Lecture 10: Integer programming
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/ When are integer models needed? \

e Products or raw materials are indivisible

e Logical constraints: “if A then B”; “A or B”
e Fixed costs

e Combinatorics (sequencing, allocation)

e On/off-decision to buy, invest, hire, generate electricity,




Either 0 <z < loraxz>7 \

0 1

Let M>1: z<1+4 My, z>Ty, ye {0,1}

7

— X
M

Variable z may only take the values 2, 45, 78 & 107
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x = 2yy + 45ys + 78y3 + 107y,
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/ At least 2 of 3 constraints must be fulfilled \
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/ Fixed costs \

x = the amount of a certain product to be sent

If x > 0 then the initial cost ¢; (e.g. car hire) is generated
Variable cost ¢y per unit sent

0 if =0 |effect

Total cost: f(z) =

cp+cy-x if x>0 |wanted!

A

Let M = car capacity

C2

1 ifxz>0 |effect

0 ifx=0 |wanted!

Cl( B . .
Might send an flr,y)=cr-y+ca-x

empty car! x<M -y |linear 0/1 model!
Hardly profitable

> 1
K‘ . x>0, y € {0,1} /

/ Other applications of integer optimization \
e Facility location (new hospitals, shopping centers, etc.)
e Scheduling (on machines, personnel, projects, schools)
e Logistics (material- and warehouse control)

e Distribution (transportation of goods, buses for
disabled persons)

e Production planning

e Telecommunication (network design, frequency
allocation)

e VLSI design

o
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Assign n persons to carry out n jobs

The combinatorial explosion

Assume that a feasible solution is evaluated in 10~ seconds

~

# feasible solutions: n!

n 2 5 8 10 100
n/! 2 120 | 4.0-10% | 3.6-10° | 9.3-10%7
[time] | 1078s | 107%s | 107 s | 1072s | 102 yrs

Complete enumeration of all solutions is not an efficient algorithm!

An algorithm exists that solves this problem in time O(n*) o« n*

n 2 5) 8 10 100 1000

nt 16 625 | 4.1-10% | 10* 108 102
ftime] | 10-7s | 10°%s | 105s | 10755 | 10~'s | 17 min

/

Linear continuous optimization model

~

max zpp = r1 + 2z
s.t. 1 + xx < 10 (1)
—z; + 3x2 < 9 (2)
7 B 4 <73
] 2) 1,79 > 0 4,5
' - - 12) z1,20 (4,5)
¢ . 21/4
TLp ~
1 19/4
2
(1) * 3
Tie=(1,2)" Lp = M
5) > 3 a1 5 6 8 9 1
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Linear integer optimization model \

max 2[p = r1 + 2z
s.t. 1 + x2 < 10 (1)
— <
. = feasible T+ ST <9 (2)
integer points 1 < 7 (3)
T1,X9 Z 0 (4, 5)

T, T2 integer

>

/
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Classic methods \
Branch—and—Bound: relaxation plus
divide—and—conquer

Cutting plane method: relaxation plus generations of
constraint that cut off infeasible (e.g., non-integer)
points generated

“Relaxation” can be the continuous or Lagrangian one

Lagrangian optimization: Lagrangian relaxation plus

multiplier optimization

These methods are often combined (e.g., cutting planes
added at nodes in B&B tree: Branch & Cut)




/ The branch—and—bound-algorithm \

Relax integrality constraints = linear program = xjp = (5.25,4.75)T

3

xrp = (5,4.67)T z1p = 14.75
331 <5 1 >6
ZLp = 14.32:
T2 < 4 T2 >0 p =14

integral
A

\

zLp = 13 infeasible
integral :

. .
. . . . . . y TLp = (6, 4)T
24 ° . [ [ [ [ /r’
! T
14 . . . . . . ILp = (5’ 4)
* * * * * * 1 é é
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/ The complexity of integer optimization, I: Aditiva\

e The Aditiva LP has 62 variables and 27 linear
constraints. Solution by our linux computer: 0.05 s.
after 17 dual simplex pivots

e We create an integer programming (IP) variant: all
producers can sell all raw materials; the suppliers have
limited capacities; supplies must be bought in 100 kg
batches; and there are fixed costs for transporting and
for using the drying processes and the reactors

e The new problem has 168 variables (58 binary, 52
integer, 58 linear) and 131 linear constraints

o /
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/ e Solver uses B&B, in which to the continuous relaxation\

o

is added integer requirements on some of the binary
variables that received a fractional value in the LP
solution. (Note: x; binary here = variable value fixed
at 0 or 1)

Solution process: after 10 minutes the CPLEX 8 solver
has produced 497,000 B&B nodes and used 1,602,861
dual simplex pivots; the feasible solution found so far
has not been proved to be within 0.8% from an optimal
solution

The first problem (the LP relaxation) takes only 0.06 s.
and 3 dual pivots to solve /
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/ The complexity of integer optimization, 1I: The \

knapsack problem

e Knapsack problem: maximize value of a finite number
of items put in a knapsack of a given capacity

e Fach variable has a value and weight per unit
e AMPL model:

var x{1..5} integer, >=0;

maximize ka:213%x[1]-1928*x[2]-11111%x[3]-2345*%x[4]+9123*x[5];

subject to cl:
12223*x [1]+12224*x [2] +36674*x[3]+61119%x[4] +85569*x [5] =
89643482;

\o Often binary; here, general integer variables

/




/ e LP relaxation trivial: sort variables in descending orde)
of ¢;/a;; take the best one

e LP solution? x}p ~ (0,0,0,0,1047.62)"

e IP solution? After 80 minutes in CPLEX 10: 150
Million B&B nodes; no feasible solution found yet

o /
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/ Cutting plane methods \

e Goal: generate the convex hull of the feasible integer
vectors

e Result: Can solve the IP by solving the LP relaxation
over this convex hull

e Compare IP example: one extra linear constraint
defines the entire convex hull! (zy < 4)

e Means: Relax problem (e.g., continuous relaxation);
Solve. If infeasible solution, generate constraint to the
relaxation that cuts off that vector but no feasible
vectors. Repeat

K. Constraint generation called a separation oracle /
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/ The Philips example—TSP solved heuristically \
e Let ¢;; denote the distance between cities ¢ and 7, with

{i,j} C N — set of nodes
(7,7) € L — set of links
e Links (7,7) and (j,) the same; direction plays no role

{ 1, if link (4, 5) is part of the TSP tour,
[ J xz] =

0, otherwise

o /
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/ e The Traveling Salesman Problem (TSP): \
minimize Z CijTij
(i.§)€L
subject to Z r; <|S|—-1, SCN, (1)

Z Tij = 2, jeN, (3

xij S {07 1}7 (7’7]) S E

17
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e Constraint (1) implies that there can be no sub-tours,

Interpretations \

that is, a tour where fewer than n cities are visited
(that is, if S C A then there can be at most |S| — 1
links between nodes in the set S, where |S] is the
cardinality—number of members of-the set S);

Constraint (2) implies that in total n cities must be
visited;

Constraint (3) implies that each city is connected to

two others, such that we make sure to arrive from one

/

city and leave for the next
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Lagrangian relaxation \
TSP is NP-hard—no known polynomial algorithms
exist
Lagrangian relax (3) for all nodes except starting node

Remaining problem: 1-MST—find the minimum
spanning tree in the graph without the starting node
and its connecting links; then, add the two cheapest
links to connect the starting node

Starting node s € N/ and connected links assumed
removed from the graph
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/ e Objective function of the Lagrangian problem: \

q<)\) = minialznum Z CijTij + Z )\j (2 — Z LCZ‘j)

(i,5)€L JEN 1eN:(i,j)eL
=2 Z Aj+ mmlmum Z Cij — Ni — Nj)Tij
JEN (1,7)EL

e A high (low) value of the multiplier A; makes node j
attractive (unattractive) in the 1-MST problem, and
will therefore lead to more (less) links being attached
to 1t

e Subgradient method for updating the multipliers

o /

21

/o Updating step: \

)\jZ:)\j+()é 2— Z xij , jEN,
1€eN:(1,7)EL

where a > 0 is a step length
e Update means:

Current degree at node j :
(> 2= ), | (link cost 1)

= 2 = \; < (link cost constant)
| <2= A; T (link cost |)

e Link cost shifted upwards (downwards) if too many
K (too few) links connected to node j in the 1-MST /

7\
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/ Feasibility heuristic \

e Adjusts Lagrangian solution x such that the resulting
vector is feasible

e Often a good thing to do when approaching the dual
optimal solution—ax often then only mildly infeasible

e Identify path in 1-MST with many links; form a
subgraph with the remaining nodes which is a path;
connect the two

e Result: A Hamiltonian cycle (TSP tour)
e We then have both an upper bound (feasible point) and

a lower bound (q) on the optimal value—a quality

\ measure: [f(@) —q(m)l/a(p) -
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/ The Philips example \

e Fixed number of subgradient iterations

e Feasibility heuristic used every K iterations (K > 1),
starting at a late subgradient iteration

e Typical example: Optimal path length in the order of 2
meters; upper and lower bounds produced concluded
that the relative error in the production plan is less

than 7 %

e Also: increase in production by some 70 %

o /




/ A research topic at MV: Opportunistic \
maintenance optimization

e What? When performing maintenance, use the
opportunity to replace more parts than necessary for
the sake of an overall best maintenance plan

e Why? Law (safety), economics, customer relations, ...

e Where? Any production facilities with large fixed
maintenance costs (expensive shut downs) —
steel /aluminium, paper, plastic, power
production /distribution

o /
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("« How? N

— Data: remaining life times of components, predictions
of ware, safety requirements, costs of new parts, work
costs

— Constraints: maintain within the limits of life times
(not too late); minimum condition of system at

the end of the time period considered, ...

— Objective: minimize overall running and maintenance

costs

o /
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/ Example: Volvo Aero, Trollhattan \

e Maintenance of the RM12 engine (JAS and civil
aircraft)

e The engine consists of several modules; parts in
modules are either safety-critical (typically rotating
ones) or on-condition

e Safety-critical parts have fixed life times
(deterministic); also others are monitored and are
considered stochastic—conditional life times

e Goal: Maintain the whole fleet such that the total
maintenance cost is minimized (or the total “time on

K wing” is maximized) /
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/ e Data: costs for inspection, (dis)assembly, cost of parts,\
life times of new and old parts ...

e Data for simple model example:
— 2z € {0,1}: perform maintenance or not at time ¢
— x; € {0,1}: replace part ¢ = 1,..., N or not at time ¢
— T;: life time of part i (if new)
—t=1,...,T": time discretization up to the horizon
— ¢;: cost of part ¢ (if new)

— d: fixed cost for performing maintenance

e Often one has used parts (life time left is 7, < T;)

o /




4z ) N
minimize Z (Z C;iTit + dzt>

t=1 \ieN

T;+0—1
subject to Z gy >1, (=1,....T-T;, ieN
t=0

:Eitgzt) tzl,...,T, ZEN
xitazte{071}7 tzl)"'7T7 ZGN
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(o Let N

T =60, N =4,
T7'=13, 15=19, 135=34, T,=18,
c1 =80, ¢y =185, ¢c3=160, c4 =125

fixed costs (the second is the most realistic)

bar, where the presence of a colured dot at a given
height 1-4 represents an item being replaced

e The figure clearly illustrates how opportunistic
maintenance becomes more beneficial with an increase

K in work costs

e Figure 1 shows maintenance occasions for three cases of

e Fach maintenance occasion is represented by a vertical

/
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Figure 1: Optimal solutions for three cases of fixed costs
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Status and goals for the future

e Current status:
— System to be implemented at Volvo Aero

— Initial contacts taken with Ringhals/Vattenfall for

maintenance optimization in their nuclear power plants

— Collaboration with Electrical Engineering, KTH on reliability

centered maintenance for power production and distribution

e Create optimization model and solution methodology system for

general cases and systems

e Series of industrial PhD student projects
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