infeasible until convergence. Why?

- Consider a constraint " $g_i(\boldsymbol{x}) \leq b_i$," where g_i is nonlinear
- Checking whether p is a feasible direction at x, or what the maximum feasible step from x in the direction of pis, is very difficult
- For which step length $\alpha > 0$ does it happen that $g_i(\boldsymbol{x} + \alpha \boldsymbol{p}) = b_i$? This is a nonlinear equation in α !
- Assuming that X is polyhedral, these problems are not present

Feasible-direction descent methods

- Step 0. Determine a starting point $x_0 \in \mathbb{R}^n$ such that $x_0 \in X$. Set k := 0.
- Step 1. Determine a search direction $p_k \in \mathbb{R}^n$ such that p_k is a feasible descent direction.
- Step 2. Determine a step length $\alpha_k > 0$ such that $f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) < f(\boldsymbol{x}_k)$ and $\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k \in X$.
- Step 3. Let $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$.
- **Step 4.** If a termination criterion is fulfilled, then stop! Otherwise, let k := k + 1 and go to Step 1.

Notes

- Similar form as the general method for unconstrained optimization
- Just as *local* as methods for unconstrained optimization
- Search directions typically based on the approximation of f—a relaxation
- Search direction often of the form $p_k = y_k x_k$, where $y_k \in X$ solves the approximate problem
- Line searches similar; note the maximum step
- Termination criteria and descent based on first-order optimality and/or fixed-point theory $(\mathbf{p}_k \approx \mathbf{0}^n)$

LP-based algorithm, I: The Frank–Wolfe method

- The Frank–Wolfe method is based on a first-order approximation of f around the iterate \boldsymbol{x}_k . This means that the relaxed problems are LPs, which can then be solved by using the Simplex method.
- Remember the first-order optimality condition: If $x^* \in X$ is a local minimum of f on X then

$$\nabla f(\boldsymbol{x}^*)^{\mathrm{T}}(\boldsymbol{x}-\boldsymbol{x}^*) \ge 0, \qquad \boldsymbol{x} \in X,$$

holds.

• Remember also the following equivalent statement:

$$\min_{\boldsymbol{x} \in X} \nabla f(\boldsymbol{x}^*)^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{x}^*) = 0$$

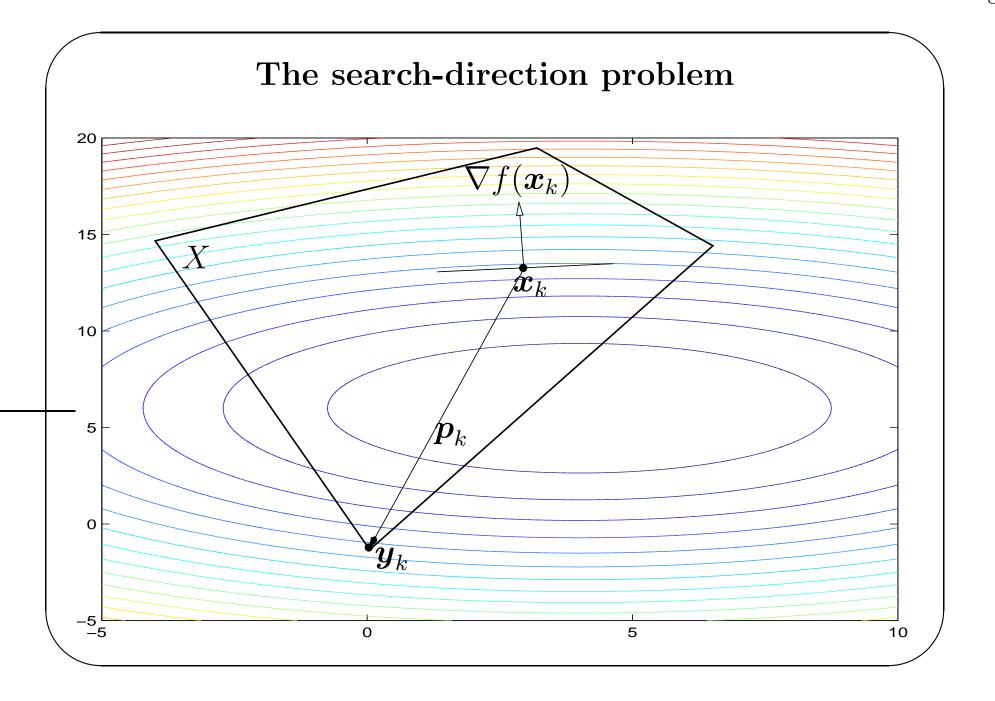
• Follows that if, given an iterate $\boldsymbol{x}_k \in X$,

$$\min_{\boldsymbol{y}\in X} \nabla f(\boldsymbol{x}_k)^{\mathrm{T}}(\boldsymbol{y}-\boldsymbol{x}_k) < 0,$$

and \boldsymbol{y}_k is a solution to this LP problem, then the direction of $\boldsymbol{p}_k := \boldsymbol{y}_k - \boldsymbol{x}_k$ is a feasible descent direction with respect to f at \boldsymbol{x} .

- Search direction towards an extreme point [one that is optimal in the LP over X with costs $\boldsymbol{c} = \nabla f(\boldsymbol{x}_k)$]
- This is the basis of the Frank–Wolfe algorithm

- We assume that X is bounded in order to ensure that the LP always has a finite solution. The algorithm can be extended to allow for unbounded polyhedra.
- The search directions then are either towards an extreme point (finite solution to LP) or in the direction of an extreme ray of X (unbounded solution to LP).
- Both cases identified in the Simplex method



Algorithm description, Frank–Wolfe

Step 0. Find $x_0 \in X$ (for example any extreme point in X). Set k := 0.

Step 1. Find a solution \boldsymbol{y}_k to the problem to

$$\underset{\boldsymbol{y}\in X}{\text{minimize }} z_k(\boldsymbol{y}) := \nabla f(\boldsymbol{x}_k)^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{x}_k).$$
(2)

Let $\boldsymbol{p}_k := \boldsymbol{y}_k - \boldsymbol{x}_k$ be the search direction.

Step 2. Approximately solve the problem to minimize $f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$ over $\alpha \in [0, 1]$. Let α_k be the step length. Step 3. Let $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$.

Step 4. If, for example, $z_k(\boldsymbol{y}_k)$ or α_k is close to zero, then terminate! Otherwise, let k := k + 1 and go to Step 1.

Convergence

- Suppose $X \subset \mathbb{R}^n$ nonempty polytope; f in C^1 on X
- In Step 2 of the Frank–Wolfe algorithm, we either use an exact line search or the Armijo step length rule.
- Then: the sequence $\{x_k\}$ is bounded and every limit point (at least one exists) is stationary;
- $\{f(\boldsymbol{x}_k)\}$ is descending, and therefore has a limit;
- the sequence $\{z_k(\boldsymbol{y}_k)\} \to 0.$
- If f is convex on X, then every limit point is globally optimal.
- Proof:

The convex case: Lower bounds

• Remember the following characterization of convex functions in C^1 on X: f is convex on X \iff

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{x}), \quad \boldsymbol{x}, \boldsymbol{y} \in X$$

- Suppose f is convex on X. Then, $f(\boldsymbol{x}_k) + z_k(\boldsymbol{x}_k) \leq f^*$ (lower bound, LBD), and $f(\boldsymbol{x}_k) + z_k(\boldsymbol{x}_k) = f^*$ if and only if \boldsymbol{x}_k is globally optimal. A relaxation—cf. the Relaxation Theorem!
- Utilize the lower bound as follows: we know that $f^* \in [f(\boldsymbol{x}_k) + z_k(\boldsymbol{x}_k), f(\boldsymbol{x}_k)]$. Store the best LBD, and check in Step 4 whether $[f(\boldsymbol{x}_k) \text{LBD}]/|\text{LBD}|$ is small, and if so terminate.

Notes

- Frank–Wolfe uses linear approximations—works best for almost linear problems
- For highly nonlinear problems, the approximation is bad—the optimal solution may be far from an extreme point. (Compare Steepest descent!)
- In order to find a near-optimum requires many iterations—the algorithm is slow.
- Another reason is that the information generated (the extreme points) are forgotten. If we keep the linear subproblems, we can do much better by storing and utilizing this information.

LP-based algorithm, II: Simplicial decomposition

Remember the Representation Theorem (special case for polytopes): Let P = { x ∈ ℝⁿ | Ax = b; x ≥ 0ⁿ }, be nonempty and bounded, and V = {v¹,...,v^K} be the set of extreme points of P. Every x ∈ P can be represented as a convex combination of the points in V, that is,

$$\boldsymbol{x} = \sum_{i=1}^{K} \alpha_i \boldsymbol{v}^i,$$

for some $\alpha_1, \ldots, \alpha_k \ge 0$ such that $\sum_{i=1}^K \alpha_i = 1$.

• The idea behind the Simplicial decomposition method is to generate the extreme points v^i which can be used to describe an optimal solution x^* , that is, the vectors v^i with positive weights α_i in

$$oldsymbol{x}^* = \sum_{i=1}^K lpha_i oldsymbol{v}^i.$$

• The process is still iterative: we generate a "working set" \mathcal{P}_k of indices *i*, optimize the function *f* over the convex hull of the known points, and check for stationarity and/or generate a new extreme point.

Algorithm description, Simplicial decomposition

Step 0. Find $x_0 \in X$, for example any extreme point in X. Set k := 0. Let $\mathcal{P}_0 := \emptyset$.

Step 1. Let \boldsymbol{y}_k be a solution to the LP problem (2). Let $\mathcal{P}_{k+1} := \mathcal{P}_k \cup \{k\}.$ **Step 2.** Let $(\mu_k, \boldsymbol{\nu}_{k+1})$ be an approximate solution to the restricted master problem (RMP) to

$$\begin{array}{ll} \underset{(\mu,\nu)}{\text{minimize}} & f\left(\mu \boldsymbol{x}_{k} + \sum_{i \in \mathcal{P}_{k+1}} \nu_{i} \boldsymbol{y}^{i}\right), \quad (3a)\\ \text{subject to} & \mu + \sum_{i \in \mathcal{P}_{k+1}} \nu_{i} = 1, \quad (3b)\\ & \mu, \nu_{i} \geq 0, \quad i \in \mathcal{P}_{k+1}. \quad (3c) \end{array}$$

1

Step 3. Let $x_{k+1} := \mu_{k+1} x_k + \sum_{i \in \mathcal{P}_{k+1}} (\nu_{k+1})_i y^i$. **Step 4.** If, for example, $z_k(\boldsymbol{y}_k)$ is close to zero, or if $\mathcal{P}_{k+1} = \mathcal{P}_k$, then terminate! Otherwise, let k := k+1and go to Step 1.

- This basic algorithm keeps all information generated, and adds one new extreme point in every iteration
- An alternative is to drop columns (vectors y^i) that have received a zero weight, or to keep only a maximum number of vectors. (Stated in the book.)
- Special case: maximum number of vectors kept = $1 \implies$ the Frank–Wolfe algorithm!
- We obviously improve the Frank–Wolfe algorithm by utilizing more information

Convergence

- It does at least as well as the Frank–Wolfe algorithm: line segment $[\boldsymbol{x}_k, \boldsymbol{y}_k]$ feasible in RMP
- Convergence finite if the (RMPs) are solved exactly, and the maximum number of vectors kept is at least as many as are needed to span x^*
- Much more efficient than the Frank–Wolfe algorithm in practice (cf. the above FW example!)
- We can solve the RMPs efficiently, since the constraints are simple

An illustration of FW vs. SD

- A large-scale nonlinear network flow problem which is used to estimate traffic flows in cities. New Section 4.6.3!
- The model is over the small city of Sioux Falls in North Dakota, USA, whose representation has 24 nodes, 76 links, and 528 pairs of origin and destination.
- Three algorithms for the RMPs were tested—a Newton method and two gradient projection methods (see the next section). A MATLAB implementation.
- Remarkable difference—The Frank–Wolfe method suffers from very small steps being taken.

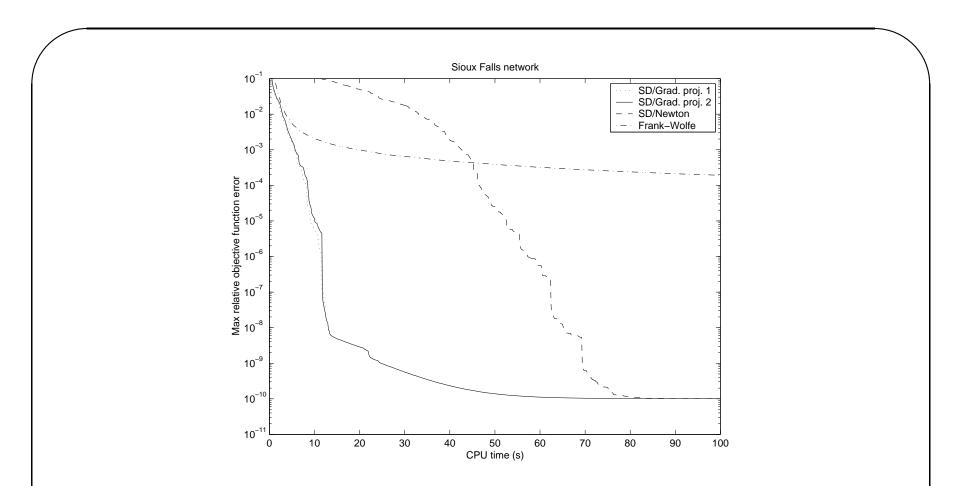
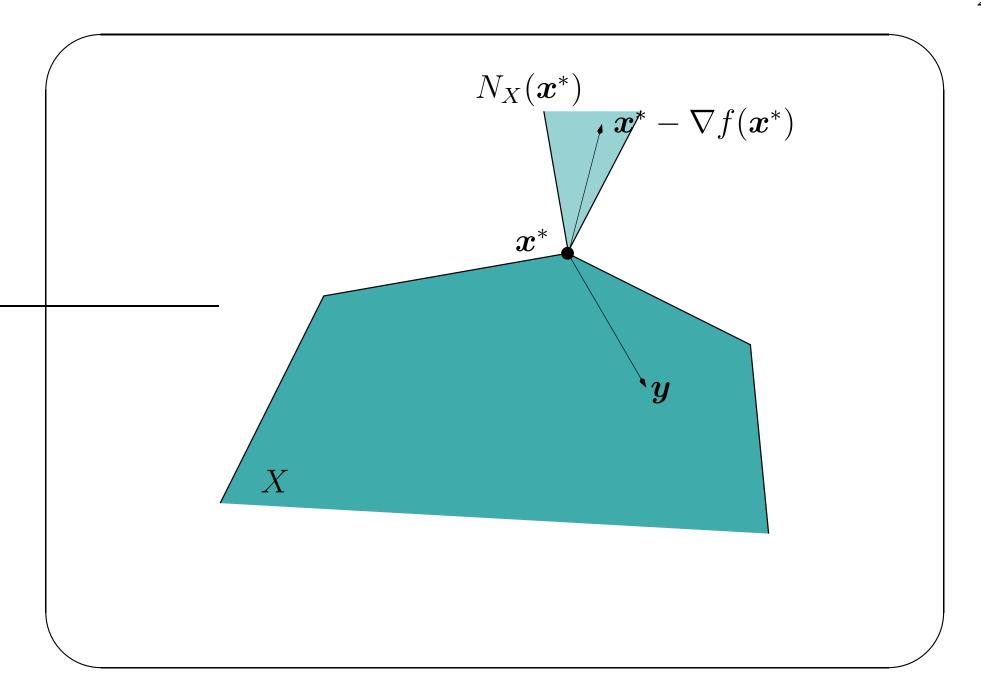


Figure 1: The performance of SD vs. FW on the Sioux Falls network

QP-based algorithm: The gradient projection algorithm

The gradient projection algorithm is based on the projection characterization of a stationary point:
x^{*} ∈ X is a stationary point if and only if, for any α > 0,

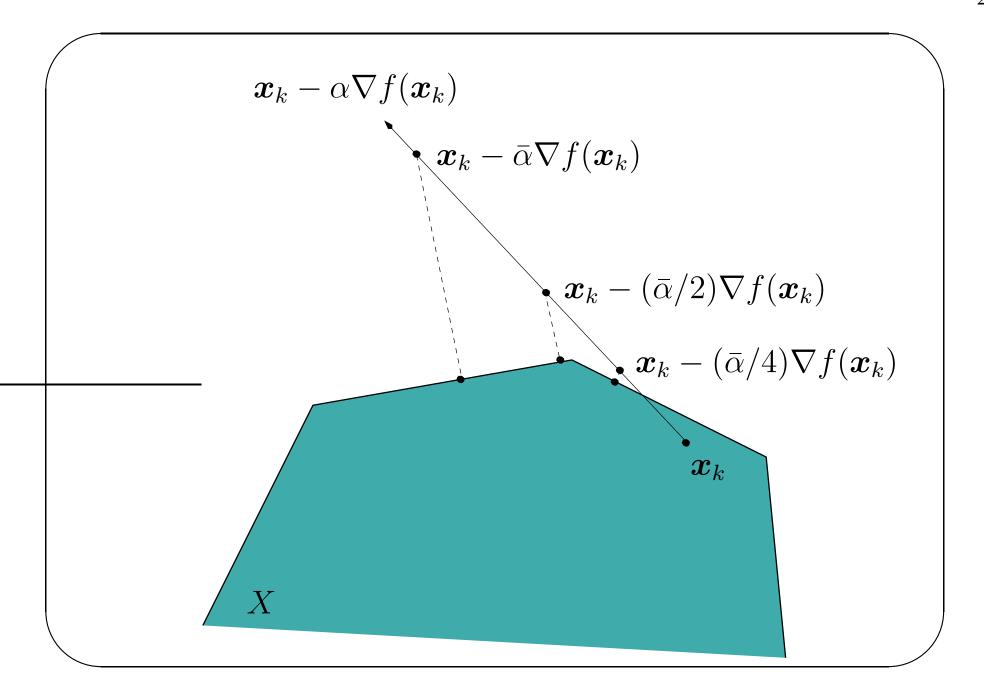
$$\boldsymbol{x}^* = \operatorname{Proj}_X[\boldsymbol{x}^* - \alpha \nabla f(\boldsymbol{x}^*)]$$



- Let $\boldsymbol{p} := \operatorname{Proj}_X[\boldsymbol{x} \alpha \nabla f(\boldsymbol{x})] \boldsymbol{x}$, for any $\alpha > 0$. Then, if and only if \boldsymbol{x} is non-stationary, \boldsymbol{p} is a feasible descent direction of f at \boldsymbol{x}
- The gradient projection algorithm is normally stated such that the line search is done over the *projection arc*, that is, we find a step length α_k for which

$$\boldsymbol{x}_{k+1} := \operatorname{Proj}_{X}[\boldsymbol{x}_{k} - \alpha_{k} \nabla f(\boldsymbol{x}_{k})], \qquad k = 1, \dots \quad (4)$$

has a good objective value. Use the Armijo rule to determine α_k :



Convergence, I

- $X \subseteq \mathbb{R}^n$ nonempty, closed, convex; $f \in C^1$ on X;
- for the starting point $\mathbf{x}_0 \in X$ it holds that the level set $\operatorname{lev}_f(f(\mathbf{x}_0))$ intersected with X is bounded.
- In the algorithm (4), the step length α_k is given by the Armijo step length rule along the projection arc.
- Then: the sequence $\{x_k\}$ is bounded;
- every limit point of $\{\boldsymbol{x}_k\}$ is stationary;
- $\{f(\boldsymbol{x}_k)\}$ descending, lower bounded, hence convergent.
- Gradient projection becomes steepest descent with Armijo line search when $X = \mathbb{R}^n$!
- Convergence arguments similar to steepest descent one

Convergence, II

- $X \subseteq \mathbb{R}^n$ nonempty, closed, convex;
- $f \in C^1$ on X; f convex;
- an optimal solution x^* exists.
- In the algorithm (4), the step length α_k is given by the Armijo step length rule along the projection arc.
- Then: the sequence $\{\boldsymbol{x}_k\}$ converges to an optimal solution.
- Note: with $X = \mathbb{R}^n \implies$ convergence of steepest descent!