Lecture 10: Linear programming
duality and sensitivity
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/ The canonical primal-dual pair
AeR™™ beR™ and c € R”

maximize s =clx

subject to Ax < b,
x > 0"

and
minimize w=>b'y
subject to A'y > ¢,
y > 0"




and

The dual of the LP in standard form

minimize s =clx

subject to Ax = b,
x > 0"

maximize w=0b"y
subject to A'y < ¢,
y free

\

(P)




/ Rules for formulating dual LPs \

N

e We say that an inequality is canonical if it is of <
[respectively, >] form in a maximization [respectively,

minimization| problem
e We say that a variable is canonical if it is > 0

e The rule is that the dual variable [constraint| for a
primal constraint [variable] is canonical if the other one
is canonical. If the direction of a primal constraint [sign
of a primal variable| is the opposite from the canonical,
then the dual variable [dual constraint| is also opposite

/

from the canonical




/ e Further, the dual variable [constraint| for a primal \

equality constraint [free variable| is free [an equality
constraint]

e Summary:

primal /dual constraint dual /primal variable
canonical inequality <= >0

non-canonical inequality <— <0

equality <= unrestricted (free)

N /




/ Weak Duality Theorem \

e [f x is a feasible solution to (P) and y a feasible
solution to (D), then c™x > b'y

e Similar relation for the primal-dual pair (2)—(1): the
max problem never has a higher objective value

e Proof.

e Corollary: If ¢Tx = b’y for a feasible primal-dual pair

/

x,vy) then they must be optimal
N




/ Strong Duality Theorem \

e Strong duality is here established for the pair (P), (D)

e If one of the problems (P) and (D) has a finite optimal
solution, then so does its dual, and their optimal
objective values are equal

e Proof.




/ Complementary Slackness Theorem \

N

e Let x be a feasible solution to (1) and y a feasible
solution to (2). Then x is optimal to (1) and y optimal
to (2) if and only if

zj(c; —y Ay)

0, j=1,...,n, (3a)
0, i=1...,m, (3b)

where A.; is the 3™ column of A, A;. the i** row of A
e Proof.

/




/ Necessary and sufficient optimality conditions: \
Strong duality, the global optimality conditions,
and the KKT conditions are equivalent for LP

e We have seen above that the following statement
characterizes the optimality of a primal-dual pair

(2, y):
e x is feasible in (1), y is feasible in (2), and

complementarity holds

e In other words, we have the following result (think of
the KKT conditions!):




/0 Take a vector € € R"™. For x to be an optimal so]ution\
to the linear program (1), it is both necessary and
sufficient that

(a) x is a feasible solution to (1);
(b) corresponding to x there is a dual feasible solution
y € R™ to (2); and
(¢) « and y together satisfy complementarity (3)
e This is precisely the same as the KKT conditions!

e Those who wishes to establish this—note that there are
no multipliers for the “x > 0™” constraints, and in the
KK'T conditions there are. Introduce such a multiplier

\ vector and see that it can later be eliminated /




/ e Further: suppose that & and y are feasible respectively\
in (1) and (2). Then, the following are equivalent:

(a) « and y have the same objective value;
(b)  and y solve (1) and (2);

(¢) « and y satisfy complementarity
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/ The Simplex method and the global optimality \
conditions

e The Simplex method is remarkable in that it satisfies
two of the three conditions at every BFS, and the
remaining one is satisfied at optimality:

e x is feasible after Phase-I has been completed

e x and y always satisty complementarity. Why? If x, is
in the basis, then it has a zero reduced cost, implying
that the dual constraint 5 has no slack. If the reduced
cost of x; is non-zero (slack in dual constraint j), then

1ts value 1s zero

N /
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/ e The feasibility of y* = ¢ B is not fulfilled until We\
reach an optimal BF'S. How is the incoming criterion
related to this? We introduce as an incoming variable a
variable which has the best reduced cost. Since the
reduced cost measures the dual feasibility of y, this
means that we select the most violated dual constraint;
at the new BFS, that constraint is then satisfied (since
the reduced cost then is zero). The Simplex method
hence works to try to satisty dual feasibility by forcing
a move such that the most violated dual constraint
becomes satisfied!

N /
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/ Farkas’ Lemma revisited \
o Let A € R™™ and b € R™. Then, exactly one of the

systems
Ax = b, (I)
> 0",
and
Aty <07, (11)
bly > 0,

has a feasible solution, and the other system is
inconsistent

\. Proof. /




/ An application of linear programming: The Diet\
Problem

e First motivated by the US Army’s desire to meet
nutritional requirements of the field GI’s while

minimizing the cost

e George Stigler made an educated guess of the optimal
solution to linear program using a heuristic method; his
guess for the cost of an optimal diet was $39.93 per
year (1939 prices)

e In the fall of 1947, Jack Laderman of the Mathematical
Tables Project of the National Bureau of Standards

\ solved Stigler’s model with the new simplex method /
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/ e The first "large scale” computation in optimization \

e The LP consisted of nine equations in 77 unknowns. It
took nine clerks using hand-operated desk calculators
120 man days to solve for the optimal solution of
$39.69. Stigler’s guess for the optimal solution was off
by only 24 cents per year

e Variations can be solved on the internet!
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/ *Sensitivity analysis, I: Shadow prices are \
derivatives of a convex function!

o Suppose an optimal BF'S is non-degenerate. Then,
c'x* = b'y* = c5 B 'b varies linearly as a function of
b around its given value

e Non-degeneracy also implies that y* is unique. Why?

e Perturbation function b — v(b) given by

v(b) = minc'x — maxb'y = max bly,
e
s.t. Az = b, st. Ay <c
x > 0"

\ K: set of DFS. v a piece-wise linear, convex function /




/ e Fact: v convex (and finite in a neighbourhood of b) \
implies that v differentiable at b iff it has a unique

subgradient there

e Here: derivative w.r.t. b is y*, that is, the change in the
optimal value from a change in the right-hand side b
equals the dual optimal solution
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/ *Sensitivity analysis, II: Perturbations in data \

e How to find a new optimum through re-optimization
when data has changed

e If an element of ¢ changes, then the old BF'S is feasible
but may not be optimal. Check the new value of the
reduced cost vector ¢ and change the basis if some sign
has changed
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/ e If an element of b changes, then the old BF'S is optimal\
but may not be feasible. Check the new value of the
vector B™'b and change the basis if some sign has
changed. Since the BF'S is infeasible but optimal, we

use a dual version of the Simplex method: the Dual
Simplex method

e I'ind a negative basic variable x; — outgoing basic
variable x,

e Choose among the non-basic variables for which the
element B _1N8j < 0; means that the new basic
variable will become positive

\0 Choose the incoming variable so that ¢ keeps its sign /
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*Decentralized planning
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e Consider the following profit maximization problem:

00000

\
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/ for which we have the following interpretation: \

N

e We have m independent subunits, responsible for
finding their optimal production plan

e While they are governed by their own objectives, we
(the Managers) want to solve the overall problem of

maximizing the company’s profit

e The constraints B;x; < b;, ; > 0™ describe unit 2’s

own production limits, when using their own resources

/

21



/ e The units also use limited resources that are the same\

e The resource constraint is difficult as well as unwanted
to enforce directly, because it would make it a
centralized planning process

e We want the units to maximize their own profits
individually

e But we must also make sure that they do not violate
the resource constraints Cx < ¢

e (This constraint is typically of the form > ." , C;x; < ¢)

o How?

\o ANSWER: Solve the LP dual problem! /
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/ e Generate from the dual solution the dual vector y for\

the joint resource constraint

e Introduce an internal price for the use of this resource,
equal to this dual vector

e Let each unit optimize their own production plan, with
an additional cost term

e This will then be a decentralized planning process

e Fach unit ¢ will then solve their own LP problem to

maximize [p, — C; y] x;,
L

subject to B;x; < b;,

> 0™,
N - /




/ resulting in an optimal production plan! \

e Decentralized planning, is related to Dantzig—Wolfe
decomposition, which is a general technique for solving
large-scale LP by solving a sequence of smaller LP:s

e More on such techniques in the Project course
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