Lecture 11: Linearly constrained
nonlinear optimization

0-0

-

Feasible-direction methods

e Consider the problem to find

f* = infimum f(x), (1a)
subject to ® € X, (1b)

X C R"™ nonempty, closed and convex; f : R" — R is
Clon X

e Most methods for (1) manipulate the constraints
defining X'; in some cases even such that the sequence
{x\} is infeasible until convergence. Why?

\_

/




/ e Consider a constraint “g;(x) < b;,” where g; is \

nonlinear

e Checking whether p is a feasible direction at @&, or what
the maximum feasible step from x in the direction of p

is, is very difficult

e For which step length a > 0 does it happen that
gi(x + ap) = b;? This is a nonlinear equation in «!

e Assuming that X is polyhedral, these problems are not
present

e Note: KKT always necessary for a local min for

polyhedral sets; methods will find such points

/

/ Feasible-direction descent methods \
Step 0. Determine a starting point @y € R™ such that
xo € X. Set k:=0

Step 1. Determine a search direction p,, € R" such that
p; is a feasible descent direction

Step 2. Determine a step length ay > 0 such that
flxr + agpy) < f(xg) and o + app, € X

Step 3. Let 11 =z + aip,

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k£ := k£ + 1 and go to Step 1

\_ /




/ Notes \

e Similar form as the general method for unconstrained
optimization

e Just as local as methods for unconstrained optimization

e Search directions typically based on the approximation
of f—a “relaxation”

e Search direction often of the form p, = y, — xx, where
Y. € X solves an approximate problem

e Line searches similar; note the maximum step

e Termination criteria and descent based on first-order

\_

optimality and/or fixed-point theory (p, =~ 0") /

/ LP-based algorithm, I: The Frank—Wolfe method\

e The Frank—Wolfe method is based on a first-order
approximation of f around the iterate ;. This means
that the relaxed problems are LPs, which can then be
solved by using the Simplex method

e Remember the first-order optimality condition: If
x* € X is a local minimum of f on X then

Vi) (x—z*) >0, x € X,
holds

e Remember also the following equivalent statement:

minimum V f(x*)" (x — z*) =0

N Y




/ e Follows that if, given an iterate xy € X, \

minimum V f(z;)" (y — x;) < 0,
yeX

and vy, is a solution to this LP problem, then the
direction of p, := vy, — xy is a feasible descent direction
with respect to [ at @

e Search direction towards an extreme point of X [one
that is optimal in the LP over X with costs

c = Vf(zy)]
e This is the basis of the Frank—Wolfe algorithm

\_ /

/ e We assume that X is bounded in order to ensure that\
the LP always has a finite solution. The algorithm can
be extended to allow for unbounded polyhedra

e The search directions then are either towards an
extreme point (finite solution to LP) or in the direction
of an extreme ray of X (unbounded solution to LP)

e Both cases identified in the Simplex method




/ The search-direction problem \

20

15

NS

oF "
‘ Y

-5 1 !
\> ° 5 i

/ Algorithm description, Frank—Wolfe \

Step 0. Find xy € X (for example any extreme point in
X). Set k:=0
Step 1. Find a solution y,, to the problem to

migier}gize 2u(y) == Vf(ze) (y — ) (2)

Let p, := y, — Tx be the search direction

Step 2. Approximately solve the problem to minimize
f(xr + ap,) over a € [0,1]. Let ay be the step length

Step 3. Let 11 =z + aip,

Step 4. If, for example, z;(y,) or a4 is close to zero, then

K terminate! Otherwise, let k := k + 1 and go to Step 1 /




/ Convergence \

e Suppose X C R"™ nonempty polytope; f in Ct on X

e In Step 2 of the Frank—Wolfe algorithm, we either use
an exact line search or the Armijo step length rule

e Then: the sequence {x;} is bounded and every limit
point (at least one exists) is stationary;

e {f(x;)} is descending, and therefore has a limit;

o 21(yx) = 0 (Vf(@i)'pp — 0)

e If f is convex on X, then every limit point is globally
optimal

\o Proof: /

10

/ The convex case: Lower bounds \

e Remember the following characterization of convex
functions in C! on X: f is convex on X <=

fy) = f(®)+Vf(z)'(y—=z), »zyeX

e Suppose [ is convex on X. Then, f(xy) + zx(xr) < f*
(lower bound, LBD), and f(xy) + zx(xx) = f* if and
only if o, is globally optimal. A relaxation—cf. the
Relaxation Theorem!

e Utilize the lower bound as follows: we know that
f* e f(xg) + zr(x), f(x)]. Store the best LBD, and

check in Step 4 whether [f(x;) — LBD]/|LBD]| is small,

\ and if so terminate /

11




/ Notes

e Frank—Wolfe uses linear approximations—works best
for almost linear problems

e For highly nonlinear problems, the approximation is

point. (Compare Steepest descent!)

e In order to find a near-optimum requires many
iterations—the algorithm is slow

extreme points) is forgotten. If we keep the linear
subproblem, we can do much better by storing and

\ utilizing this information

bad—the optimal solution may be far from an extreme

e Another reason is that the information generated (the

~

/

12

e Remember the Representation Theorem (special case
for polytopes): Let P={x € R" | Ax =b; = > 0"},
be nonempty and bounded, and V = {v!,... v"} be
the set of extreme points of P. Every x € P can be

that is,
K
T = Z v’
i=1
for some o, ...,ap > 0 such that Zfil a; =1

represented as a convex combination of the points in V,

/ LP-based algorithm, II: Simplicial decomposition\

/

13




/ e The idea behind the Simplicial decomposition method\
is to generate the extreme points v* which can be used
to describe an optimal solution x*, that is, the vectors

v® with positive weights «; in

K
T = g o, V"
i=1

e The process is still iterative: we generate a “working
set” Py of indices i, optimize the function f over the
convex hull of the known points, and check for

stationarity and/or generate a new extreme point

\_ /

14

/ Algorithm description, Simplicial decomposition\

Step 0. Find xy € X, for example any extreme point in
X. Set k:=0. Let Py:=0

Step 1. Let y, be a solution to the LP problem (2)
Let Pry1 :=Pr U {/{7}

15




/Step 2. Let (ux,vry1) be an approximate solution to the\
restricted master problem (RMP) to

minimize  f | pxy + Z viy' |, (3a)
(uo2) 1€PK4+1
subject to u+ Z v =1, (3b)
iE'Pk_H

w, v; > 0, i€ Prr1 (3¢)

Step 3. Let @y 1 := g1y + Ziepk+1(1/k+1)iyi

Step 4. If, for example, z;(y,) is close to zero, or if
Pri1 = P, then terminate! Otherwise, let k: =k + 1

and go to Step 1
- /

16

/ e This basic algorithm keeps all information generated, \

and adds one new extreme point in every iteration

e An alternative is to drop columns (vectors y*) that
have received a zero (or, low) weight, or to keep only a

maximum number of vectors

e Special case: maximum number of vectors kept =1 =
the Frank—Wolfe algorithm!

e We obviously improve the Frank—Wolfe algorithm by

utilizing more information

e Compare with the difference between Newton and

steepest descent in unconstrained optimization

\_ /

17




Convergence \

e It does at least as well as the Frank—Wolfe algorithm:
line segment [xy, y,| feasible in RMP

e If * unique then convergence is finite if the RMPs are
solved exactly, and the maximum number of vectors

kept is > the number needed to span x*

e Much more efficient than the Frank—Wolfe algorithm in
practice (consider the above FW example!)

e We can solve the RMPs efficiently, since the constraints

are simple

\_ /

18

-

An illustration of FW vs. SD \

e A large-scale nonlinear network flow problem which is
used to estimate traffic flows in cities

e Model over the small city of Sioux Falls in North
Dakota, USA; 24 nodes, 76 links, and 528 pairs of
origin and destination

e Three algorithms for the RMPs were tested—a Newton
method and two gradient projection methods (see the
next section). A MATLAB implementation

e Remarkable difference—The Frank—Wolfe method
suffers from very small steps being taken. Why? Many

\ extreme points active = many routes used /

19




\_

Max relative objective function error

Sioux Falls network
T T

T T
SD/Grad. proj. 1

—— SD/Grad. proj. 2

— — SD/Newton

— - Frank-Wolfe

CPU time (s)

I
40 50 60

Figure 1: The performance of SD vs. FW on the Sioux Falls network

/

20

/ QP-based algorithm: The gradient projection \

21

algorithm

e The gradient projection algorithm is based on the
projection characterization of a stationary point:
x* € X is a stationary point if and only if, for any
a > 0,

x* = Projy|x" — aV f(x")]




N /

22

/o Let p := Projy[x — aV f(x)] — x, for any a > 0. TheD
if and only if @ is non-stationary, p is a feasible descent
direction of f at @

e The gradient projection algorithm is normally stated
such that the line search is done over the projection
arc, that is, we find a step length ay, for which

Zp1 = Projx|zy — i Vf(xy)], k=1,... (4)

has a good objective value. Use the Armijo rule to

determine oy,.

e Gradient projection becomes steepest descent with

Armijo line search when X = R"!

N /

23




x — oV f(xy)

xy, — (a/4)V f ()

/

24

/ Convergence, 1

e X C R"™ nonempty, closed, convex; f € C! on X;

~

e for the starting point xy € X it holds that the level set

levy (f(xo)) intersected with X is bounded

e In the algorithm (4), the step length «y, is given by the

Armijo step length rule along the projection arc
e Then: the sequence {xy} is bounded;
e cvery limit point of {x;} is stationary;

o {f(xx)} descending, lower bounded, hence convergent

e Convergence arguments similar to steepest descent one

-

/

25




\_

Convergence, 11 \

e X C R" nonempty, closed, convex;
o fcC'on X; f convex;
e an optimal solution x* exists

e In the algorithm (4), the step length «y, is given by the
Armijo step length rule along the projection arc

e Then: the sequence {x} converges to an optimal
solution

e Note: with X = R" = convergence of steepest

descent for convex problems with optimal solutions!

/

26




