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Convexity of sets

Let S ⊆ R
n. The set S is convex if

x1, x2 ∈ S

λ ∈ (0, 1)







=⇒ λx1 + (1 − λ)x2 ∈ S

A set S is convex if, from anywhere in S, all other points are

“visible.” (See Figure 1)
PSfrag replacements

S
x1

x2
λx1 + (1 − λ)x2

Figure 1: A convex set. (For the intermediate vector shown, the value

of λ is ≈ 1/2)

Lecture 2: Convexity

0-0
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Intersections of convex sets

Suppose that Sk, k ∈ K, is any collection of convex sets. Then, the

intersection ∩k∈KSk is a convex set

Proof.
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Examples

� The empty set is a convex set

� The set {x ∈ R
n | ‖x‖ ≤ a } is convex for every value of a ∈ R

� The set {x ∈ R
n | ‖x‖ = a } is non-convex for every a > 0

� The set {0, 1, 2} is non-convex

Two non-convex sets are shown in Figure 2
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Figure 2: Two non-convex sets
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Examples
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(a) (b) (c)

v1 v1 v1

v2v2 v2

Figure 3: (a) The set V (b) The set aff V (c) The set conv V
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Convex and affine hulls

The affine hull of a finite set V = {v1, . . . , vk} ⊂ R
n is the set

aff V :=

{

λ1v
1 + · · · + λkvk

∣

∣

∣

∣

∣

λ1, . . . , λk ∈ R;

k
∑

i=1

λi = 1

}

The convex hull of a finite set V = {v1, . . . , vk} ⊂ R
n is the set

conv V :=

{

λ1v
1 + · · · + λkvk

∣

∣

∣

∣

∣

λ1, . . . , λk ≥ 0;

k
∑

i=1

λi = 1

}

The sets are defined by all possible affine (convex) combinations of

the k points
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Polytope

� A subset P of R
n is a polytope if it is the convex hull of finitely

many points in R
n

� The set shown in Figure 4 is a polytope

PSfrag replacementsv1

v2

v3

v4

v5

Figure 4: The convex hull of five points in R
2

� A cube and a tetrahedron are polytopes in R
3
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Carathéodory’s Theorem

� The convex hull of V ⊂ R
n is the smallest convex set containing

V

� Let V ⊆ R
n. Then, conv V is the set of all convex combinations

of points of V

� Every point of the convex hull of a set can be written as a convex

combination of points from the set. How many do we need?

� [Car.:] Let x ∈ conv V , where V ⊆ R
n. Then x can be expressed

as a convex combination of n + 1 or fewer points of V

� Proof by contradiction: if more than n + 1 points are needed

then these points must be affinely dependent =⇒ can remove at

least one such point. Etcetera
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Polyhedra

� A subset P of R
n is a polyhedron if there exist a matrix

A ∈ R
m×n and a vector b ∈ R

m such that

P = {x ∈ R
n | Ax ≤ b }

� Ax ≤ b ⇐⇒ aix ≤ bi for all i (ai is row i of A)

� Intersection of half-spaces. [Hyperplane: {x ∈ R
n | aix = bi }]

� Examples: (a) Figure 5 shows the bounded polyhedron

P = {x ∈ R
2 | x1 ≥ 2; x1 + x2 ≤ 6; 2x1 − x2 ≤ 4 }

� (b) The unbounded polyhedron

P = {x ∈ R
2 | x1 + x2 ≥ 2; x1 − x2 ≤ 2; 3x1 − x2 ≥ 0 } is shown

in Figure 6
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Extreme points

� A point v of a convex set P is called an extreme point if

whenever v = λx1 + (1 − λ)x2, where x1, x2 ∈ P and λ ∈ (0, 1),

then v = x1 = x2

� Examples: The set shown in Figure 3(c) has the extreme points

v1 and v2. The set shown in Figure 4 has the extreme points v1,

v2, and v3. The set shown in Figure 3(b) does not have any

extreme points

� Let P be the polytope conv V , where V = {v1, . . . , vk} ⊂ R
n.

Then P is equal to the convex hull of its extreme points
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x1 + x2 = 2

x1 − x2 = 2

3x1 − x2 = 0

P

Figure 6: Illustration of the unbounded polyhedron P = {x ∈ R
2 |

x1 + x2 ≥ 2; x1 − x2 ≤ 2; 3x1 − x2 ≥ 0 }
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Figure 5: Illustration of the bounded polyhedron P = {x ∈ R
2 | x1 ≥

2; x1 + x2 ≤ 6; 2x1 − x2 ≤ 4 }
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Cones

� A subset C of R
n is a cone if λx ∈ C whenever x ∈ C and λ > 0

� Example: Let A ∈ R
m×n. The set {x ∈ R

n | Ax ≤ 0
m } is a

cone

� Figure 7(a) illustrates a convex cone and Figure 7(b) illustrates a

non-convex cone in R
2
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(a) (b)

Figure 7: (a) A convex cone in R
2 (b) A non-convex cone in R

2
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Algebraic characterizations of extreme points

� Let x̃ ∈ P = {x ∈ R
n | Ax ≤ b }, where A ∈ R

m×n with

rank A = n and b ∈ R
m. Further, let Ãx̃ = b̃ be the equality

subsystem of Ax̃ ≤ b. Then x̃ is an extreme point of P if and

only if rank Ã = n

� Of great importance in Linear Programming: A then always has

full rank! Hence, can solve special subsystem of linear equalities

to obtain an extreme point

� Corollary: The number of extreme points of P is finite

� Corollary: Since the number of extreme points is finite, the

convex hull of the extreme points of a polyhedron is a polytope

� Consequence: Algorithm for linear programming!
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Figure 8: Illustration of the Representation Theorem (a) in the

bounded case, and (b) in the unbounded case
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Representation Theorem

� Let Q = {x ∈ R
n | Ax ≤ b }, P be the convex hull of the

extreme points of Q, and C := {x ∈ R
n | Ax ≤ 0

m }. If

rank A = n then

Q = P + C = {x ∈ R
n | x = u + v for some u ∈ P and v ∈ C }

In other words, every polyhedron (that has at least one extreme

point) is the direct sum of a polytope and a polyhedral cone

� Proof by induction on the rank of the subsystem matrix Ã

� Central in Linear Programming. Can be used to establish:

Optimal solutions to LP problems are found at extreme points!
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x1

x2

1

2

2

C

y = (1.5, 1.5)T

πTx = α ⇐⇒ x1 + x2 = 2

Figure 9: Illustration of the Separation Theorem: the unit disk is

separated from y by the line {x ∈ R
2 | x1 + x2 = 2 }
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Separation Theorem

� “If a point y does not lie in a closed and convex set C, then there

exists a hyperplane that separates y from C”

� Suppose that the set C ⊆ R
n is closed and convex, and that the

point y does not lie in C. Then there exist α ∈ R and π 6= 0
n

such that πTy > α and πTx ≤ α for all x ∈ C

� Proof later—requires existence and optimality conditions

� Consequence: A set P is a polytope if and only if it is a bounded

polyhedron. [⇐= trivial; =⇒ constructive]

� A finitely generated cone has the form

cone {v1, . . . , vm} := {λ1v
1 + · · · + λmvm | λ1, . . . , λm ≥ 0 }

� A convex cone is finitely generated iff it is polyhedral
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Convexity of functions

� Suppose that S ⊆ R
n is convex. A function f : R

n → R ∪ {+∞}

is convex at x̄ ∈ S if

x ∈ S

λ ∈ (0, 1)







=⇒ f(λx̄ + (1 − λ)x) ≤ λf(x̄) + (1 − λ)f(x)

� The function f is convex on S if it is convex at every x̄ ∈ S

� The function f is strictly convex on S if < holds in place of ≤

above for every x 6= x̄

� A convex function is such that a linear interpolation never is

lower than the function itself. For a strictly convex function the

linear interpolation lies above the function

� (Strict) concavity of f ⇐⇒ (strict) convexity of −f
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Farkas’ Lemma

� Let A ∈ R
m×n and b ∈ R

m. Then, exactly one of the systems

Ax = b, (I)

x ≥ 0
n,

and

ATπ ≤ 0
n, (II)

bTπ > 0,

has a feasible solution, and the other system is inconsistent

� Farkas’ Lemma has many forms. “Theorems of the alternative”

� Crucial for LP theory and optimality conditions

� Simple proof later!
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� Let c ∈ R
n. The linear function x 7→ f(x) := cTx =

∑n

j=1
cjxj

is both convex and concave on R
n

� Figure 11 illustrates a non-convex function
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f(x1)

f

x

f(x2)

f(λx1 + (1 − λ)x2)

λf(x1) + (1 − λ)f(x2)

x1 x2λx1 + (1 − λ)x2

Figure 11: A non-convex function
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� Figure 10 illustrates a convex function
PSfrag replacements

f(x1)
f

x

f(x2)

f(λx1 + (1 − λ)x2)

λf(x1) + (1 − λ)f(x2)

x1 x2λx1 + (1 − λ)x2

Figure 10: A convex function

� The function f : R
n → R defined by f(x) := ‖x‖ is convex on

R
n; f(x) := ‖x‖2 is strictly convex in R

n
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Epigraphs

� Characterize convexity of a function on R
n by the convexity of

its epigraph in R
n+1. [Note: the graph of a function f : R

n → R

is the boundary of epi f ]

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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Figure 12: A convex function and its epigraph
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� Sums of convex functions are convex

� Composite function: x 7→ f(g(x))

� Suppose that S ⊆ R
n and P ⊆ R. Let further g : S → R be a

function which is convex on S, and f : P → R be convex and

non-decreasing (y ≥ x =⇒ f(y) ≥ f(x)) on P . Then, the

composite function f(g) is convex on the set

{x ∈ R
n | g(x) ∈ P }

� The function x 7→ − log(−g(x)) is convex on the set

{x ∈ R
n | g(x) < 0 }
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Convexity characterizations in C
1

� C1: Differentiable once, gradient continuous

� Let f ∈ C1 on an open convex set S

(a) f is convex on S ⇐⇒ f(y) ≥ f(x) +∇f(x)T(y −x), x, y ∈ S

(b) f is convex on S ⇐⇒ [∇f(x)−∇f(y)]T(x− y) ≥ 0, x, y ∈ S

� (a): “Every tangent plane to the function surface lies on, or

below, the epigraph of f”, or, that “a first-order approximation is

below f”

� (b) ∇f is “monotone on S.” [Note: when n = 1, the result states

that f is convex if and only if its derivative f ′ is non-decreasing,

that is, that it is monotonically increasing]

� Proofs use Taylor expansion, convexity and Mean-value Theorem
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� The epigraph of a function f : R
n → R ∪ {+∞} is the set

epi f := { (x, α) ∈ R
n+1 | f(x) ≤ α }

The epigraph of the function f restricted to the set S ⊆ R
n is

epiS f := { (x, α) ∈ S × R | f(x) ≤ α }

� Connection between convex sets and functions; in fact the

definition of a convex function stems from that of a convex set!

� Suppose that S ⊆ R
n is a convex set. Then, the function

f : R
n → R ∪ {+∞} is convex on S if, and only if, its epigraph

restricted to S is a convex set in R
n+1
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Convexity characterizations in C
2

� Let f be in C2 on an open, convex set S ⊆ R
n

(a) f is convex on S ⇐⇒ ∇2f(x) is positive semidefinite for all

x ∈ S

(b) ∇2f(x) is positive definite for all x ∈ S =⇒ f is strictly

convex on S

� Note: n = 1, S is an open interval: (a) f is convex on S if and

only if f ′′(x) ≥ 0 for every x ∈ S; (b) f is strictly convex on S if

f ′′(x) > 0 for every x ∈ S

� Proofs use Taylor expansion, convexity and Mean-value Theorem

� Not the direction ⇐= in (b)! [f(x) = x4 at x = 0]

� Difficult to check convexity; matrix condition for every x

� Quadratic function: f(x) = (1/2)xTQx − qTx convex on R
n iff

Q is psd (Q is the Hessian of f , and is independent of x)
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� Figure 13 illustrates part (a)
PSfrag replacements
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Figure 13: A tangent plane to the graph of a convex function
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� Suppose that the function g : R
n → R is convex. Then, for every

value of b ∈ R, the level set levg(b) is a convex set. It is moreover

closed

Proof.

� We speak of a convex problem when f is convex (minimization)

and for constraints gi(x) ≤ 0, the functions gi are convex; and for

constraints hj(x) = 0, the functions hj are affine
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Convexity of feasible sets

� Let g : R
n → R be a function. The level set of g with respect to

the value b ∈ R is the set

levg(b) := {x ∈ R
n | g(x) ≤ b }

� Figure 14 illustrates a level set of a convex function
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Figure 14: A level set of a convex function
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The distance function below is convex:

distS(x) := ‖x − ProjS(x)‖, x ∈ R
n
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Figure 16: From the intermediate vector λx1 + (1 − λ)x2 shown the

distance to the vector λProjS(x1) + (1 − λ)ProjS(x2)) [dotted line

segment] clearly is longer than to its projection on S [solid line]
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Euclidean projection

� The Euclidean projection of w ∈ R
n is the nearest (in Euclidean

norm) vector in S to w. The vector w −ProjS(w) is normal to S
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Figure 15: The projection of two vectors onto a convex set


