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Question 1

(The Simplex method)

a) By introducing a slack variable x5 and two artificial variables a; and as, we

get the Phase I problem to

minimize w = ay +as
subject to —x3 +aq = 3,
r1 —Xo —2x4 +ay = 1,
214 +x4 +T5 =T,
1, T2, I3, Ty, X5, a1, a Z 0
Let €% = (a1,as,25) and xk = (21,9, 23,74) be the initial basic and

nonbasic vector. The reduced costs of the nonbasic variables are
cy —cpBT'N = (-2,1,1,2),
which means that z; is the entering variable. Further, we have
B 'v=(3,1,7",

B'N, =(1,1,2)",

which gives
- (B~'b);
argmin;. g-1n). <0 = 2,
J:(B N1)3>0<B 1N1)j
S0 ay is the leaving variable. The new basic and nonbasic vectors are T 5 =

(ay, 71, 5) and & = (a9, T2, T3, 14), and the reduced costs are
cy —cpBT'N = (2,-1,1,-2),
so x4 is the entering variable, and
B 'vb=(2,1,5)",

B'N,=(2,-2,5",

which gives
: (B'b);
argmlnj:(B_1N4)j>0W =1

-
J

and thus a; is the leaving variable. The new basic and nonbasic vectors are
xh = (24,21, 75) and & = (ag, 2, 23, a1), and the reduced costs are

cy —cyBT'N =(1,0,0,1),
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so £ = (w4,71,75) is an optimal basic feasible solution of the Phase I
problem. Since w* = 0, xp is a basic feasible solution of the Phase II
problem to

minimize 2z =2x;

subject to x; —3 = 3,
1 —XT9 —2£L'4 = 1,
211 +r4 +5 = 7,
r1, Ty, X3, X4, x5 > 0.

If 5 = (24,71, 25) and £y = (79, 23), we get the reduced costs
cy — cgBT'N = (0,2).

This means that xp is an optimal basic feasible solution for the Phase II
problem, and we are done! z* = (3,0,0,1)" and z* = 6.

(1p) b) If the primal is infeasible, the dual cannot have an optimal solution. Thus
it is either infeasible or unbounded.

Question 2

(the KKT conditions)

(1p) a) See the Book, system (5.9).
(1p) b) The vector x! satisfies the KKT conditions (5.9).

(1p) ¢) Nothing. (Under the conditions given, there may be optimal solutions that
do not satisfy the KKT conditions.)

Question 3

(short questions on different topics)

(1p) a) Yes it is. (1,0,1,0,0)T is feasible and the columns of A corresponding to
the positive entries are linearly independent.
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(1p) b) By multiplying with p, from the left we get

P (V2 f (@) + I ")py, = —pi V f ().

Since 7, is chosen such that V2f(x) + v I" is positive definite [that is,
ut (V2f(x) + 1%I™)u > 0 holds for all uw € R"™\ {0"}], it follows that
piV f(xy) < 0 and p,, is therefore a direction of descent.

(1p) c¢) It is not true. Consider for example the problem to
minimize  xq,

subject to ] + 13 — 1 =0,
reX={xcR*®|z;+1,>0},

which has the two local minima (%, —%) and (—%, %), of which only
the latter is a global minimum.

(3p) Question 4

(the separation theorem) See the Book, Theorem 4.28.

Question 5

(LP duality and derivatives)

(1p) a) If v(b) is finite, then by LP duality, we have that
._ : T
v(b) == maximum by,
subject to ATy < ¢, (1)
y free.

At least one maximum in (1) is attained at an extreme point of the dual
polyhedron. Therefore, we can write v(b) = maximumyex b y,, where
{Y: }rex is the (finite) set of extreme points of the dual polyhedron. The
convexity of v follows simply by using the definition: for A € (0,1) and
arbitrary vectors b' and b* in R™ it holds that

1 . 21T, < I\T . 2\ T
max [Ab” + (1 = N)b" Ty, < Amax (b7) "y, + (1 — A) max (b7) "y,



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 4

(2p) b)

the inequality being a consequence of the added freedom of choice when
separating the optimization problem on the left-hand side of the inequality
with the two optimization problems in the right-hand side. Hence,

v(Ab' + (1 — N)b?) < dv(bY) + (1 — Nv(b?),
and we are done.

Consider the following inequality:
v(p) 2 u(b) + € (p—b), VpeER™,

where € € R™. This inequality is the definition of the vector & being a
subgradient of the convex function v at b; it in fact characterizes v as being
convex, whenever it is sub-differentiable. Our task is to establish that this
inequality holds when we let £ = y*. Since v(b) = b y* by assumption,
the inequality reduces to stating that

v(p) > p'y*, VpeR™

But this is true: by definition, v(p) equals the supremum of pTy over all
feasible vectors y, and y* is just one out of all the possible choices of dual
feasible vectors.

Finally, differentiability of v at b is equivalent, given its convexity, to the
existence of a unique subgradient of v at b. From the above it is clear that
if there is only one optimal solution to the problem (1) then that must also
be the gradient of v at b.

(3p) Question 6

(modelling) Introduce the variables:

X

Yk

The ¢

is 0 if element ¢ is assigned to computer 1

and it is 1 if assigned to computer 2. i =1,... ,n

is 1 if edge k is between to elements assigned to different computers.
It is 0 otherwise. k =1,...m

omputing time for the elements is equal to

s~ (. N\~
max{y;xz,y<n ;:)}
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which can be modelled using an auxilary variable ¢ and linear inequalities. The
optimization problem reads:

t m
minimize 2z = 77_+BZ n
v Vo
n
subject to sz <t
i=1
n
n—>Y x; <t
i=1
:L‘Ek,l_xEk,QS ykakzl,...,m
:L‘Ekﬂ_xEk,lS ykakzl,...,m
re B
ye B™
te R

Question 7

(Lagrangian Duality) Lagrangian relax the contraint to get

L(xz,\)=—-\b+ ix? + )\(ixz —b).

i=1 i=1
L is differentiable and we find the Lagrangian dual function

¢(A) = min L(x, \)

z€R™
by setting the gradient of L with respect to @ equal to zero (convex unconstrained
problem, function in C'). V,L(z,\) = 0 = 27 = —3, Vi. We get ¢()\) =
—Ab —nA

In the Lagrangian dual problem we wish to maximize ¢(\) over R (no sign re-
strictions since the multiplier corresponds to an equality constraint). Also here,
q is differentiable and we set the gradient equal to zero = A\* = —% (we know

that this is a maximum, since ¢ is always concave) = z} = %, Vi.
Thus, for any faesible vector «,
n

2 2 2
o :Z<é> _ b <> aieb<nd e <Z$z> <ny .

;A\ n i—1
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The objective function is strictly convex, whence the inequality above holds with
equality iff x} = %, Vi, ie., if vy =29 =...=x,.




