
Lecture 6: Lagrangian duality
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The Relaxation Theorem

� Problem: find

f∗ := infimum
x

f(x), (1a)

subject to x ∈ S, (1b)

where f : R
n → R given function, S ⊆ R

n

� A relaxation to (1) is a problem of the following form: to find

f∗
R := infimum

x

fR(x), (2a)

subject to x ∈ SR, (2b)

where fR : R
n → R is a function with fR ≤ f on S, and SR ⊇ S
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� Relaxation Theorem: (a) [relaxation] f∗
R ≤ f∗

(b) [infeasibility] If (2) is infeasible, then so is (1)

(c) [optimal relaxation] If the problem (2) has an optimal solution,

x∗
R, for which it holds that

x∗
R ∈ S and fR(x∗

R) = f(x∗
R), (3)

then x∗
R is an optimal solution to (1) as well

� Proof.

� Applications: Frank–Wolfe algorithm (linearizing f yields lower

bounds on f∗, see Chapter 12); exterior penalty methods yield

lower bounds on f∗ (see Chapter 13); Lagrangian relaxation

yields lower bound on f∗ (this chapter!)
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Lagrangian relaxation

� Consider the optimization problem to find

f∗ := infimum
x

f(x), (4a)

subject to x ∈ X, (4b)

gi(x) ≤ 0, i = 1, . . . , m, (4c)

where f : R
n → R and gi : R

n → R (i = 1, 2, . . . , m) are given

functions, and X ⊆ R
n

� For this problem, we assume that

−∞ < f∗ < ∞, (5)

that is, that f is bounded from below and that the problem has

at least one feasible solution
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� For a vector µ ∈ R
m, we define the Lagrange function

L(x, µ) := f(x) +
m

∑

i=1

µigi(x) = f(x) + µTg(x) (6)

� We call the vector µ∗ ∈ R
m
+ a Lagrange multiplier if

f∗ = inf
x∈X

L(x, µ∗)

holds
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Lagrange multipliers and global optima

� Let µ∗ be a Lagrange multiplier. Then, x∗ is an optimal solution

to (4) if and only if x∗ is feasible in (4) and

x∗ ∈ arg min
x∈X

L(x, µ∗), and µ∗
i gi(x

∗) = 0, i = 1, . . . , m

(7)

� Proof.

� Notice the resemblance to the KKT conditions! If X = R
n and

all functions are in C1 then “x∗ ∈ arg minx∈X L(x, µ∗)” is the

same as the force equilibrium condition, the first row of the KKT

conditions. The second item, “µ∗
i gi(x

∗) = 0 for all i” describes

the complementarity conditions

� Seems to imply that there is a hidden convexity assumption here.

Yes, there is. We prove a Strong Duality Theorem later
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Lagrange multipliers and global optimality vs.

KKT

� Extend the KKT conditions in three ways:

1. X ⊆ R
n (KKT: X = R

n)

2. Lagrangian function L(·, µ) is globally minimized (KKT: find

a stationary point of the Lagrangian)

3. Functions involved not necessarily in C1

� Note! Works only for convex problems!
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The Lagrangian dual problem associated with the

Lagrangian relaxation

� Let

q(µ) := infimum
x∈X

L(x, µ) (8)

be the Lagrangian dual function, defined by the infimum value of

the Lagrange function over X

� The Lagrangian dual problem is to

maximize
µ

q(µ), (9a)

subject to µ ≥ 0
m (9b)

For some µ, q(µ) = −∞ is possible; if this is true for all µ ≥ 0
m,

q∗ := supremum
µ≥0m

q(µ)

equals −∞
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� The effective domain of q is Dq := { µ ∈ R
m | q(µ) > −∞}

� The effective domain Dq of q is convex, and q is concave on Dq

� Proof.

� That the Lagrangian dual problem always is convex (we indeed

maximize a concave function!) is very good news!

� But we need still to show how a Lagrangian dual optimal

solution can be used to generate a primal optimal solution
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Weak Duality Theorem

� Let x and µ be feasible in (4) and (9), respectively. Then,

q(µ) ≤ f(x).

In particular,

q∗ ≤ f∗

holds

If q(µ) = f(x), then the pair (x, µ) is optimal in its respective

problem

� Proof.

� The reverse direction is not always true! (Only under convexity!)
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� Weak duality is also a consequence of the Relaxation Theorem:

For any µ ≥ 0
m, let

S := X ∩ {x ∈ R
n | g(x) ≤ 0

m }, (10a)

SR := X, (10b)

fR := L(µ, ·) (10c)

Apply the Relaxation Theorem

� If q∗ = f∗, we say that there is no (or, zero) duality gap. If there

exists a Lagrange multiplier vector, then by weak duality, this

implies that there is no duality gap. The converse is not true in

general: there may be cases where no Lagrange multiplier exists

even when there is no duality gap; in that case though, the

Lagrangian dual problem cannot have an optimal solution
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On the statement of the problem (4)

� There are several ways in which the problem can be defined

� Constraints can be placed within the definition of the ground set

X (kept intact), or within the explicit constraints defined by the

functions gi (Lagrangian relaxed)

� How to distinguish between the two, that is, how to decide

whether a constraint should be kept or be Lagrangian relaxed,

depends on several factors

� Keeping more constraints within X may result in a smaller

duality gap, and with fewer multipliers also result in a simpler

Lagrangian dual problem

� On the other hand, the Lagrangian subproblem defining the dual

function then becomes more complex and difficult to solve

� There are few rules to follow: experiment and experience!
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Global optimality conditions

� The following system characterizes every optimal primal and

dual solution. It is applicable only in the presence of Lagrange

multipliers; in other words, the system (11) is consistent if and

only if there exists a Lagrange multiplier but no duality gap

� The vector (x∗, µ∗) is a pair of optimal primal solution and

Lagrange multiplier if and only if

µ∗ ≥ 0
m, (Dual feasibility) (11a)

x∗ ∈ arg min
x∈X

L(x, µ∗), (Lagrangian optimality) (11b)

x∗ ∈ X, g(x∗) ≤ 0
m, (Primal feasibility) (11c)

µ∗
i gi(x

∗) = 0, i = 1, . . . , m (Complementary slackness) (11d)

� Proof.
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Saddle points

� The vector (x∗, µ∗) is a pair of optimal primal solution and

Lagrange multiplier if and only if x∗ ∈ X, µ∗ ≥ 0
m, and (x∗, µ∗)

is a saddle point of the Lagrangian function on X × R
m
+ , that is,

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), (x, µ) ∈ X × R
m
+ , (12)

holds

� Proof.
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Strong duality for convex programs, introduction

� Results so far have been rather non-technical to achieve:

convexity of the dual problem comes with very few assumptions

on the original, primal problem, and the characterization of the

primal–dual set of optimal solutions is simple and also quite

easily established

� In order to establish strong duality, that is, to establish sufficient

conditions under which there is no duality gap, however takes

much more

� In particular, as is the case with the KKT conditions we need

regularity conditions (that is, constraint qualifications), and we

also need to utilize separation theorems
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Strong duality Theorem

� Consider the problem (4), where f : R
n → R and gi

(i = 1, . . . , m) are convex functions and X ⊆ R
n is a convex set

� For this problem, we introduce the following Slater condition:

∃x ∈ X with g(x) < 0
m (13)

� Suppose that (5) and Slater’s CQ (13) hold for the (convex)

problem (4)

� (a) There is no duality gap and there exists at least one Lagrange

multiplier µ∗. Moreover, the set of Lagrange multipliers is

bounded and convex

� (b) If the infimum in (4) is attained at some x∗, then the pair

(x∗, µ∗) satisfies the global optimality conditions (11)
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Figure 1: F := { (g(x)T, f(x))T | x ∈ X }. A is convex; ((0m)T, f∗)T

is not interior in A. A hyperplane through ((0m)T, f∗)T and support-

ing A is used to construct a Lagrange multiplier.
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� (c) If the functions f and gi are in C1 then the condition (11b)

can be written as a variational inequality. If further X is open

(for example, X = R
n) then the conditions (11) are the same as

the KKT conditions

� Similar statements for the case of also having linear equality

constraints

� If all constraints are linear we can remove the Slater condition

� If f is linear then we can state the following: If both the primal

and dual problems have feasible solutions, then they both have

optimal solutions, and their optimal values are the same. We will

prove this elegantly in the LP chapters!
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What is the dual of an LP problem?

� Consider the linear program to

minimize
x

cTx, (14a)

subject to Ax = b, (14b)

x ≥ 0
n, (14c)

where A ∈ R
m×n, c ∈ R

n, b ∈ R
m. If we let X := R

n
+, then the

Lagrangian dual problem is to

maximize
λ∈Rm

bTλ, (15a)

subject to ATλ ≤ c (15b)

� Why?
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� The reason why we can write it in this form is that

q(λ) := infimum
x≥0n

{

cTx + λT(b − Ax)
}

= bTλ+infimum
x≥0n

(c−ATλ)Tx,

so that

q(λ) =







bTλ, if ATλ ≤ c,

−∞, otherwise

� More: λ unrestricted in sign, because we can write Ax = b as

Ax ≤ b; −Ax ≤ −b. Introduce µ+ and µ−. Lagrange function:

cTx + (µ+ − µ−)T(b − Ax). Substitute λ = µ+ − µ−

� If both the primal and dual problems have feasible solutions,

then they both have optimal solutions, satisfying strong duality

(cTx∗ = bTλ∗)

� More about dual LP problems in the LP chapters!
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Examples, I: An explicit, differentiable dual

problem

� Consider the problem to

minimize
x

f(x) := x2
1 + x2

2,

subject to x1 + x2 ≥ 4,

xj ≥ 0, j = 1, 2

� We consider the first constraint to be the complicated one, and

hence define g(x) := −x1 − x2 + 4 and let

X := { (x1, x2)
T | xj ≥ 0, j = 1, 2 }
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� The Lagrangian dual function is

q(µ) = minimum
x∈X

L(x, µ) := f(x) − µ(x1 + x2 − 4)

= 4µ + minimum
x∈X

{x2
1 + x2

2 − µx1 − µx2}

= 4µ + minimum
x1≥0

{x2
1 − µx1} + minimum

x2≥0
{x2

2 − µx2}, µ ≥ 0

� For a fixed µ ≥ 0, the minimum is attained at

x1(µ) = µ
2
, x2(µ) = µ

2

� Substituting this expression into q(µ), we obtain that

q(µ) = f(x(µ)) − µ(x1(µ) + x2(µ) − 4) = 4µ − µ2

2

� Note that q is strictly concave, and it is differentiable everywhere

(due to the fact that f, g are differentiable and x(µ) is unique)

� We then have that q′(µ) = 4 − µ = 0 ⇐⇒ µ = 4. As µ = 4 ≥ 0, it

is the optimum in the dual problem!

µ∗ = 4; x∗ = (x1(µ
∗), x2(µ

∗))T = (2, 2)T
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� Also: f(x∗) = q(µ∗) = 8

� This is an example where the dual function is differentiable. In

this particular case, the optimum x∗ is also unique, and is

automatically given by x∗ = x(µ)
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Examples, II: An implicit, non-differentiable dual

problem

� Consider the linear programming problem to

minimize
x

f(x) := −x1 − x2,

subject to 2x1 + 2x2 ≤ 3,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 1

� The optimal solution is x∗ = (3/2, 0)T, f(x∗) = −3/2
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� Consider Lagrangian relaxing the first constraint, obtaining

L(x, µ) = −x1 − x2 + µ(2x1 + 4x2 − 3);

q(µ) = −3µ + minimum
0≤x1≤2

{(−1 + 2µ)x1} + minimum
0≤x2≤1

{(−1 + 4µ)x2}

=















−3 + 5µ, 0 ≤ µ ≤ 1/4,

−2 + µ, 1/4 ≤ µ ≤ 1/2,

− 3µ, 1/2 ≤ µ

� We have that µ∗ = 1/2, and hence q(µ∗) = −3/2. For linear

programs, we have strong duality, but how do we obtain the

optimal primal solution from µ∗? q is non-differentiable at µ∗.

We utilize the characterization given in (11)

� First, at µ∗, it is clear that X(µ∗) is the set {
(

2α
0

)

| 0 ≤ α ≤ 1 }.

Among the subproblem solutions, we next have to find one that

is primal feasible as well as complementary
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� Primal feasibility means that 2 · 2α + 2 · 0 ≤ 3 ⇐⇒ α ≤ 3/4

� Further, complementarity means that

µ∗ · (2x∗
1 + 4x∗

2 − 3) = 0 ⇐⇒ α = 3/4, since µ∗ 6= 0. We conclude

that the only primal vector x that satisfies the system (11)

together with the dual optimal solution µ∗ = 1/2 is

x∗ = (3/2, 0)T

� Observe finally that f∗ = q∗
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� If a problem is not convex then we can have that

X(µ∗) ∩ {x ∈ R
n | g(x) ≤ 0

m } = ∅

� This means that Lagrangian relaxation cannot produce an

optimal (or even a feasible) solution

� Example: integer programming. The project course is devoted

partly to ways in which to obtain optimal solutions through an

extended theory and/or heuristics
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∗Subgradients of convex functions

� Let f : R
n → R be a convex function. We say that a vector

p ∈ R
n is a subgradient of f at x ∈ R

n if

f(y) ≥ f(x) + pT(y − x), y ∈ R
n (16)

� The set of such vectors p defines the subdifferential of f at x,

and is denoted ∂f(x)

� This set is the collection of “slopes” of the function f at x

� For every x ∈ R
n, ∂f(x) is a nonempty, convex, and compact set

� The convex function f is differentiable at x exactly when there

exists one and only one subgradient of f at x, which then is the

gradient of f at x, ∇f(x)
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Figure 2: Three possible slopes of the convex function f at x
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Figure 3: The subdifferential of a convex function f at x
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Differentiability of the Lagrangian dual function:

Introduction

� Consider the problem (4), under the assumption that

f, gi (i = 1, . . . , m) are continuous; X is nonempty and compact (17)

� Then, the set of solutions to the Lagrangian subproblem,

X(µ) := arg minimum
x∈X

L(x, µ), µ ∈ R
m, (18)

is nonempty and compact for every µ

� We develop the sub-differentiability properties of the function q
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∗Subgradients and gradients of q

� Suppose that, in the problem (4), (17) holds

� The dual function q is finite, continuous and concave on R
m. If

its supremum over R
m
+ is attained, then the optimal solution set

therefore is closed and convex

� Let µ ∈ R
m. If x ∈ X(µ), then g(x) is a subgradient to q at µ,

that is, g(x) ∈ ∂q(µ)

� Proof (book proof has typos).
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� Let µ ∈ R
m. Then, ∂q(µ) = conv { g(x) | x ∈ X(µ) }

� Let µ ∈ R
m. The dual function q is differentiable at µ if and only

if { g(x) | x ∈ X(µ) } is a singleton set, that is, if the value of the

vector of constraint functions is invariant over the set of solutions

X(µ) to the Lagrangian subproblem. Then, we have that

∇q(µ) = g(x),

for every x ∈ X(µ)

� This result holds in particular if the Lagrangian subproblem has

a unique solution, that is, X(µ) is a singleton set. In particular,

this property is satisfied if further X is a convex set, f is strictly

convex on X, and gi (i = 1, . . . , m) are convex, in which case q is

even in C1
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∗A subgradient method for the dual problem

� Subgradient methods extend gradient projection methods from

the C1 to general convex (or, concave) functions, generating a

sequence of dual vectors in R
m
+ using a single subgradient in each

iteration

� The simplest type of iteration has the form

µk+1 = Proj
R

m

+
[µk + αkgk] (19a)

= [µk + αkgk]+ (19b)

= (maximum {0, (µk)i + αk(gk)i})
m
i=1, (19c)

where gk ∈ ∂q(µk) is arbitrarily chosen

� We often use gk = g(xk), where xk ∈ arg minimumx∈X L(x, µk)



34'

&

$

%

� Main difference to C1 case: an arbitrary subgradient gk may not

be an ascent direction!

� Cannot do line searches; must use predetermined step lengths αk

� Suppose that µ ∈ R
m
+ is not optimal in (9). Then, for every

optimal solution µ∗ ∈ U∗ in (9),

‖µk+1 − µ∗‖ < ‖µk − µ∗‖

holds for every step length αk in the interval

αk ∈ (0, 2[q∗ − q(µk)]/‖gk‖
2) (20)

� Proof.

� Good news: If the step length is small enough we get closer to

every optimal solution!
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Figure 4: The half-space defined by the subgradient g of q at µ. Note

that the subgradient is not an ascent direction
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� Polyak step length rule:

σ ≤ αk ≤ 2[q∗ − q(µk)]/‖gk‖
2 − σ, k = 1, 2, . . . (21)

� σ > 0 makes sure that we do not allow the step lengths to

converge to zero or a too large value

� Bad news: Utilizes the knowledge of the optimal value q∗!

� Exists also other step length rules:

αk > 0, k = 1, 2, . . . , lim
k→∞

αk = 0;
∞
∑

s=1

αs = +∞ (22)

� Called the divergent series step length rule. Additional condition

often added:
∞
∑

s=1

α2
s < +∞ (23)
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� Suppose that the problem (4) is feasible, and that (17) and (13)

hold

� (a) Let {µk} be generated by the method (19), under the Polyak

step length rule (21), where σ is a small positive number. Then,

{µk} converges to an optimal solution to (9)

� (b) Let {µk} be generated by the method (19), under the

divergent step length rule (22). Then, {q(µk)} → q∗, and

{distU∗(µk)} → 0

� (c) Let {µk} be generated by the method (19), under the

divergent step length rule (22), (23). Then, {µk} converges to an

optimal solution to (9)


