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Question 1

(LP duality)

Consider the linear programming problem to

minimize z = 2x1 +x2 +αx3 +x5,

subject to x1 +2x2 +3x3 −x4 +3x5 ≥ 3,

−2x1 +x2 +3x4 −2x5 ≥ 4,

x1, x2, x3, x4, x5 ≥ 0.

a) Let α = 1. Solve the resulting problem, without using the Simplex method,(2p)
and state both x∗ and z∗. Motivate your answer!

Hint: if you, for some reason, would like to solve some related problem with
fewer variables, you are allowed to do it graphically.

b) Motivate, using a graph of the dual problem, the interval of α around α = 1(1p)
for which x∗ from a) remains optimal.

Question 2(3p)

(sufficiency of the KKT conditions under convexity)

Consider the problem to find

f ∗ := infimum
x

f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,

where f : R
n → R and gi : R

n → R, i = 1, 2, . . . , m, are given differentiable and
convex functions. State the KKT conditions for this problem, and assume that
a vector x∗ satisfies them. Establish that x∗ then is a global optimum.
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Question 3(3p)

(Farkas Lemma)

Consider the linear optimization problem to

minimize z = x2 −x3 + 2x4+x5+3x6,

subject to x1+x2 − 2x3+ x4 +2x6 ≥ 0

−x1 +x3+ x4+x5 +x6 ≥ 0.

Using Farkas Lemma, show that z ≥ 0 holds for all feasible solutions.

Question 4(3p)

(the Frank–Wolfe algorithm)

As applied to the problem of minimizing a differentiable function f : R
n → R over

a non-empty and bounded polyhedral set X ⊂ R
n, the Frank–Wolfe method is

defined, in short, thus: provide a first feasible solution x0 to the problem, and let
k := 0; for given xk, solve the LP problem to minimize ∇f(xk)

Ty over y ∈ X, and
let yk be an optimal solution to this problem. If the value of ∇f(xk)

T(yk − xk)
is (near) zero, then terminate with xk being a (near-)stationary point, otherwise
let pk := yk − xk and perform a line search in the value of f along the direction
pk from xk, with a maximum step length of 1. Let the resulting vector be
xk+1 := xk + αkpk, where αk is the step length obtained in the line search. Let
finally k := k + 1, and repeat.

Consider the nonlinear program to

minimize f(x) := 10(x1 + 1)2 + (x2 − 1)2

subject to x ∈ X := {x ∈ R
2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2 }.

Starting at x0 = (1, 2)T, solve this problem by using the Frank–Wolfe method
using exact line searches. For each iteration, provide the best lower and upper
bounds on the optimal value f ∗ of f . Motivate the termination of the algorithm.
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Question 5

(the Levenberg–Marquardt modification of Newton’s method)

Given is the problem to minimize the function f : R
n → R over R

n. We suppose
that f is in C2.

a) First, derive the basic Newton method with line searches.(1p)

The Levenberg–Marquardt modification of the Newton method is based on
the possible failure of the Hessian matrix to be positive definite. Let x ∈ R

n.
The search direction provided by the Levenberg–Marquardt modification of
the Newton method is the solution to the equation

[∇2f(x) + µIn]p = −∇f(x),

where µ ≥ 0 is chosen such that the eigenvalues of the matrix ∇2f(x)+µIn

is positive definite.

Consider now the following trust region problem:

minimize g(p) :=
1

2
pT∇2f(x)p + pT∇f(x),

subject to ‖p‖2 ≤ δ,

where δ > 0. Show that the optimal solution is equivalent to a Levenberg–
Marquardt step p with shift parameter 2µ, where µ is the Lagrange multi-
plier for the constraint.

b) Consider the following nonlinear problem:(1p)

minimize
x∈

�
n

f(x) := x2

1

(

x2
1

4
−

2x1

3
−

3

2

)

+ (x2 − 1)2.

Start at x0 = (1, 0)T and perform one iteration with the Levenberg–Marquardt
method.

c) There are algorithms for approximately solving trust region problems. Some(1p)
of them are based on using the “Cauchy step”. The Cauchy step is the
solution to the trust region problem above, with the additional restriction
that p ∈ span{∇f(x)} (that is, that p = α∇f(x) for some α ∈ R). Assume
that the Hessian ∇2f(x) is positive definite. Compute the Cauchy step.
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Question 6(3p)

(modelling)

In this problem, your task is to model the steel production strategy for a fictive
company as a linear program. The problem is a simplified version of an old
project assignment.

To produce steel, coal and iron ore are needed. Both these raw materials are
taken from mines. There is one coal mine and three geographically separated
ore mines available. There are two mills where steel is produced using the raw
materials. At the mills the steel is formed into two types of products, plates and
pipes. These products are then sold to the market.

The cost of mining coal is $g/ton and the transport cost from the mine to each
of the mills is $rj/ton, j = 1, 2. There is no limitation on the amount of coal
that can be mined. The cost of mining iron ore is $h/ton, the same for all mines.
The tranport costs from mine i to mill j is $tij/ton, i = 1, 2, 3; j = 1, 2. The
maximum amount of iron ore that can be mined from mine i is cpi tonnes.

To produce one ton of steel, a tonnes of coal, b tonnes of iron ore and c kWh
of energy are needed. The cost of the energy is $p/kWh and other process costs
are $q/ton of produced steel. One ton of steel can then be used to produce e1

plates or e2 pipes. The customers pick up the plates and pipes at the mills, and
the prices are $s1/plate and $s2/pipe respectively. An estimation has been done
that in total, one will not be able to sell more than d1 plates and d2 pipes.

You can handle all amounts as being continuous. Formulate the problem of
maximizing the profit as a linear program. Define your variables carefully and
explain your constraints. If you use indices for your constraints, indicate for
which values they are used.
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Question 7

(linear programming duality and optimality)

Let c ∈ R
n, b ∈ R

m, and A ∈ R
m×n, and consider the canonical LP problem

minimize z = cTx,

subject to Ax ≥ b,

x ≥ 0n.

We denote the problem by (P).

a) Formulate explicitly the Lagrangian dual problem corresponding to the La-(1p)
grangian relaxation of all constraints of (P). (That is, the dimension of the
Lagrangian dual problem is m + n.) Establish that this Lagrangian dual
problem is equivalent to the canonical LP dual (D) of (P).

b) In the context of Lagrangian duality in nonlinear programming, the stan-(2p)
dard formulation of the primal problem is that to find

f ∗ := infimum
x

f(x), (1)

subject to gi(x) ≤ 0, i = 1, . . . , `,

x ∈ X,

where f : R
n → R and gi : R

n → R (i = 1, 2, . . . , `) are given functions,
and X ⊆ R

n.

Identify the LP problem (P) as a special case of the general problem (1).
State the global optimality conditions for the problem (1) and establish that
when applied to the problem (P) they are equivalent to the primal–dual
optimality conditions for the primal–dual pair (P), (D) of LP problems.

Good luck!


