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Local and global optimality, R and R
n

minimize f(x), (1a)

subject to x ∈ S, (1b)

S ⊆ R
n nonempty set, f : R

n → R ∪ {+∞} a given function
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Global and local minimum

� x∗ ∈ S is a global minimum of f over S if it attains the lowest

value of f over S:

f(x∗) ≤ f(x), x ∈ S

� x∗ ∈ S is a local minimum of f over S if there exists a small

enough ball intersected with S around x∗ such that it is an

optimal solution in that smaller set: with

Bε(x
∗) := {y ∈ R

n | ‖y − x∗‖ < ε } being the Euclidean ball

with radius ε centered at x∗, we get

∃ε > 0 such that f(x∗) ≤ f(x), x ∈ S ∩ Bε(x
∗)

� x∗ ∈ S is a strict local minimum of f over S if f(x∗) < f(x)

holds above for x 6= x∗
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Interesting points

(i) boundary points of S

(ii) stationary points, that is, where f ′(x) = 0

(iii) discontinuities in f or f ′

Here:

(i) 1, 7

(ii) 2, 3, 4, 5, 6

(iii) none
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Weak coercivity

S ⊆ R
n nonempty and closed, f : S → R

� f is weakly coercive with respect to the set S if either S is

bounded or

lim
‖x‖→∞

x∈S

f(x) = ∞

holds

� The weak coercivity of f : S → R is equivalent to the property

that f has bounded level sets (Why?)
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Fundamental Theorem of global optimality

Consider the problem (1), where S is a convex set and f is convex on

S. Then, every local minimum of f over S is also a global minimum

Proof.

Intuitive image: If x∗ is a local minimum, then f cannot go down-hill

from x∗ in any direction, but if x̄ has a lower value, then f has to go

down-hill sooner or later. This cannot be the shape of any convex

function
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Figure 1: A lower semi-continuous function in one variable
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Lower semi-continuity

S ⊆ R
n nonempty and closed, f : S → R

� f is lower semi-continuous at x̄ ∈ S if the value f(x̄) is less than

or equal to every limit of f as xk → x̄

In other words, f is lower semi-continuous at x̄ ∈ S if

xk → x̄ =⇒ f(x̄) = lim inf
k→∞

f(xk)

� Lower semi-continuity of f is equivalent to the closedness of all

its level sets levf (b), b ∈ R, as well as the closedness of its

epigraph (Why?)

� Lower semi-continuous functions in one variable have the

appearance shown in Figure 1

� ∃ corresponding notion of upper semi-continuity. Continuity =

both upper and lower semi-continuity
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Existence of solutions, II: Specialization to LP

� Suppose S = {x ∈ R
n | Ax ≤ b; Ex = d }; f(x) = cTx

� Three equivalent statements:

(a) The problem (1) has a nonempty (polyhedral) set of optimal

solutions

(b) f is lower bounded on S

(c) For every feasible direction p of S, it holds that cTp ≥ 0

� Stronger result than the above

� Lower bounded not enough in general; cf. f(x) = 1/x on x ≥ 1

� In the case of quadratic f lower boundedness is enough (constant

curvature)
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Existence of optimal solutions, I: Weierstrass

Weierstrass’ Theorem Let S ⊆ R
n be a nonempty and closed set,

and f : S → R be a lower semi-continuous function on S. If f is

weakly coercive with respect to S, then there exists a nonempty,

closed and bounded (thus compact) set of optimal solutions to

the problem (1)

Proof.

Under the given assumptions there is an x̄ ∈ S with f(x̄) < ∞. The

set

{ (x, α) ∈ R
n × R | f(x) ≤ α; α ≤ f(x̄) }

is nonempty, closed and bounded. To minimize f over S is the

same as finding the minimum value of α over all pairs (x, α) in

the above set; α ranges over a closed and bounded interval
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Optimality over R
n, f ∈ C2

� x∗is a local minimum of fon R
n =⇒







∇f(x∗) = 0
n;

∇2f(x∗) is positive semi-definite

� [Note: n = 1: x∗ ∈ R is a local minimum =⇒ f ′(x∗) = 0 and

f ′′(x∗) ≥ 0]

�

∇f(x∗) = 0
n

∇2f(x∗) is positive definite







=⇒

x∗is a strict local minimum of f on R
n

� [Note: n = 1: f ′(x∗) = 0 and f ′′(x∗) > 0 =⇒ x∗ ∈ R is a strict

local minimum]
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Optimality over R
n, f ∈ C1

� x∗ is a local minimum of fon R
n =⇒ ∇f(x∗) = 0

n

� Proof by Taylor expansion, contradiction

� Direction ⇐= not true: f(x) = x3, x = 0

� Let f : R
n → R ∪ {±∞} be given. Let x ∈ R

n be a vector such

that f(x) is finite. Let p ∈ R
n. We say that the vector p ∈ R

n is

a descent direction with respect to f at x if

∃δ > 0 such that f(x + αp) < f(x) for every α ∈ (0, δ]

� Sufficient condition: Suppose that f : R
n → R ∪ {+∞} is in C1

around a point x for which f(x) < +∞, and that p ∈ R
n. If

∇f(x)Tp < 0 then the vector p defines a direction of descent

with respect to f at x
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Active constraints

Consider

minimize f(x),

subject to x ∈ S

S ⊆ R
n nonempty, closed, convex, f : R

n → R ∪ {+∞} in C1 on S

� Feasible directions at x∗ depend on active constraints

� Let x ∈ S, where S ⊆ R
n, and that p ∈ R

n. Then, p defines a

feasible direction at x if

∃δ > 0 such that x + αp ∈ S for all α ∈ [0, δ]
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Optimality over R
n, f convex in C1

� Let f ∈ C1, and f be convex. Then,

x∗ is a global minimum of f on R
n ⇐⇒ ∇f(x∗) = 0

n

� Proof.
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Necessary optimality conditions, I: VIP

� Suppose S ⊆ R
n, f : R

n → R ∪ {+∞} is in C1 around x ∈ S for

which f(x) < +∞

(a) If x∗ ∈ S is a local minimum of f on S then ∇f(x∗)Tp ≥ 0

holds for every feasible direction p at x∗

(b) Suppose that S is convex and that f is in C1 on S. If x∗ ∈ S

is a local minimum of f on S then

∇f(x∗)T(x − x∗) ≥ 0, x ∈ S (2)

� Proof.
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� Suppose

S = {x ∈ R
n | gi(x) = 0, i ∈ E ; gi(x) ≤ 0, i ∈ I }

Suppose x ∈ S. The set of active constraints is the union of all

the equality constraints and the set of inequality constraints that

are satisfied with equality, that is, the set E ∪ I(x), where

I(x) := { i ∈ I | gi(x) = 0 }

� Linear constraints: gi(x) := eT
i x − di (i ∈ E), gi(x) := aT

i x − bi

(i ∈ I)

� Matrix notation: S = {x ∈ R
n | Ex = d; Ax ≤ b }

� Feasible directions at x ∈ S:

{p ∈ R
n | Ep = 0

`; aT
i p ≤ 0, i ∈ I(x) }

� For nonlinear constraints: more technical! Later! KKT!
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Necessary optimality conditions, III: LP

� x∗ is stationary iff

minimum
x∈S

∇f(x∗)T(x − x∗) = 0

� Proof.

� Method basis: given xk ∈ S, find out if we are stationary by

minimizing ∇f(xk)T(x − xk) over x ∈ S. In some sense, we find

the x ∈ S which “violates optimality the most.” Perform a line

search in the direction from xk towards that point. Repeat until

convergence

� Names: Frank–Wolfe, Simplicial decomposition. Chapter 12
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Convex case

� We refer to (2) as a variational inequality

� Suppose S ⊆ R
n is nonempty and convex. Let f ∈ C1 on S,

convex. Then,

x∗ is a global minimum of f on S ⇐⇒ (2) holds

� Proof.

� Compare with the case S = R
n!
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Necessary optimality conditions, IV: Normal cone

� If we wish to project z ∈ R
n onto S, then the resulting (unique)

projection is the vector x for which the following holds:

[x − z]T(y − x) ≥ 0, y ∈ S

that is

[z − x]T(y − x) ≤ 0, y ∈ S

� Interpretation: the angle between the two vectors z − x (the

direction towards the point being projected) and the vector

y − x (the direction towards any vector y ∈ S) is ≥ 90◦. So, the

projection operation has the characterization

[z − ProjS(z)]T(y − ProjS(z)) ≤ 0, y ∈ S (3)
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Necessary optimality conditions, II: Projection

� x∗ is stationary iff

x∗ = ProjS[x∗ −∇f(x∗)]

� In other words, x∗ is stationary if and only if a step in the

direction of the steepest descent direction followed by a

Euclidean projection onto S means that we have not moved at

all. (If not, then we obtain a descent direction towards that

projected point—basis for the projection method in Chapter 12)

� Proof.
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� Suppose S ⊆ R
n is closed and convex. Let x ∈ R

n. Then, the

normal cone to S at x is the set

NS(x) :=







{v ∈ R
n | vT(y − x) ≤ 0, y ∈ S }, if x ∈ S,

∅ otherwise

� Characterization of stationary point at x∗, number IV:

−∇f(x∗) ∈ NS(x∗) (4)

� Geometry: the angle between −∇f(x∗) and any feasible

direction is ≥ 90◦ (6 ∃ feasible descent directions)

� S is a subspace =⇒ ∇f(x∗) is a normal to the subspace!

� Note: x∗ interior point =⇒ NS(x∗) = {0n} (S = R
n =⇒

∇f(x∗) = 0
n)

� (4) to be extended to the KKT conditions
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� Interesting with z = x∗ −∇f(x∗):

���
�PSfrag replacements

S

y

x∗ −∇f(x∗)

x∗

NS(x∗)

Figure 2: Normal cone characterization of a stationary point
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� Proof.

� Set π := y − x∗ and α := πTx∗

� y 6∈ C: 0 < πTy − α = (y − x∗)Ty − (y − x∗)Tx∗ = ‖y − x∗‖2

� x ∈ C: πTx ≤ α ⇐⇒ (y − x∗)Tx ≤ (y − x∗)Tx∗ ⇐⇒

(y − x∗)T(x − x∗) ≤ 0

� The hyperplane is a tangent to C, the normal is y − x∗
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Separation Theorem revisited (proof)

� Suppose that C ⊆ R
n is closed and convex, and that the point y

does not lie in C. Then there exist a vector π 6= 0
n and α ∈ R

such that πTy > α and πTx ≤ α for all x ∈ C
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y = (1.5, 1.5)T

πTx = α ⇐⇒ x1 + x2 = 2
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Figure 3: The projection operation is non-expansive

24'

&

$

%

Non-expansiveness property of the

projection operation

� Suppose S ⊆ R
n is closed and convex. Let P : S → S denote a

vector-valued operator from S to S. We say that P is

non-expansive if, as a result of applying the mapping P , the

distance between any two vectors x and y in S does not increase:

‖P (x) − P (y)‖ ≤ ‖x − y‖, x, y ∈ S

� For every x ∈ R
n, its projection ProjS(x) is uniquely defined.

The operator ProjS : R
n → S is non-expansive, and therefore in

particular continuous

� Proof.
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Fixed-point theory, II: Theorems

Let S be a nonempty, closed and convex set in R
n

(a) [Banach’s Theorem] Let f be a contraction mapping from S to S.

Then, f has a unique fixed point x∗ ∈ S. Further, for every initial

vector x0 ∈ S, the iteration sequence {xk} defined by the fixed-point

iteration

xk+1 := f(xk), k = 0, 1, . . . ,

converges to the unique fixed point x∗. In particular,

‖xk − x∗‖ ≤ αk‖x0 − x∗‖, k = 0, 1, . . .

(b) [Brouwer’s Theorem] Let S further be bounded, and assume

merely that f is continuous. Then, f has a fixed point

Proof [of (a)].
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Fixed-point theory, I: Contractions

Suppose S ⊆ R
n is closed and convex. Let P : S → S denote a

vector-valued operator from S to S. We say that P is a contraction

if, as a result of applying the mapping P , the distance between any

two distinct vectors x and y in S decreases: ∃α ∈ [0, 1) such that

‖P (x) − P (y)‖ ≤ α‖x − y‖, x, y ∈ S
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Fixed-point theory, IV: Applications

� [Raking of gravel] Suppose you wish to rake the gravel in your

garden; if the area is, say, circular, then any continuous raking

will leave at least one tiny stone (which one is a function of time)

in the same place

� [Maps] Suppose you have two city maps over Gothenburg, which

are not of the same scale. You crumple one of them up into a

loose ball and place it on top of the other map entirely within the

borders of the Gothenburg region on the flat map. Then, there is

a point on the crumpled map (that represents the same place in

Gothenburg on both maps) that is directly over its twin on the

flat map. (A more simple problem is defined by a non-crumpled

map and the city of Gothenburg itself; lay down the map

anywhere in Gothenburg, and at least one point on the map will

lie over that exact spot in real-life Gothenburg)
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Fixed-point theory, III: Interpretation
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Figure 4: Let S = [0, 1], and f : S → S be continuous. Brouwer’s

Theorem states that there exists an x∗ ∈ S with f(x∗) = x∗. This is

the same as saying that the continuous curve starting at (0, f(0)) and

ending at (1, f(1)) must pass through the line y = x inside the square
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� [Stirring coffee] Stirring the contents of a (convex) coffee cup in a

continuous way, no matter how long you stir, some particle

(which one is a function of time) will stay in the same position as

it did before you began stirring

� [Meteorology] Even as the wind blows across the Earth there will

be one location where the wind is perfectly vertical (or, perfectly

calm). This fact actually implies the existence of cyclones; not to

mention whorls, or crowns, in your hair no matter how you comb

it. (It even bears its own name: The Hairy Ball Theorem)

� Consider finding x∗ ∈ R with f(x∗) = 0, where f ∈ C2 on R. The

Newton–Raphson algorithm has an iteration formula of the form

x0 ∈ R; xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, . . . .

Assume that f ′(x∗) > 0, and prove that the algorithm locally

converges since it is a contraction in a small interval around x∗


