
Lecture 12–13: Constrained

optimization
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Basic ideas
� A nonlinearly constrained problem must somehow be

converted—relaxed—into a problem which we can solve

(a linear/quadratic or unconstrained problem)

� We solve a sequence of such problems

� To make sure that we tend towards a solution to the

original problem, we must impose properties of the

original problem more and more

� How is this done?

� In simpler problem like linearly constrained ones, a line

search in f is enough
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� For more general problems, where (normally) the

constraints are manipulated, this is not enough
� We can include penalty functions for constraints that

we relax

� We can produce estimates of the Lagrange multipliers

and invoke them

� We will look at both types of approaches

� Additional techniques:

– Sequential Linear Programming (SLP)—based on

linear approximations of all functions

– Augmented Lagrangian methods—combines

Lagrangian and penalty terms
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Penalty functions
� Consider the optimization problem to

minimize f(x),

subject to x ∈ S,
(1)

where S ⊂ R
n is non-empty, closed, and f : R

n → R is

differentiable

� Basic idea behind all penalty methods: to replace the

problem (1) with the equivalent unconstrained one:

minimize f(x) + χS(x),
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where

χS(x) =

{
0, if x ∈ S,

+∞, otherwise

is the indicator function of the set S

� Feasibility is top priority; only when achieving

feasibility can we concentrate on minimizing f

� Computationally bad: non-differentiable, discontinuous,

and even not finite (though it is convex provided S is

convex). Better: numerical “warning” before becoming

infeasible or near-infeasible

� Replace the indicator function with a numerically

better behaving function
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Exterior penalty methods
� SUMT—Sequential Unconstrained Minimization

Techniques—were devised in the late 1960s by Fiacco

and McCormick. They are still among the more

popular ones for some classes of problems, although

there are later modifications that are more often used

� Suppose

S = {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ` },

gi ∈ C(Rn), i = 1, . . . ,m, hj ∈ C(Rn), j = 1, . . . , `
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� Choose a C0 function ψ : R → R+ such that ψ(s) = 0 if

and only if s = 0 [typical examples of ψ(·) will be

ψ1(s) = |s|, or ψ2(s) = s2]. Approximation to χS:

νχ̌S(x) := ν

( m∑

i=1

ψ
(
max{0, gi(x)}

)
+
∑̀

j=1

ψ
(
hj(x)

))

� ν > 0 is a penalty parameter

� Different treatment of inequality/equality constraints

since an equality constraint is violated whenever

hj(x) 6= 0, while an inequality constraint is violated

only when gi(x) > 0; equivalent to max{0, gi(x)} 6= 0

� χ̌S approximates χS from below (χ̌S ≤ χS)
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Example
� Let S = {x ∈ R

2 | −x2 ≤ 0, (x1 − 1)2 + x2
2 = 1 }

� Let ψ(s) = s2. Then,

χ̌S(x) = [max{0,−x2}]
2 + [(x1 − 1)2 + x2

2 − 1]2

� Graph of χ̌S and S:
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Properties of the penalty problem
� We assume the problem (1) has an optimal solution x∗

� We assume that for every ν > 0 the problem to

minimize
x∈ � n

f(x) + νχ̌S(x) (2)

has at least one optimal solution x∗

ν

� χ̌S ≥ 0; χ̌S(x) = 0 if and only if x ∈ S

� The Relaxation Theorem 7.1 states that the inequality

f(x∗

ν) + νχ̌(x∗

ν) ≤ f(x∗) + χS(x∗) = f(x∗) holds for

every positive ν. (Lower bound on the optimal value.)

� The problem (2) is convex if (1) is
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The algorithm and its convergence properties
� Assume that the problem (1) possesses optimal

solutions. Then, as ν → +∞ every limit point of the

sequence {x∗

ν} of globally optimal solutions to (2) is

globally optimal in the problem (1)

� Of interest for convex problems. What about general

problems?
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� Let f , gi (i = 1, . . . ,m), and hj (j = 1, . . . , `), be in C1

� Assume that the penalty function ψ is in C1 and that

ψ′(s) ≥ 0 for all s ≥ 0

� Then:

xk stationary in (2)

xk → x̂ as k → +∞

LICQ holds at x̂

x̂ feasible in (1)





=⇒ x̂ stationary (KKT) in (1)
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� From the proof we can obtain estimates of Lagrange

multipliers: the optimality conditions of (2) gives that

µ∗

i ≈ νkψ
′[max{0, gi(xk)}] and λ∗j ≈ νkψ

′[hj(xk)]
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Interior penalty methods
� In contrast to exterior methods, interior penalty, or

barrier, function methods construct approximations

inside the set S and set a barrier against leaving it

� If a globally optimal solution to (1) is on the boundary

of the feasible region, the method generates a sequence

of interior points that converge to it

� We assume that the feasible set has the following form:

S = {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m }

� We need to assume that there exists a strictly feasible

point x̂ ∈ R
n, i.e., such that gi(x̂) < 0, i = 1, . . . ,m
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� Approximation of χS (from above, that is, χ̂S ≥ χS):

νχ̂S(x) :=

{
ν
∑m

i=1
φ[gi(x)], if gi(x) < 0, i = 1, . . . ,m,

+∞, otherwise,

where φ : R− → R+ is a continuous, non-negative

function such that φ(sk) → ∞ for all negative

sequences {sk} converging to zero

� Examples: φ1(s) = −s−1; φ2(s) = − log[min{1,−s}]

� The differentiable logarithmic barrier function

φ̃2(s) = − log(−s) gives rise to the same convergence

theory, if we drop the non-negativity requirement on φ

� Barrier function convex if (1) is
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Example
� Consider S = {x ∈ R | −x ≤ 0 }. Choose

φ = φ1 = −s−1. Graph of the barrier function νχ̂S in

below figure for various values of ν (note how νχ̂S

converges to χS as ν ↓ 0!):
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Algorithm and its convergence
� Penalty problem:

minimize f(x) + νχ̂S(x) (3)

� Convergence of global solutions to (3) to globally

optimal solutions to (1) straightforward. Result for

stationary (KKT) points more practical:
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� Let f and gi (i = 1, . . . ,m), an φ be in C1, and that

φ′(s) ≥ 0 for all s < 0
� Then:

xk stationary in (3)

xk → x̂ as k → +∞

LICQ holds at x̂





=⇒ x̂ stationary (KKT) in (1)

� If we use φ(s) = φ1(s) = −1/s, then φ′(s) = 1/s2, and

the sequence {νk/g
2
i (xk)} converges towards the

Lagrange multiplier µ̂i corresponding to the constraint

i (i = 1, . . . ,m)
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Interior point (polynomial) method for LP
� Consider the dual LP to

maximize bTy,

subject to ATy + s = c,

s ≥ 0n,

(4)

and the corresponding system of optimality conditions:

ATy + s = c,

Ax = b,

x ≥ 0n, s ≥ 0n, xTs = 0
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� Apply a barrier method for (4). Subproblem:

minimize −bTy − ν
n∑

j=1

log(sj)

subject to ATy + s = c

� The KKT conditions for this problem is:

ATy + s = c,

Ax = b,

xjsj = ν, j = 1, . . . , n

(5)

� Perturbation in the complementary conditions!
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� Using a Newton method for the system (5) yields a

very effective LP method. If the system is solved

exactly we trace the central path to an optimal

solution, but polynomial algorithms are generally

implemented such that only one Newton step is taken

for each value of νk before it is reduced

� A polynomial algorithm finds, in theory at least

(disregarding the finite precision of computer

arithmetic), an optimal solution within a number of

floating-point operations that are polynomial in the

data of the problem
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Sequential quadratic programming (SQP) methods:

A first image
� We study the equality constrained problem to

minimize f(x), (6a)

subject to hj(x) = 0, j = 1, . . . , `, (6b)

where f : R
n → R and hj : R

n → R are in C1 on R
n
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� The KKT conditions state that at a local minimum x∗

of f over the feasible set, where x∗ satisfies some CQ,

there exists a vector λ∗ ∈ R
` with

∇xL(x∗,λ∗) := ∇f(x∗) +
∑̀

j=1

λ∗j∇hj(x
∗) = 0n,

∇ � L(x∗,λ∗) := h(x∗) = 0`

� Appealing to find a KKT point by directly attacking

this system of nonlinear equations, which has n+ `

unknowns as well as equations



23'

&

$

%

� Newton’s method! So suppose that f and hj

(j = 1, . . . , `) are in C2 on R
n. Suppose we have an

iteration point (xk,λk) ∈ R
n × R

`

� Next iterate (xk+1,λk+1):

(xk+1,λk+1) = (xk,λk) + (pk,vk), where

(pk,vk) ∈ R
n × R

` solves the second-order

approximation of the stationary point condition for the

Lagrange function:
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∇2L(xk,λk)

(
pk

vk

)
= −∇L(xk,λk),

that is,
[
∇2

xx
L(xk,λk) ∇h(xk)

∇h(xk)
T 0m×m

](
pk

vk

)
=

(
−∇xL(xk,λk)

−h(xk)

)

(7)

� Interpretation: the KKT system for the QP problem to

minimize
p

1

2
pT∇2

xx
L(xk,λk)p + ∇xL(xk,λk)p, (8a)

subject to hj(xk) + ∇hj(xk)
Tp = 0, j = 1, . . . , `

(8b)
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� Objective: second-order approximation of the Lagrange

function with respect to x. Constraints: first-order

approximations at xk. The vector vk appearing in (7)

is the vector of Lagrange multipliers for the constraints

(8b)

� Unsatisfactory: (a) Convergence is only local. (b) The

algorithm requires strong assumptions about the

problem
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An exact penalty function
� Consider (1), and

χ̌S(x) :=
m∑

i=1

maximum {0, gi(x)} +
∑̀

j=1

|hj(x)|,

Pe(x) := f(x) + νχ̌S(x)

� Suppose x∗ is a KKT point for (1), with Lagrange

multipliers (µ∗,λ∗), and (1) is a convex problem

� Then: if the value of ν is large enough such that

ν ≥ maximum{µ∗

i , i ∈ I(x∗); |λ∗j |, j = 1, . . . , ` }

then the vector x∗ is also a global minimum of the

function Pe



27'

&

$

%

Basic SQP method
� Given xk ∈ R

n and a vector (µk,λk) ∈ R
m
+ ×R

`, choose

a positive definite, symmetric matrix Bk ∈ R
n × n

� Solve

minimize
p

1

2
pTBkp + ∇f(xk)

Tp, (9a)

subject to gi(xk) + ∇gi(xk)
Tp ≤ 0, i = 1, . . . ,m, (9b)

hj(xk) + ∇hj(xk)
Tp = 0, j = 1, . . . , ` (9c)

� If Bk ≈ ∇2
xx
L(xk,µk,λk) then (9) is a 2nd order

approximation of KKT (cf. quasi-Newton!)
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∗Convergence
� Given xk ∈ R

n consider (9), where Bk ∈ R
n×n is

positive definite. Suppose pk solves (9) together with

multipliers µ and λ. Assume that pk 6= 0n. Then, if

ν ≥ maximum {µ1, . . . , µm, |λ1|, . . . , |λ`|} the vector pk

is a direction of descent with respect to the exact

penalty function Pe at (xk,µk,λk)
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� The SQP method either terminates finitely at a KKT

point or it produces an infinite sequence {xk}. In the

latter case, assume that {xk} lies in a compact set

X ⊂ R
n and that for every x ∈ X and positive definite

matrix Bk the QP (9) has a unique solution, and also

unique multiplier vectors µ and λ satisfying

ν ≥ maximum {µ1, . . . , µm, |λ1|, . . . , |λ`|}, where ν > 0

is the penalty parameter. Assume that {Bk} is

bounded and that every accumulation point of this

sequence is positive definite (or, the sequence {B−1

k } of

matrices is bounded). Then, every accumulation point

of {xk} is a KKT point
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Remarks
� Selecting the value of ν is difficult

� No guarantees that the subproblems (9) are feasible; we

assumed above that the problem is well-defined

� Pe is only continuous; some step length rules infeasible

� Fast convergence not guaranteed (the Maratos effect)

� Penalty methods in general suffer from ill-conditioning.

For some problems the ill-conditioning is avoided

� Exact penalty SQP methods suffer less from

ill-conditioning, and the number of QP:s needed can be

small. They can, however, cost a lot computationally

� fmincon in MATLAB is an SQP-based solver
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∗Filter-SQP
� Popular development: algorithms where the penalty

parameter is avoided altogether—filter-SQP methods

� Multi-objective optimization: x1 dominates x2 if

χ̌(x1) ≤ χ̌(x2) and f(x1) ≤ f(x2)

(if x1 is better in terms of feasibility and optimality)

� Filter: a list of pairs (χ̌i, fi) such that χ̌i < χ̌j or

fi < fj for all j 6= i in the list

� Its elements build up an efficient frontier in the

bi-criterion problem

� Filter used in place of the penalty function, when the

standard Newton-like step cannot be computed


