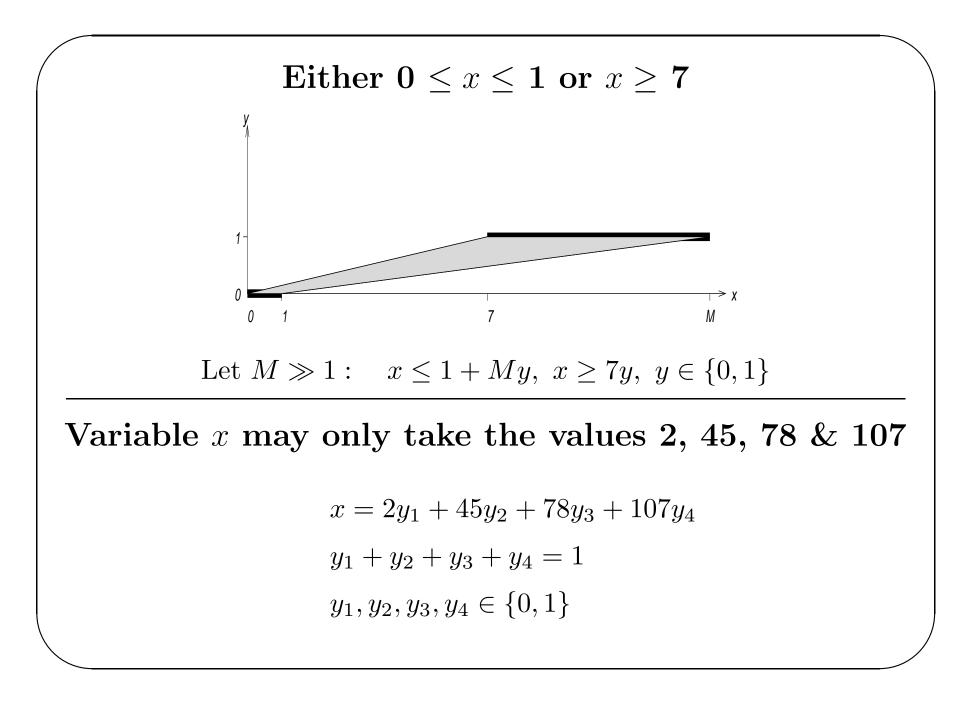
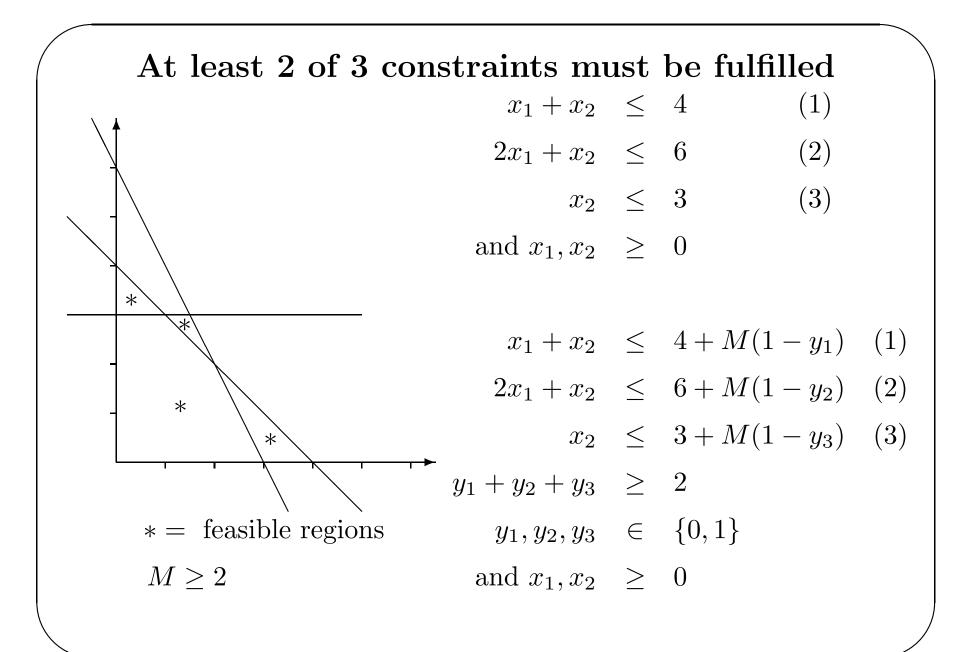
Lecture 10: Integer programming

When are integer models needed?

- Products or raw materials are indivisible
- Logical constraints: "if A then B"; "A or B"
- Fixed costs
- Combinatorics (sequencing, allocation)
- On/off-decision to buy, invest, hire, generate electricity,

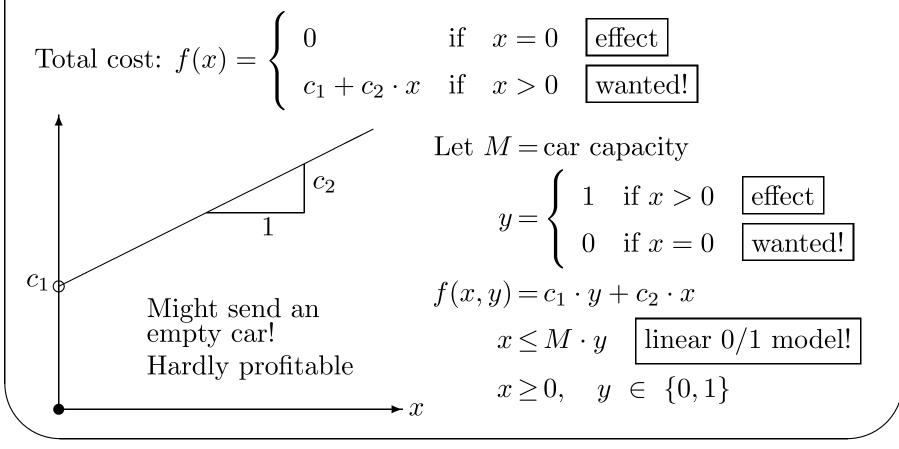




Fixed costs

x = the amount of a certain product to be sent

If x > 0 then the initial cost c_1 (e.g. car hire) is generated Variable cost c_2 per unit sent



Other applications of integer optimization

- Facility location (new hospitals, shopping centers, etc.)
- Scheduling (on machines, personnel, projects, schools)
- Logistics (material- and warehouse control)
- Distribution (transportation of goods, buses for disabled persons)
- Production planning
- Telecommunication (network design, frequency allocation)
- VLSI design

The combinatorial explosion

Assign n persons to carry out n jobs # feasible solutions: n!

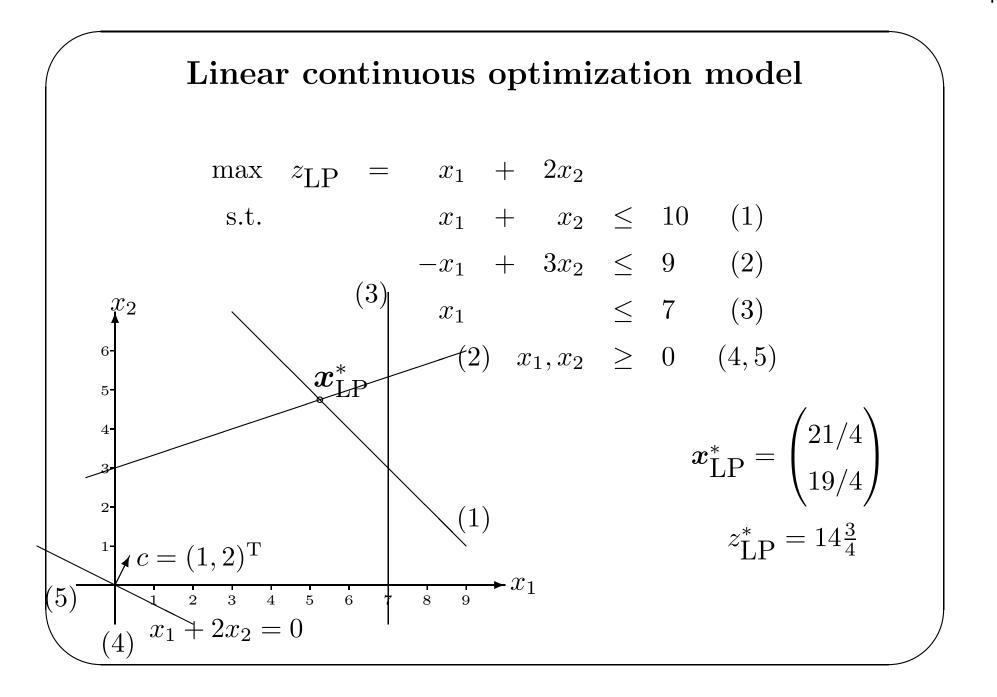
Assume that a feasible solution is evaluated in 10^{-9} seconds

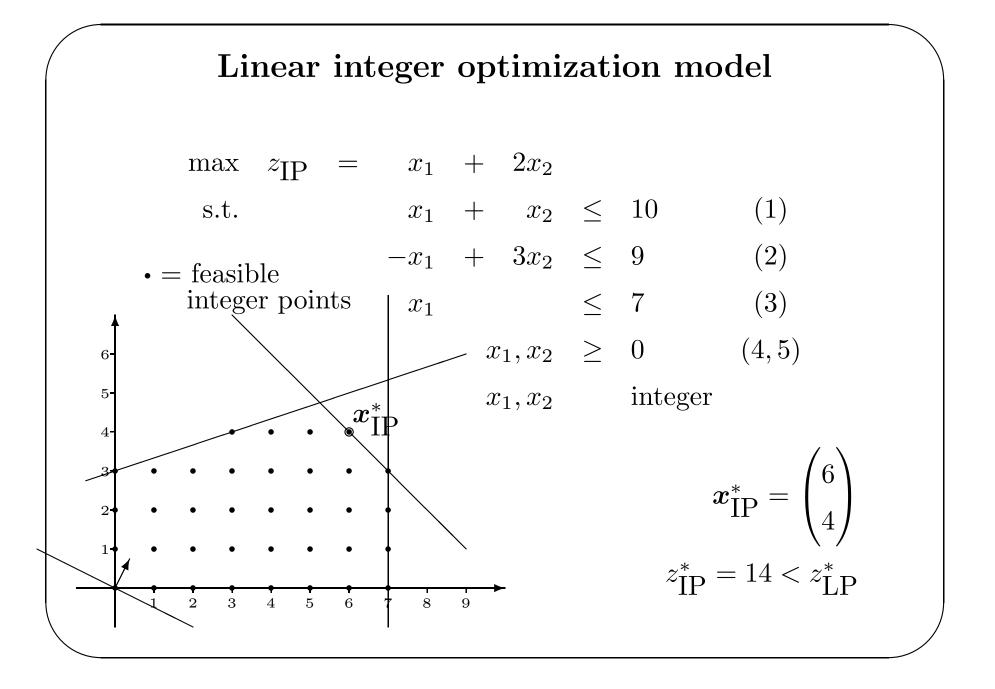
n	2	5	8	10	100	
n!	2	120	$4.0\cdot 10^4$	$3.6 \cdot 10^6$	$9.3\cdot10^{157}$	
[time]	$10^{-8} { m s}$	$10^{-6} { m s}$	$10^{-4} { m s}$	$10^{-2} { m s}$	$10^{142} { m yrs}$	

Complete enumeration of all solutions is **not** an efficient algorithm!

An algorithm exists that solves this problem in time $\mathcal{O}(n^4) \propto n^4$

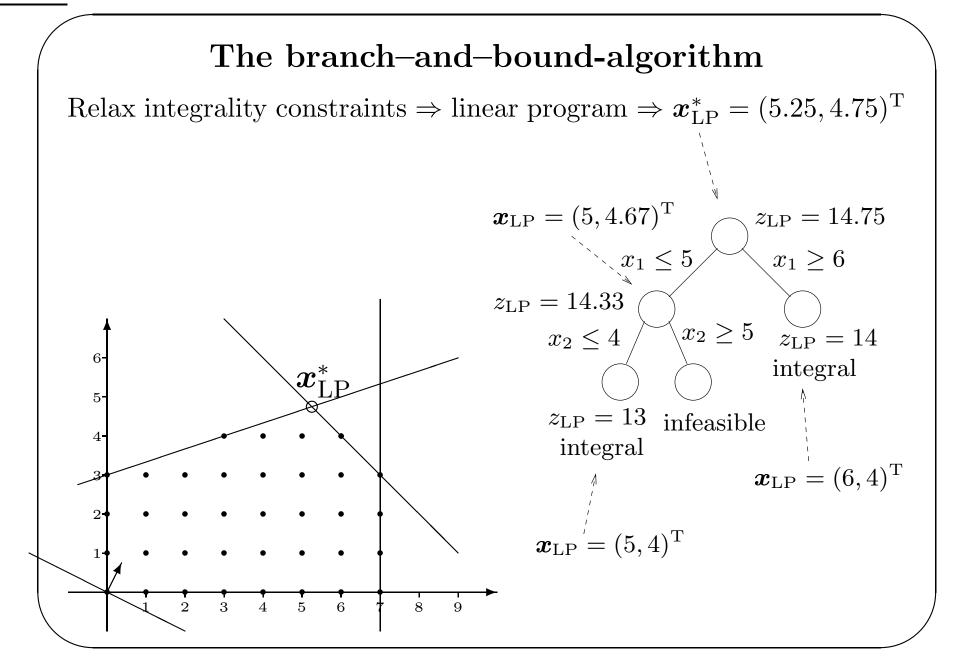
n	2	5	8	10	100	1000
 n^4	16	625	$4.1 \cdot 10^{3}$	10^{4}	10^{8}	10^{12}
[time]	$10^{-7} { m s}$	$10^{-6} {\rm s}$	$10^{-5} {\rm s}$	$10^{-5}s$	$10^{-1} { m s}$	$17 \min$
			-			





Classic methods

- Branch–and-Bound: relaxation plus divide–and–conquer
- Cutting plane method: relaxation plus generations of constraint that cut off infeasible (e.g., non-integer) points generated
- "Relaxation" can be the continuous or Lagrangian one
- Lagrangian optimization: Lagrangian relaxation plus multiplier optimization
- These methods are often combined (e.g., cutting planes added at nodes in B & B tree: Branch & Cut)



The complexity of integer optimization, I: Aditiva

- The Aditiva LP has 62 variables and 27 linear constraints. Solution by our linux computer: 0.05 s. after 17 dual simplex pivots
- We create an integer programming (IP) variant: all producers can sell all raw materials; the suppliers have limited capacities; supplies must be bought in 100 kg batches; and there are fixed costs for transporting and for using the drying processes and the reactors
- The new problem has 168 variables (58 binary, 52 integer, 58 linear) and 131 linear constraints

- Solver uses B & B, in which to the continuous relaxation is added integer requirements on some of the binary variables that received a fractional value in the LP solution. (Note: x_j binary here ⇒ variable value fixed at 0 or 1)
- Solution process: after 10 minutes the solver has produced 497,000 B & B nodes and used 1,602,861 dual simplex pivots; the feasible solution found so far has not been proved to be within 0.8% from an optimal solution
- The first problem (the LP relaxation) takes only 0.06 s. and 3 dual pivots to solve

The complexity of integer optimization, II: The knapsack problem

- Knapsack problem: maximize value of a finite number of items put in a knapsack of a given capacity
- Each variable has a value and weight per unit
- AMPL model:

```
var x1..5 integer, >=0;
maximize ka:213*x[1]-1928*x[2]-11111*x[3]-2345*x[4]+9123*x[5];
subject to c1:
12223*x[1]+12224*x[2]+36674*x[3]+61119*x[4]+85569*x[5] =
89643482;
```

• Often binary; here, general integer variables

- LP relaxation trivial: sort variables in descending order of c_j/a_j ; take the best one
- Result: After 10 minutes in CPLEX: 8 Million B & B nodes; no feasible solution

Cutting plane methods

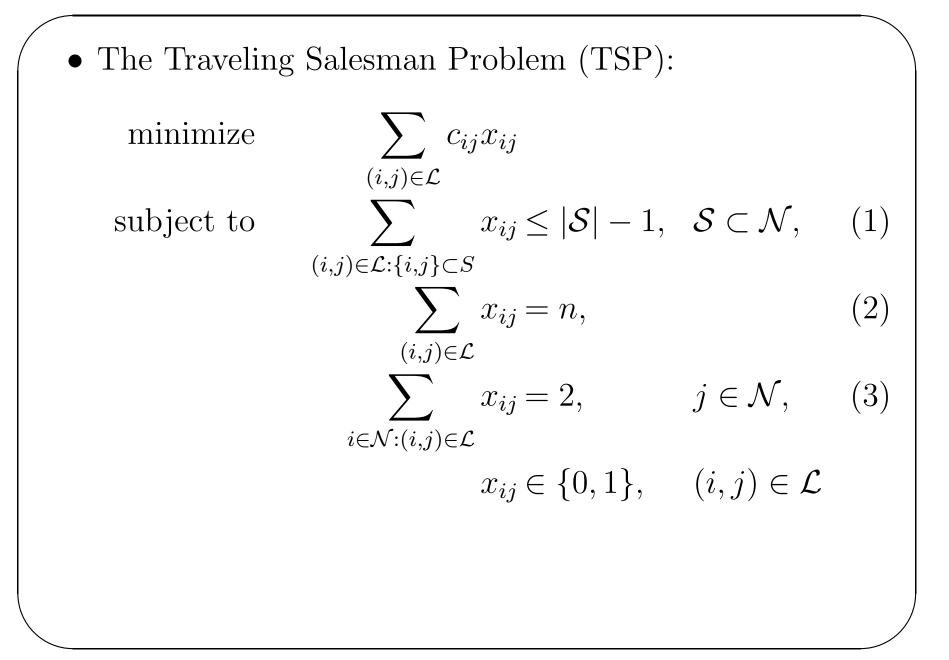
- Goal: generate the convex hull of the feasible integer vectors
- Result: Can solve the IP by solving the LP relaxation over this convex hull
- Compare IP example: one extra linear constraint defines the entire convex hull! $(x_2 \leq 4)$
- Means: Relax problem (e.g., continuous relaxation); Solve. If infeasible solution, generate constraint to the relaxation that cuts off that vector but no feasible vectors. Repeat
- Constraint generation called a *separation oracle*

The Philips example—TSP solved heuristically

• Let c_{ij} denote the distance between cities i and j, with

 $\{i, j\} \subset \mathcal{N} - \text{ set of nodes}$ $(i, j) \in \mathcal{L} - \text{ set of links}$

• Links (i, j) and (j, i) the same; direction plays no role • $x_{ij} = \begin{cases} 1, \text{ if link } (i, j) \text{ is part of the TSP tour,} \\ 0, \text{ otherwise} \end{cases}$



Interpretations

- Constraint (1) implies that there can be no sub-tours, that is, a tour where fewer than n cities are visited (that is, if $S \subset N$ then there can be at most |S| - 1links between nodes in the set S, where |S| is the cardinality-number of members of-the set S);
- Constraint (2) implies that in total *n* cities must be visited;
- Constraint (3) implies that each city is connected to two others, such that we make sure to arrive from one city and leave for the next

Lagrangian relaxation

- TSP is NP-hard—no known polynomial algorithms exist
- Lagrangian relax (3) for all nodes except starting node
- Remaining problem: 1-MST—find the minimum spanning tree in the graph without the starting node and its connecting links; then, add the two cheapest links to connect the starting node
- Starting node $s \in \mathcal{N}$ and connected links assumed removed from the graph

• Objective function of the Lagrangian problem:

$$q(\boldsymbol{\lambda}) = \min_{\boldsymbol{x}} \min_{\boldsymbol{x}} \sum_{(i,j)\in\mathcal{L}} c_{ij} x_{ij} + \sum_{j\in\mathcal{N}} \lambda_j \left(2 - \sum_{i\in\mathcal{N}:(i,j)\in\mathcal{L}} x_{ij}\right)$$
$$= 2\sum_{j\in\mathcal{N}} \lambda_j + \min_{\boldsymbol{x}} \min_{\boldsymbol{x}} \sum_{(i,j)\in\mathcal{L}} (c_{ij} - \lambda_i - \lambda_j) x_{ij}$$

- A high (low) value of the multiplier λ_j makes node jattractive (unattractive) in the 1-MST problem, and will therefore lead to more (less) links being attached to it
- Subgradient method for updating the multipliers

• Updating step:

$$\lambda_j := \lambda_j + \alpha \left(2 - \sum_{i \in \mathcal{N}: (i,j) \in \mathcal{L}} x_{ij} \right), \qquad j \in \mathcal{N}$$

where $\alpha > 0$ is a step length

• Update means:

Current degree at node j: $\begin{cases}
> 2 \Longrightarrow \lambda_j \downarrow (\text{link cost }\uparrow) \\
= 2 \Longrightarrow \lambda_j \leftrightarrow (\text{link cost constant}) \\
< 2 \Longrightarrow \lambda_j \uparrow (\text{link cost }\downarrow)
\end{cases}$

• Link cost shifted upwards (downwards) if too many (too few) links connected to node j in the 1-MST

Feasibility heuristic

- Adjusts Lagrangian solution \boldsymbol{x} such that the resulting vector is feasible
- Often a good thing to do when approaching the dual optimal solution—x often then only mildly infeasible
- Identify path in 1-MST with many links; form a subgraph with the remaining nodes which is a path; connect the two
- Result: A Hamiltonian cycle (TSP tour)
- We then have both an upper bound (feasible point) and a lower bound (q) on the optimal value—a quality measure: $[f(\boldsymbol{x}) - q(\boldsymbol{\mu})]/q(\boldsymbol{\mu})$

The Philips example

- Fixed number of subgradient iterations
- Feasibility heuristic used every K iterations (K > 1), starting at a late subgradient iteration
- Typical example: Optimal path length in the order of 2 meters; upper and lower bounds produced concluded that the relative error in the production plan is less than 7 %
- \bullet Also: increase in production by some 70 %