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The canonical primal–dual pair

A ∈ R
m×n, b ∈ R

m, and c ∈ R
n

maximize z = cTx (1)

subject to Ax ≤ b,

x ≥ 0n

and

minimize w = bTy (2)

subject to ATy ≥ c,

y ≥ 0m

Lecture 9: Linear programming duality

and sensitivity

0-0
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Rules for formulating dual LPs

� We say that an inequality is canonical if it is of ≤

[respectively, ≥] form in a maximization [respectively,

minimization] problem

� We say that a variable is canonical if it is ≥ 0

� The rule is that the dual variable [constraint] for a

primal constraint [variable] is canonical if the other one

is canonical. If the direction of a primal constraint [sign

of a primal variable] is the opposite from the canonical,

then the dual variable [dual constraint] is also opposite

from the canonical
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The dual of the LP in standard form

minimize z = cTx (P)

subject to Ax = b,

x ≥ 0n

and

maximize w = bTy (D)

subject to ATy ≤ c,

y free
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Weak Duality Theorem

� If x is a feasible solution to (P) and y a feasible

solution to (D), then cTx ≥ bTy

� Similar relation for the primal–dual pair (2)–(1): the

max problem never has a higher objective value

� Proof.

� Corollary: If cTx = bTy for a feasible primal–dual pair

(x,y) then they must be optimal
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� Further, the dual variable [constraint] for a primal

equality constraint [free variable] is free [an equality

constraint]

� Summary:

primal/dual constraint dual/primal variable

canonical inequality ⇐⇒ ≥ 0

non-canonical inequality ⇐⇒ ≤ 0

equality ⇐⇒ unrestricted (free)
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Complementary Slackness Theorem

� Let x be a feasible solution to (1) and y a feasible

solution to (2). Then x is optimal to (1) and y optimal

to (2) if and only if

xj(cj − yTA·j) = 0, j = 1, . . . , n, (3a)

yi(Ai·x − bi) = 0, i = 1 . . . ,m, (3b)

where A·j is the jth column of A, Ai· the ith row of A

� Proof.
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Strong Duality Theorem

� Strong duality is here established for the pair (P), (D)

� If one of the problems (P) and (D) has a finite optimal

solution, then so does its dual, and their optimal

objective values are equal

� Proof.
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� Take a vector x ∈ R
n. For x to be an optimal solution

to the linear program (1), it is both necessary and

sufficient that

(a) x is a feasible solution to (1);

(b) corresponding to x there is a dual feasible solution

y ∈ R
m to (2); and

(c) x and y together satisfy complementarity (3)

� This is precisely the same as the KKT conditions!

� Those who wishes to establish this—note that there are

no multipliers for the “x ≥ 0n” constraints, and in the

KKT conditions there are. Introduce such a multiplier

vector and see that it can later be eliminated
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Necessary and sufficient optimality conditions:

Strong duality, the global optimality conditions,

and the KKT conditions are equivalent for LP

� We have seen above that the following statement

characterizes the optimality of a primal–dual pair

(x,y):

� x is feasible in (1), y is feasible in (2), and

complementarity holds

� In other words, we have the following result (think of

the KKT conditions!):
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The Simplex method and the global optimality

conditions

� The Simplex method is remarkable in that it satisfies

two of the three conditions at every BFS, and the

remaining one is satisfied at optimality:

� x is feasible after Phase-I has been completed

� x and y always satisfy complementarity. Why? If xj is

in the basis, then it has a zero reduced cost, implying

that the dual constraint j has no slack. If the reduced

cost of xj is non-zero (slack in dual constraint j), then

its value is zero
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� Further: suppose that x and y are feasible in (1) and

(2). Then, the following are equivalent:

(a) x and y have the same objective value;

(b) x and y solve (1) and (2);

(c) x and y satisfy complementarity



13'

&

$

%

Farkas’ Lemma revisited

� Let A ∈ R
m×n and b ∈ R

m. Then, exactly one of the

systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is

inconsistent

� Proof.
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� The feasibility of yT = cT

B
B−1 is not fulfilled until we

reach an optimal BFS. How is the incoming criterion

related to this? We introduce as an incoming variable

that variable which has the best reduced cost. Since

the reduced cost measures the dual feasibility of y, this

means that we select the most violated dual constraint;

at the new BFS, that constraint is then satisfied (since

the reduced cost then is zero). The Simplex method

hence works to try to satisfy dual feasibility!
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� Fact: v convex (and finite in a neighbourhood of b)

implies that v differentiable at b iff it has a unique

subgradient there

� Here: derivative w.r.t. b is y∗, that is, the change in the

optimal value from a change in the right-hand side b

equals the dual optimal solution
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Sensitivity analysis, I: Shadow prices are

derivatives of a convex function!

� Suppose an optimal BFS is non-degenerate. Then,

cTx∗ = bTy∗ = cT

BB−1b varies linearly as a function of

b around its given value

� Non-degeneracy also implies that y∗ is unique. Why?

� Perturbation function b 7→ v(b) given by

v(b) = min cTx

s.t.Ax = b,

x ≥ 0n

= max bTy

s.t.ATy ≤ c

= max
k∈K

bTyk

K: set of DFS. v a piece-wise linear, convex function



17'

&

$

%

� If an element of b changes, then the old BFS is optimal

but may not be feasible. Check the new value of the

vector B−1b and change the basis if some sign has

changed. Since the BFS is infeasible but optimal, we

use a dual version of the Simplex method: the Dual

Simplex method

� Find a negative basic variable xj → outgoing basic

variable xs

� Choose among the non-basic variables for which the

element B−1Nsj < 0; means that the new basic

variable will become positive

� Choose the incoming variable so that c̃ keeps its sign
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Sensitivity analysis, II: Perturbations in data

� How to find a new optimum through re-optimization

when data has changed

� If an element of c changes, then the old BFS is feasible

but may not be optimal. Check the new value of the

reduced cost vector c̃ and change the basis if some sign

has changed
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for which we have the following interpretation:

� We have m independent subunits, responsible for

finding their optimal production plan

� While they are governed by their own objectives, we

(the Managers) want to solve the overall problem of

maximizing the company’s profit

� The constraints Bixi ≤ bi, xi ≥ 0ni describe unit i’s

own production limits, when using their own resources
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Decentralized planning

� Consider the following profit maximization problem:

maximize z = pTx =

m
∑

i=1

pT

i xi,

s.t.





















B1

B2

. . .

Bm

C





















·















x1

x2

...

xm















≤





















b1

b2

...

bm

c





















,

xi ≥ 0ni , i = 1, . . . ,m,



21'

&

$

%

� Generate from the dual solution the dual vector y for

the joint resource constraint

� Introduce an internal price for the use of this resource,

equal to this dual vector

� Let each unit optimize their own production plan, with

an additional cost term

� This will then be a decentralized planning process

� Each unit i will then solve their own LP problem to

maximize
x i

[pi − CT

i y]Txi,

subject to Bixi ≤ bi,

x ≥ 0ni ,
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� The units also use limited resources that are the same

� The resource constraint is difficult as well as unwanted

to enforce directly, because it would make it a

centralized planning process

� We want the units to maximize their own profits

individually

� But we must also make sure that they do not violate

the resource constraints Cx ≤ c

� (This constraint is typically of the form
∑m

i=1
Cixi ≤ c)

� How?

� ANSWER: Solve the LP dual problem!
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An application of linear programming: The Diet

Problem

� First motivated by the US Army’s desire to meet

nutritional requirements of the field GI’s while

minimizing the cost

� George Stigler made an educated guess of the optimal

solution to linear program using a heuristic method; his

guess for the cost of an optimal diet was �39.93 per

year (1939 prices)

� In the fall of 1947, Jack Laderman of the Mathematical

Tables Project of the National Bureau of Standards

solved Stigler’s model with the new simplex method
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resulting in an optimal production plan!

� Decentralized planning, is related to Dantzig–Wolfe

decomposition, which is a general technique for solving

large-scale LP by solving a sequence of smaller LP:s

� More on such techniques in the Project course
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� The first ”large scale” computation in optimization

� The LP consisted of nine equations in 77 unknowns. It

took nine clerks using hand-operated desk calculators

120 man days to solve for the optimal solution of

�39.69. Stigler’s guess for the optimal solution was off

by only 24 cents per year

� Variations can be solved on the internet!


