
Chalmers/GU
Mathematics

EXAM SOLUTION

TMA947/MAN280
APPLIED OPTIMIZATION

Date: 04–06–02

Examiner: Michael Patriksson



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 1

Question 1

(the Simplex method)

a) By introducing a surplus-variable s1 and a slack-variable s2 the standard
form of the problem is to

minimize z = x1 +2x2 +3x3

subject to 2x1 −5x2 +x3 −s1 = 2,

2x1 −x2 +2x3 +s2 = 4,

x1, x2, x3, s1, s2 ≥ 0.

By introducing an artificial variable in the first constraint and solving the
Phase I problem we get the BFS xB = (x1, s2). This BFS also gives the
optimal solution x = (x1, x2, x3)

T = (1, 0, 0)T to the original problem.

b) This is the unique optimal solution since the reduced costs of the non-basic
variables xN = (x2, x3, s1)

T are all strictly positive [c̃N = (4.5, 2.5, 0.5)T].

Question 2

(modelling)

Introduce the following variables:

xij = the number of D from process i = 1, 2 sent to demand center j = 1, 2, 3,

zi =







1, if process i = 1, 2 is used,

0, otherwise.

The linear integer programming problem is then to

minimize (cA + 2cB + 3cC)
3

∑

j=1

x1j + (3cA + 2cB + cC)
3

∑

j=1

x2j +
2

∑

i=1

fizi

subject to
2

∑

i=1

xij ≥ dj, j = 1, 2, 3,

3
∑

j=1

xij ≤ pizi, i = 1, 2,

zi ∈ B, xij ∈ Z+, i = 1, 2, j = 1, 2, 3.
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Question 3

(Newton’s algorithm)

a) Newton’s equation:

xk+1 = xk −
αxα−1 − exp(x)

α(α − 1)xα−2 − exp(x)

b) The objective function of the problem is not convex in general [may be
verified by analysing the sign of the Hessian α(α− 1)xα−2 − exp(x)]. Since
the convergence of the Newton method is local in nature, the method is
most likely to converge to the nearest local minimum. The engineer thus
wrongly assumes the global convergence of the Newton method.

c) Probably the simplest counter-example is obtained by taking x0 = 1, α = 2.
These initial values cause the Newton’s method to generate an oscillating
sequence x2k−1 = 0, x2k = 1, k = 1, 2, . . . .

Question 4

(claims about optimality)

a) Additional property: the polyhedron is bounded.

Counter-example: the problem to maximize x1 subject to x1 ≥ 0 has no
optimal solution.

b) Additional property: f is weakly coercive.

Counter-example:

minimize f(x) =







−x, x ≤ 1,

1/x, x ≥ 1

is in C1 on R and lower bounded. If we apply the steepest descent method
on it, however, we obtain {xk} → ∞ while {f ′(xk)} → 0.
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c) Additional property: f and g are convex functions.

Counter-example: f(x) = x5 − 100x3; g(x) = −x; and b = −6 (that is, the
constraint is x ≥ 6).

The below plot shows the appearance of the function f in the interval
[−12, 12]; clearly, the optimal solution to the constrained problem is x∗ ≈
7.5, and g(x∗) < b holds, but if we remove the constraint we see from the
figure that there is no optimal solution to the problem—we may let f(x)
tend to minus infinity by letting x tend to minus infinity.

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8
x 10

4

Figure 1: The function f(x) = x5 − 100x3 on an interval.

Question 5

(duality)

a) The only point that is feasible in the problem is the point (x, y) = (0, 0)
(easily verified graphically); thus it is the only locally and globally optimal
solution. The problem is convex (both the objective function and the less-
than-or-equal-to constraints are convex). It however does not satisfy the
Slaters’s CQ (there are no strictly feasible points), or LICQ (the gradients
of the active constraints at the only feasible point are linearly dependent).
An alternative argument is that the locally optimal solution (0, 0)T is not
a KKT point, which means that CQs cannot hold.

b) Introducing the Lagrange multipliers µ and λ for the constraints of the
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problem, we get

q(λ, µ) = inf
(x,y)∈

�
2

{

y + λ[(x − 1)2 + y2 − 1] + µ[(x + 1)2 + y2 − 1]

}

.
(1)

If λ = µ = 0 we get q(λ, µ) = −∞; it remains thus to calculate q for
assuming λ+µ > 0. From the necessary (and sufficient in this convex case)
optimality conditions we get:

{

2λ[x − 1] + 2µ[x − 1] = 0

1 + 2λy + 2µy = 0
≡



















x =
λ − µ

λ + µ

y = −
1

2(λ + µ)
.

Substituting this into (1) we finally obtain

q(λ, µ) = −
1

4(λ + µ)
−

(λ − µ)2

λ + µ
.

c) Show that the strong duality holds, that is, z∗ = supλ∈
�

2

+
q(λ), where z∗ is

the optimal value of the primal problem.

Clearly, in our case z∗ = 0. Thus, by the weak duality, or from the ex-
plicit formula for the dual function, we have that for all (λ, µ) ∈ R

2
+ it

holds that q(λ, µ) < 0. Still, limλ→+∞ q(λ, λ) = 0, which means that
sup(λ,µ)∈

�
2
+

q(λ, µ) = 0 = z∗.

Question 6

(convexity)

a) (1) We utilize the following characterization of convexity of f on R
n:

f(y) ≥ f(x) + ∇f(x)T(y − x), x, y ∈ R
n.

It follows that if x and y are such that ∇f(x)T(y−x) ≥ 0 then f(y) ≥ f(x)
also holds; hence, f is pseudo-convex on R

n.

(2) The function in the below figure is of a form often referred to as “uni-
modal,” that is, it has a unique minimum and it increases both to the right
and left of this minimum. If such a function is differentiable then it is also
pseudo-convex (check this!).

It is however not convex.
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Figure 2: A unimodal function.

b) The result in the direction of =⇒ (the necessary condition) is true for every
differentiable function. The result in the direction of ⇐= (the sufficient
condition) follows immediately from the definition of pseudo-convexity.

c) (1) This result is Proposition 3.48 in the Course Notes.

(2) A unimodal function has convex level sets, and so the example in the
above figure works as a conuter-example here as well.

Question 7

(Lagrangian duality)

The proof of the consistency of the global optimality conditions be found in
Theorem 7.6 in the Course Notes.


