
1'

&

$

%

Method of choice

Consider the unconstrained optimization problem to

minimize
x∈Rn

f(x), (1)

where f ∈ C0 on R
n (f is continuous). Mostly, we assume that

f ∈ C1 holds (f is continuously differentiable), sometimes even C2

� Size of the problem (n)?

� Are ∇f(x) and/or ∇2f(x) available; to what cost?

� What it is the goal? (Global/local minimum, stationary point?)

� What are the convexity properties of f?

� Do we have a good estimate of the location of a stationary point

x∗? (Can we use locally-only convergent methods?)

Lecture 4: Unconstrained optimization

algorithms

0-0

3'

&

$

%

Typical algorithm

Step 0. Starting point: x0 ∈ R
n. Set k := 0

Step 1. Search direction: pk ∈ R
n

Step 2. Step length: αk > 0 such that f(xk + αkpk) < f(xk) holds

Step 3. Let xk+1 := xk + αkpk

Step 4. Termination criterion: If fulfilled, then stop! Otherwise, let

k := k + 1 and go to step 1

−5
−4

−3
−2

−1
0

1
2

3
4

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

pk

pk+1

xk

ααk

f(xk + αpk)

xk+1

xk + αkpk

2'

&

$

%

Example: curve fitting by least-squares

� Suppose we have m data points (ti, bi) believed to be related as

x1 + x2 exp(x3ti) + x4 exp(x5ti) = bi, i = 1, . . . ,m,

with unknown parameters x1, . . . , x5. (Here, exp(x) = ex.) The

best description minimizes the total “residual error,” given by

the norm of the residual

fi(x) := bi − [x1 + x2 exp(x3ti) + x4 exp(x5ti)], i = 1, . . . ,m

� Resulting optimization problem:

min
x∈R5

f(x) :=
m∑

i=1

|fi(x)|2 =
m∑

i=1

(bi−[x1+x2 exp(x3ti)+x4 exp(x5ti)])
2

� Very often solved problem type within numerical analysis and

mathematical statistics

5'

&

$

%

Step 1: Search directions

� If ∇f(xk) 6= 0n, then p = −∇f(xk) is a descent direction for f

at xk (Part of necessary condition proof!)

� This steepest descent direction solves the problem to

minimize
p∈Rn:‖p‖=1

∇f(x)Tp

� Suppose Q ∈ R
n×n is a symmetric, positive definite matrix.

Then p = −Q∇f(xk) is a descent direction for f at xk, because

∇f(xk)Tp = −∇f(xk)TQ∇f(xk) < 0,

due to the positive definiteness of Q

� Special case: Q = In yield steepest descent

� Special case: Q−1 = ∇2f(xk), if the Hessian is positive definite.

This is Newton’s method

4'

&

$

%

Notes

� The figure was plotted using several thousands of function

evaluations

� Never possible in reality! (And total waste of time)

� An “orienteering map” never exists

� Most algorithms are inherently local, only based on info at the

current point xk, that is, f(xk), ∇f(xk), and ∇2f(xk)

� Possibly also on previous points passed

� An algorithm is a “near-sighted mountain climber” when trying

to reach the summit (for a max problem!)

� The mountain climber is in a deep fog and can only check her

barometer for the height and feel the steepness of the slope under

her feet

7'

&

$

%

Newton’s method

� Steepest descent is most often not a very good algorithm. Why?

� It fails to take into account more than information about ∇f

� Let

f(x + p) − f(x) ≈ ϕx (p) = ∇f(x)Tp +
1

2
pT∇2f(x)p

Minimize by setting gradient of ϕx (p) to zero:

∇pϕx (p) = ∇f(x) + ∇2f(x)p = 0n

� n = 1: f ′(x) + f ′′(x)p = 0 =⇒ p = −f ′(x)/f ′′(x)

� Provides descent if f ′′(x) > 0: f ′(x)p = −[f ′(x)]2/f ′′(x) < 0

� Corresponding story in R
n: p = −[∇2f(x)]−1∇f(x), yields

descent at non-stationary points if ∇2f(x) is positive definite!

6'

&

$

%

Additional requirements

|∇f(xk)Tpk| ≥ s1‖∇f(xk)‖2, and ‖pk‖ ≤ s2‖∇f(xk)‖,

or

−
∇f(xk)Tpk

‖∇f(xk)‖ · ‖pk‖
≥ s1, and ‖pk‖ ≥ s2‖∇f(xk)‖

� Purpose: prevent the descent directions to deteriorate in quality,

and prevent premature convergence

� ∇f(xk)Tpk is the directional derivative of f at xk in the

direction of pk. Make sure it stays away from zero!

� Also, make sure that pk stays bounded and that it tends to zero

if and only if ∇f(xk) does

� These conditions hold for the above examples

9'

&

$

%

� Computational burden. It may be too much to ask for to

solve a linear system many times when n > 1000 or so; it is

enough to do some work on the linear system and still get a

descent property. (See book for an example)

� Specific choices of matrices Bk lead to quasi-Newton methods

8'

&

$

%

Why do we not always choose Newton directions?

� Lack of positive definiteness. ∇2f(x) is not positive definite

(PD). Solution: add diagonal matrix so that the result is PD:

∇2f(x) + γIn for γ > 0 large enough

� Note: If value of γ is very large =⇒ ≈ steepest descent

� Name: Levenberg–Marquardt

� Lack of enough differentiability. If f 6∈ C2, what do we do?

� n = 1: the secant method:

f ′′(xk) ≈
f ′(xk) − f ′(xk−1)

xk − xk−1

� n > 1: quasi-Newton: choose approximate matrix Bk so that

Bk(xk − xk−1) = ∇f(xk) −∇f(xk−1),

and more choices (the above does not specify the entire matrix!)

11'

&

$

%

−5
−4

−3
−2

−1
0

1
2

3
4

5
−5

−4

−3

−2

−1

0

1

2

3

4

5PSfrag replacements

α∗

α∗

α

pk

xk

ϕ(α)

Figure 1: A line search in a descent direction

10'

&

$

%

Step 2: Line search

� Approximately solve the one-dimensional problem to

minimize
α≥0

ϕ(α) := f(xk + αpk)

Its optimality conditions are that

ϕ′(α∗) ≥ 0, α∗ · ϕ′(α∗) = 0, α∗ ≥ 0,

that is,

∇f(xk + α∗pk)Tpk ≥ 0, α∗ · ∇f(xk + α∗pk)Tpk = 0, α∗ ≥ 0,

holds

� If α∗ > 0, then ϕ′(α∗) = 0 holds, hence ∇f(xk + α∗pk)Tpk = 0

� The search direction pk is orthogonal to the gradient of f at the

point xk + α∗pk

13'

&

$

%

Armijo rule

� Idea: quickly generate a step α which provides “sufficient”

decrease in f . Note: f(xk +αpk) ≈ f(xk) +α · ∇f(xk)Tpk, valid

for small values of α > 0

� Requirement: we get a decrease in f which is at least a fraction

of that predicted in the right-hand side above. Let µ ∈ (0, 1) be

this fraction. Acceptable step lengths are α > 0 satisfying

ϕ(α) − ϕ(0) ≤ µαϕ′(0), (2a)

that is,

f(xk + αpk) − f(xk) ≤ µα∇f(xk)pk (2b)

� Can add condition making α also large enough (Wolfe)

12'

&

$

%

Approximate line search

� No point solving the one-dimensional problem exactly! Why?

The optimum to the entire problem lies elsewhere!

� Interpolation: Use f(xk),∇f(xk),∇f(xk)Tpk to model a

quadratic function approximating f along pk. Minimize it by

using the analytic formula for quadratics

� Newton’s method: Repeat the improvements gained from a

quadratic approximation: α := α− ϕ′(α)/ϕ′′(α)

� Golden section: Derivative-free method that shrinks an interval

where ϕ′(α) = 0 lies

15'

&

$

%

Typical convergence result

� Suppose that f ∈ C1, and that for the starting point x0 it holds

that the level set levf (f(x0)) = {x ∈ R
n | f(x) ≤ f(x0) } is

bounded. Consider the iterative algorithm defined on Page 1,

with the following choices for each k:

– pk satisfies the second sufficient descent condition on Page 7;

– ‖pk‖ ≤M , where M is some positive constant; and

– the Armijo step length rule is used

Then, the sequence {xk} is bounded, the sequence {f(xk)} is

descending, lower bounded and therefore converges, and every

limit point of {xk} is stationary

� For convex f much stronger convergence properties:

Optimum exists ⇐⇒ {xk} converges to an optimal solution

(Theorem proved for gradient projection method later)

14'

&

$

%

PSfrag replacements

αR

ϕ(0) + αϕ′(0) ϕ(0) + µαϕ′(0)

ϕ(α)

Figure 2: The interval (R) accepted by the Armijo step length rule

17'

&

$

%

� Problem with the scaling of the problem: If

xk−1 = (1.44453, 0.00093, 0.0000079)T,

xk = (1.44441, 0.00012, 0.0000011)T;

‖xk−1 − xk‖∞ = ‖(0.00012, 0.00081, 0.0000068)T‖∞

= 0.00081

� Small absolute error but large relative error!

� Better to apply the algorithm from a scaled problem where

elements of x have similar magnitude

� Newton methods define good such scalings

16'

&

$

%

Step 4: Termination criteria

� Lesson number one: Cannot terminate based on the exact

optimality conditions, because ∇f(x) = 0n never happens!

� The recommendation is the combination of the following:

1. ‖∇f(xk)‖ ≤ ε1(1 + |f(xk)|), ε1 > 0 small;

2. f(xk−1) − f(xk) ≤ ε2(1 + |f(xk)|), ε2 > 0 small; and

3. ‖xk−1 − xk‖ ≤ ε3(1 + ‖xk‖), ε3 > 0 small

� Why? Need to cover cases of very steep and very flat functions

� May need to use ∞-norm: ‖x‖∞ := max1≤j≤n |xj |, for large n

19'

&

$

%

PSfrag replacements

f(x)

x

Figure 3: A piece-wise linear convex function

18'

&

$

%

Why is the C
1 property important?

� Suppose f is only in C0, not C1. Example:

f(x) := maximum
i∈{1,...,m}

{cT
i x + bi}, x ∈ R

n

� This is a piece-wise linear and convex function (see next page)

� It is differentiable almost everywhere, but not at the optimal

solution!

� Ignoring non-differentiability may lead to the convergence to a

non-optimal point

� Convex functions always has subgradients, corresponding to all

the possible slopes of the function

� More on these when looking at Lagrangian duality!

21'

&

$

%

∇2f(xk) is not positive definite

� Progress from stationary points if saddle points or local maxima

� Update of trust region size based on a measure of similarity

between the model ψk and f : Let

ρk =
f(xk) − f(xk + pk)

f(xk) − ψk(pk)
=

actual reduction

predicted reduction

If ρk ≤ µ let xk+1 = xk (unsuccessful step), else

xk+1 = xk + pk (successful step)

Value of ∆k+1 depends on ρk:

µ <

ρk ≤ µ =⇒ ∆k+1 = 1

2
∆k,

ρk < η =⇒ ∆k+1 = ∆k,

ρk ≥ η =⇒ ∆k+1 = 2∆k

20'

&

$

%

Trust region methods

� Trust region methods use quadratic models (as Newton)

� Avoids line searches by bounding the length of the search

direction, at the same time influencing its direction

� Let ψk(p) := f(xk) + ∇f(xk)Tp + 1

2
pT∇2f(xk)p

� The model ψk is trusted in a neighbourhood of xk : ‖p‖ ≤ ∆k

� Very useful when ∇2f(xk) is not positive semi-definite

� Easy to minimize ψk(p) subject to ‖p‖ ≤ ∆k

� Idea: when ∇2f(xk) is badly conditioned, ∆k should be small

(more of a steepest descent method); if well conditioned, ∆k

should be large to allow for unit steps (Newton! fast convergence)

� If ∆k is small enough, f(xk + pk) < f(xk) holds

� Even if ∇f(xk) = 0n holds, f(xk + pk) < f(xk) still holds, if

23'

&

$

%

Minimizing implicit functions

� Common in engineering and natural science applications that f

is not explicitly given but through a simulation:

x ∈ R
n

> Simulation > y ∈ R
m

� Wish is to minimize a function of both x and y: f(x,y); find the

vector x that gives the best response y for f

� The form of the response y = y(x) from the input x is normally

unknown

� Cannot differentiate x 7→ f(x,y(x))

� Two distinct possibilities!

22'

&

$

%

Figure 4 illustrates the trust region subproblem

PSfrag replacements

xk

x∗

Figure 4: Trust region and line search step. The ellipses are level

curves of the quadratic model; the circle defines the trust region

25'

&

$

%

� (2) Derivative-free methods are available. (Not counting

subgradient methods, because they demand f to be convex!)

Either builds explicit models f̂ of the objective function by

evaluating f at test points, or evaluates f at grid points that are

moved around, shrunk or expanded. Names: Nelder–Mead,

Pattern search

� Check hand-out!

� Alternative: create explicit algebraic (e.g., polynomial) model f̃

based on visited points xk; solve this problem with gradient

methods; evaluate its optimum in the real problem (i.e., perform

a simulation); update f̃ with the new information. =⇒ minimizes

the number of simulations!

24'

&

$

%

� (1) Numerical differentiation of f by using a difference formula:

� Let ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T be the unit vector in R
n. Then,

f(x + αei) = f(x) + αeT
i ∇f(x) + (α2/2)eT

i ∇
2f(x)ei + . . .

= f(x) + α∂f(x)/∂xi + (α2/2)∂2f(x)/∂x2
i + . . .

� So, for small α > 0,

∂f(x)

∂xi

≈
f(x + αei) − f(x)

α
(forward difference)

∂f(x)

∂xi

≈
f(x + αei) − f(x − αei)

2α
(central difference)

� Value of α typically set to a function of the machine precision; if

too large, we get a bad approximation of the partial derivative,

while a too small value might result in numerical cancellation

� May work well if the simulation is accurate, otherwise bad

derivative information. Requires cheap simulations!

27'

&

$

%

� Crucial properties:

(a) Step k minimizes f over a k-dimensional manifold; after at most

n steps we find the optimal solution

(b) All directions pk are “conjugate”, that is, pT
i Qpj = 0 for i 6= j

(Type of orthogonality; generation a type of Gram–Schmidt

procedure applied to the negative gradients)

(c) Need only store the previous gradient to get new direction

(d) Strictly better convergence than steepest descent

(e) Direction vector pi is an eigenvector corresponding to a largest

eigenvalue λi not yet found

(f) Meaning: Takes care of most difficult part of the problem first.

Less sensitive to the size of the condition number κ(Q) := λn/λ1

than steepest descent

26'

&

$

%

Conjugate gradient methods

� Algorithm for strictly convex quadratic programs to minimize

f(x) := 1

2
xTQx − qTx, that is, solve Qx = q

� Non-quadratic extensions available

� Basic scheme:

p0 = −∇f(x0); (3a)

pk = −∇f(xk) + βkpk−1, k = 1, 2, . . . , n− 1, (3b)

where

βk =
∇f(xk)T∇f(xk)

∇f(xk−1)T∇f(xk−1)
(3c)

� Use exact line search

