Lecture 2: Convexity

Michael Patriksson

2011-10-26

Overview

Convexity of sets

2 Convexity of functions

Convexity of sets

Let $S \subseteq \mathbb{R}^n$. The set S is *convex* if

$$\left. egin{array}{l} \mathbf{x}^1, \mathbf{x}^2 \in \mathcal{S} \\ \lambda \in (0,1) \end{array} \right\} \quad \Longrightarrow \quad \lambda \mathbf{x}^1 + (1-\lambda)\mathbf{x}^2 \in \mathcal{S} \end{array}$$

A set S is convex if, from anywhere in S, all other points are "visible." (See below figure)

Figure: A convex set. (For the intermediate vector shown, the value of λ is $\approx 1/2$)

Examples

- The empty set is a convex set
- The set $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \leq a\}$ is convex for every value of $a \in \mathbb{R}$
- The set $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| = a\}$ is non-convex for every a > 0
- The set $\{0,1,2\}$ is non-convex

Two non-convex sets are shown in the below figure

Figure: Two non-convex sets

Intersections of convex sets

Suppose that S_k , $k \in \mathcal{K}$, is any collection of convex sets. Then, the intersection $\cap_{k \in \mathcal{K}} S_k$ is a convex set

Convex and affine hulls

The *affine hull* of a finite set $V = \{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subset \mathbb{R}^n$ is the set

$$\text{aff } V := \left\{ \lambda_1 \mathbf{v}^1 + \dots + \lambda_k \mathbf{v}^k \ \middle| \ \lambda_1, \dots, \lambda_k \in \mathbb{R}; \ \sum_{i=1}^k \lambda_i = 1 \right\}$$

The *convex hull* of a finite set $V = \{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subset \mathbb{R}^n$ is the set

conv
$$V := \left\{ \lambda_1 \mathbf{v}^1 + \dots + \lambda_k \mathbf{v}^k \mid \lambda_1, \dots, \lambda_k \ge 0; \sum_{i=1}^k \lambda_i = 1 \right\}$$

The sets are defined by all possible affine (convex) combinations of the k points

Examples

Figure: (a) The set V (b) The set $\inf V$ (c) The set $\operatorname{conv} V$

Carathéodory's Theorem

- The convex hull of $V \subset \mathbb{R}^n$ is the smallest convex set containing V
- Let $V \subseteq \mathbb{R}^n$. Then, conv V is the set of all convex combinations of points of V
- Every point of the convex hull of a set can be written as a convex combination of points from the set. How many do we need?
- [Carathéodory] Let $\mathbf{x} \in \operatorname{conv} V$, where $V \subseteq \mathbb{R}^n$. Then \mathbf{x} can be expressed as a convex combination of n+1 or fewer points of V
- Proof by contradiction: if more than n+1 points are needed then these points must be affinely dependent \Longrightarrow can remove at least one such point. Etcetera

Polytope

- A subset P of \mathbb{R}^n is a *polytope* if it is the convex hull of finitely many points in \mathbb{R}^n
- The set shown in the below figure is a polytope

Figure: The convex hull of five points in \mathbb{R}^2

 \bullet A cube and a tetrahedron are polytopes in \mathbb{R}^3

Extreme points

- A point \mathbf{v} of a convex set P is called an extreme point if whenever $\mathbf{v} = \lambda \mathbf{x}^1 + (1 \lambda)\mathbf{x}^2$, where $\mathbf{x}^1, \mathbf{x}^2 \in P$ and $\lambda \in (0,1)$, then $\mathbf{v} = \mathbf{x}^1 = \mathbf{x}^2$
- Examples: The set shown in Figure 3(c) has the extreme points \mathbf{v}^1 and \mathbf{v}^2 . The set shown in Figure 4 has the extreme points \mathbf{v}^1 , \mathbf{v}^2 , and \mathbf{v}^3 . The set shown in Figure 3(b) does not have any extreme points
- Let P be the polytope conv V, where $V = \{\mathbf{v}^1, \dots, \mathbf{v}^k\} \subset \mathbb{R}^n$. Then P is equal to the convex hull of its extreme points
- Note: Sofar, the convex sets have been defined/described by convex or affine hulls of a finite set of points (interior representation); next, we look at convex sets defined by linear constraints in \mathbb{R}^n (exterior representation)

Polyhedra, I

• A subset P of \mathbb{R}^n is a *polyhedron* if there exist a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$ such that

$$P = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$$

- $\mathbf{A}\mathbf{x} \leq \mathbf{b} \iff \mathbf{a}_i\mathbf{x} \leq b_i \text{ for all } i \ (\mathbf{a}_i \text{ is row } i \text{ of } \mathbf{A})$
- Intersection of half-spaces. [Hyperplane: $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i \mathbf{x} = b_i \}$]

Polyhedra, II

• Examples: (a) The bounded polyhedron

$$P = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 \ge 2; \ x_1 + x_2 \le 6; \ 2x_1 - x_2 \le 4 \}$$

Polyhedra, III

• (b) The unbounded polyhedron

$$P = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 \ge 2; \ x_1 - x_2 \le 2; \ 3x_1 - x_2 \ge 0 \}$$

Algebraic characterizations of extreme points

- Let $\tilde{\mathbf{x}} \in P = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank} \mathbf{A} = n$ and $\mathbf{b} \in \mathbb{R}^m$. Further, let $\tilde{\mathbf{A}}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$ be the equality subsystem¹ of $\mathbf{A}\tilde{\mathbf{x}} \leq \mathbf{b}$. Then $\tilde{\mathbf{x}}$ is an extreme point of P if and only if $\operatorname{rank} \tilde{\mathbf{A}} = n$
- Of great importance in Linear Programming (LP): for LP problems the matrix A always has full rank! Hence, can solve special subsystem of linear equalities to obtain an extreme point!
- Corollary: The number of extreme points of P is finite
- Since the number of extreme points is finite, the convex hull of the extreme points of a polyhedron is a polytope
- Consequence: Algorithm for linear programming!

¹Strike out all rows i with $\mathbf{a}_i \tilde{\mathbf{x}} < b_i$; require equality for the rest $\rightarrow + \frac{\pi}{2} \rightarrow -\frac{\pi}{2}$

Cones

- A subset C of \mathbb{R}^n is a *cone* if $\lambda \mathbf{x} \in C$ whenever $\mathbf{x} \in C$ and $\lambda > 0$
- Example: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The set $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{0}^m\}$ is a cone
- \bullet The two figures below illustrate (a) a convex cone and (b) a non-convex cone in \mathbb{R}^2

Figure: (a) A convex cone in \mathbb{R}^2 (b) A non-convex cone in \mathbb{R}^2

Representation Theorem, I

• Let $Q = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$, P be the convex hull of the extreme points of Q, and $C := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{0}^m \}$. If $\operatorname{rank} \mathbf{A} = n$ then $Q = P + C = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = \mathbf{u} + \mathbf{v} \text{ for some } \mathbf{u} \in P \text{ and } \mathbf{v} \in C \}$ In other words, every polyhedron (that has at least one extreme point) is the sum of a polytope and a polyhedral cone

ullet Proof by induction on the rank of the subsystem matrix $ilde{\mathbf{A}}$

Representation Theorem, II

Central in Linear Programming. Can be used to establish:
 Optimal solutions to LP problems are found at extreme points!

Figure: Illustration of the Representation Theorem (a) in the bounded case, and (b) in the unbounded case

Separation Theorem, I

- "If a point **y** does not lie in a closed and convex set C, then there exists a hyperplane that separates **y** from C"
- Suppose that the set $C \subseteq \mathbb{R}^n$ is closed and convex, and that the point \mathbf{y} does not lie in C. Then there exist $\alpha \in \mathbb{R}$ and $\pi \neq \mathbf{0}^n$ such that $\pi^T \mathbf{y} > \alpha$ and $\pi^T \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in C$
- Proof later—requires existence and optimality conditions
- Consequence: A set P is a polytope if and only if it is a bounded polyhedron. [← trivial; → constructive]

Separation Theorem, II

• A finitely generated cone has the form

$$\mathrm{cone}\,\{\boldsymbol{v}^1,\ldots,\boldsymbol{v}^m\}:=\{\,\lambda_1\boldsymbol{v}^1+\cdots+\lambda_m\boldsymbol{v}^m\mid\lambda_1,\ldots,\lambda_m\geq0\,\}$$

• A convex cone is finitely generated iff it is polyhedral

Separation Theorem, III

Figure: Illustration of the Separation Theorem: the unit disk is separated from **y** by the line $\{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 = 2 \}$

Farkas' Lemma

• Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then, exactly one of the systems

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \tag{I}$$
$$\mathbf{x} \ge \mathbf{0}^n,$$

and

$$\mathbf{A}^{\mathrm{T}} \boldsymbol{\pi} \leq \mathbf{0}^{n},$$
 (II) $\mathbf{b}^{\mathrm{T}} \boldsymbol{\pi} > 0,$

has a feasible solution, and the other system is inconsistent

- Farkas' Lemma has many forms. "Theorems of the alternative"
- Crucial for LP theory and optimality conditions; used these days also to analyze and correct computer code!

*Relations between theorems

- Alg. Repr. of Extreme Pnts. $(3.17) \Longrightarrow \text{Repr. Thm. } (3.22)$
- Repr. Thm. (3.22) + Sep. Thm. $(3.24) \Longrightarrow$ "P polytope $\iff P$ bounded polyhedron" (3.26)
- "Convex cone C finitely generated \iff convex cone C is a polyhedron" (3.28): \implies from (3.26), \iff from (3.22)
- Sep. Thm. $(3.24) \Longrightarrow Farkas Lemma (3.30)$
- Farkas Lemma (3.30) will later on be established much more simply by utilizing linear programming duality theory

Overview

Convexity of sets

2 Convexity of functions

Convexity of functions, I

• Suppose that $S \subseteq \mathbb{R}^n$ is convex. A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex at $\bar{\mathbf{x}} \in S$ if

$$\left\{egin{aligned} \mathbf{x} \in \mathcal{S} \ \lambda \in (0,1) \end{aligned}
ight\} \Longrightarrow f(\lambda \mathbf{ar{x}} + (1-\lambda)\mathbf{x}) \leq \lambda f(\mathbf{ar{x}}) + (1-\lambda)f(\mathbf{x})$$

- The function f is *convex on* S if it is convex at every $\bar{\mathbf{x}} \in S$
- The function f is *strictly convex on* S if < holds in place of \le above for every $\mathbf{x} \ne \bar{\mathbf{x}}$

Convexity of functions, II

- A convex function is such that a linear interpolation never is lower than the function itself. For a strictly convex function the linear interpolation lies above the function
- (Strict) concavity of $f \iff$ (strict) convexity of -f
- The below figure illustrates a convex function

Figure: A convex function

Convexity of functions, III

- The function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{x}) := \|\mathbf{x}\|$ is convex on \mathbb{R}^n ; $f(\mathbf{x}) := \|\mathbf{x}\|^2$ is strictly convex in \mathbb{R}^n
- Let $\mathbf{c} \in \mathbb{R}^n$. The linear function $\mathbf{x} \mapsto f(\mathbf{x}) := \mathbf{c}^T \mathbf{x} = \sum_{j=1}^n c_j x_j$ is both convex and concave on \mathbb{R}^n
- The below figure illustrates a non-convex function

Figure: A non-convex function

Convexity of functions, IV

- Sums of convex functions are convex
- Composite function: $\mathbf{x} \mapsto f(g(\mathbf{x}))$
- Suppose that $S \subseteq \mathbb{R}^n$ and $P \subseteq \mathbb{R}$. Let further $g: S \to \mathbb{R}$ be a function which is convex on S, and $f: P \to \mathbb{R}$ be convex and non-decreasing $(y \ge x \Longrightarrow f(y) \ge f(x))$ on P. Then, the composite function f(g) is convex on the set $\{ \mathbf{x} \in \mathbb{R}^n \mid g(\mathbf{x}) \in P \}$
- The function $\mathbf{x} \mapsto -\log(-g(\mathbf{x}))$ is convex on the set $\{\mathbf{x} \in \mathbb{R}^n \mid g(\mathbf{x}) < 0\}$

Epigraphs, I

• Characterize convexity of a function on \mathbb{R}^n by the convexity of its *epigraph* in \mathbb{R}^{n+1} . [*Note:* the *graph* of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the boundary of $\operatorname{epi} f$]

Figure: A convex function and its epigraph

• The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is the set

$$\operatorname{epi} f := \{ (\mathbf{x}, \alpha) \in \mathbb{R}^{n+1} \mid f(\mathbf{x}) \leq \alpha \}$$

Epigraphs, II

- Connection between convex sets and functions; in fact the definition of a convex function stems from that of a convex set:
- The function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex on \mathbb{R}^n if, and only if, its epigraph is a convex set in \mathbb{R}^{n+1}

Convexity characterizations in C^1 , I

- C^1 : Differentiable once, gradient continuous
- Let $f \in C^1$ on an open convex set S
 - (a) f is convex on $S \iff f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y} \mathbf{x})$, $\mathbf{x}, \mathbf{y} \in S$
 - (b) f is convex on

$$S \Longleftrightarrow [\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})]^{\mathrm{T}}(\mathbf{x} - \mathbf{y}) \ge 0, \mathbf{x}, \mathbf{y} \in S$$

- (a): "Every tangent plane to the function surface lies on, or below, the epigraph of f", or, that "a first-order approximation is below f"
- (b) ∇f is "monotone on S." [Note: when n=1, the result states that f is convex if and only if its derivative f' is non-decreasing, that is, that it is monotonically increasing]
- Proofs use Taylor expansion, convexity and the Mean-value Theorem

Convexity characterizations in C^1 , II

• The below figure illustrates part (a)

Figure: A tangent plane to the graph of a convex function

Convexity characterizations in C^2

- Let f be in C² on an open, convex set S ⊆ ℝⁿ
 (a) f is convex on S ⇔ ∇²f(x) is positive semidefinite for all x ∈ S
 (b) ∇²f(x) is positive definite for all x ∈ S ⇒ f is strictly.
 - (b) $\nabla^2 f(\mathbf{x})$ is positive definite for all $\mathbf{x} \in S \Longrightarrow f$ is strictly convex on S
- Note: n=1, S is an open interval: (a) f is convex on S if and only if $f''(x) \ge 0$ for every $x \in S$; (b) f is strictly convex on S if f''(x) > 0 for every $x \in S$
- Proofs use Taylor expansion, convexity and the Mean-value Theorem
- Not the direction \leftarrow in (b)! $[f(x) = x^4 \text{ at } x = 0]$
- ullet Difficult to check convexity; matrix condition for every ${f x}$
- Quadratic function: $f(\mathbf{x}) = (1/2)\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x} \mathbf{q}^{\mathrm{T}}\mathbf{x}$ convex on \mathbb{R}^n iff \mathbf{Q} is psd (\mathbf{Q} is the Hessian of f, and is independent of \mathbf{x})

Convexity of feasible sets, I

• Let $g: \mathbb{R}^n \to \mathbb{R}$ be a function. The *level set* of g with respect to the value $b \in \mathbb{R}$ is the set

$$\operatorname{lev}_{g}(b) := \{ \mathbf{x} \in \mathbb{R}^{n} \mid g(\mathbf{x}) \leq b \}$$

The below figure illustrates a level set of a convex function

Figure: A level set of a convex function

• Suppose that the function $g:\mathbb{R}^n\to\mathbb{R}$ is convex. Then, for every value of $b \in \mathbb{R}$, the level set $lev_g(b)$ is a convex set. It is moreover closed

Convexity of feasible sets, II

- Notice from Lecture 1 that feasible sets often are described in terms of sets of vectors \mathbf{x} satisfying $g_i(\mathbf{x}) \leq 0$ and $h_i(\mathbf{x}) = 0$; the above then shows an instance when the convexity of a feasible set can be tested
- We speak of a *convex problem* when f is convex (minimization) and for constraints $g_i(\mathbf{x}) \leq 0$, the functions g_i are convex; and for constraints $h_i(\mathbf{x}) = 0$, the functions h_i are affine