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Convexity of sets

Overview

@ Convexity of sets
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Convexity of sets
Convexity of sets

Let S C R". The set S is convex if

x',x’>e S

1 )2
)\6(0,1)} = M +(1-A)x"€S

A set S is convex if, from anywhere in S, all other points are
“visible." (See below figure)

Figure: A convex set. (For the intermediate vector shown, the value of A
is ~1/2)
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Convexity of sets

Examples

@ The empty set is a convex set
@ Theset {x € R" | [|x|| < a} is convex for every value of a € R
@ The set {x € R"| ||x|| = a} is non-convex for every a > 0

@ The set {0, 1,2} is non-convex

Two non-convex sets are shown in the below figure

)\x1+(1—)\ . --\5

X

Figure: Two non-convex sets
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Convexity of sets
Intersections of convex sets

Suppose that Sy, k € K, is any collection of convex sets. Then,
the intersection Niexc Sk is a convex set
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Convexity of sets
Convex and affine hulls

The affine hull of a finite set V = {v!,... vk} C R" is the set

k
AL, -, Ak ER; Z)\,':l}

aff V 1= {Alvl—i—---—i—)\kv’(
i=1

The convex hull of a finite set V = {v!,... vk} C R" is the set

k
M, .. A >0 ZA;zl}
i=1

The sets are defined by all possible affine (convex) combinations of
the k points

conv V = {Alvl N VA4
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Convexity of sets
Examples

(@) ) (©)

Figure: (a) The set V (b) The set aff V (c) The set conv V
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Convexity of sets
Carathéodory’s Theorem

@ The convex hull of V. C R” is the smallest convex set
containing V

o Let V CR". Then, conv V is the set of all convex
combinations of points of V

@ Every point of the convex hull of a set can be written as a
convex combination of points from the set. How many do we
need?

@ [Carathéodory] Let x € conv V, where V C R". Then x can
be expressed as a convex combination of n+ 1 or fewer points
of V

@ Proof by contradiction: if more than n+ 1 points are needed

then these points must be affinely dependent = can remove
at least one such point. Etcetera
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Convexity of sets

Polytope

@ A subset P of R" is a polytope if it is the convex hull of
finitely many points in R”

@ The set shown in the below figure is a polytope

vl

v3

Figure: The convex hull of five points in R?

@ A cube and a tetrahedron are polytopes in R3
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Convexity of sets
Extreme points

@ A point v of a convex set P is called an extreme point if
whenever v = Ax! + (1 — \)x?, where x!,x2 € P and
A €(0,1), then v =x! =x?

@ Examples: The set shown in Figure 3(c) has the extreme
points v} and v2. The set shown in Figure 4 has the extreme
points v, v2, and v3. The set shown in Figure 3(b) does not
have any extreme points

o Let P be the polytope conv V, where V = {v,... vk} C R".
Then P is equal to the convex hull of its extreme points

@ Note: Sofar, the convex sets have been defined/described by
convex or affine hulls of a finite set of points (interior
representation); next, we look at convex sets defined by linear
constraints in R” (exterior representation)
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Convexity of sets

Polyhedra, |

@ A subset P of R" is a polyhedron if there exist a matrix
A € R™*" and a vector b € R™ such that

P={xecR"|Ax<b}

@ Ax < b < ajx < b; for all i (aj is row i of A)

@ Intersection of half-spaces. [Hyperplane: {x € R" | ajx = b; }]
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Convexity of sets
Polyhedra, Il

@ Examples: (a) The bounded polyhedron
P={xeR?|x1>2; x1+x <6 2x1 —x <4}

X2
6
5\X1 =2
47 2X1 — X = 4
31
ot P
1+ X1 +x2 =06
12 3 45 6 X
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Convexity of sets
Polyhedra, Il

@ (b) The unbounded polyhedron
P={xcR?|x;+x>2 x1—x<2; 3xq x>0}

X0
3x1 —xp =0
61
5t
at
37 P X1 —Xp =2
2\
1

1/2\3 4 5 6 X
X1+ X0 = 2
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Convexity of sets
Algebraic characterizations of extreme points

o Lletxe P={xecR"|Ax < b}, where A € R™*" with
rank A = n and b € R™. Further, let A% = b be the equality
subsystem' of A% < b. Then % is an extreme point of P if
and only ifrank A = n

@ Of great importance in Linear Programming (LP): for LP
problems the matrix A always has full rank! Hence, can solve
special subsystem of linear equalities to obtain an extreme
point!

@ Corollary: The number of extreme points of P is finite

@ Since the number of extreme points is finite, the convex hull
of the extreme points of a polyhedron is a polytope

o Consequence: Algorithm for linear programming!

IStrike out all rows i with a;% < b;; require equality-for the rest
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Convexity of sets
Cones

@ A subset C of R" is a cone if Ax € C whenever x € C and
A>0

@ Example: Let A€ R™*". Theset {x e R"|Ax < 0™} is a
cone

@ The two figures below illustrate (a) a convex cone and (b) a
non-convex cone in R?

(a) (b)

Figure: (a) A convex cone in R? (b) A non-convex cone in R?
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Convexity of sets

Representation Theorem, |

o Llet Q={xe€R"|Ax < b}, P be the convex hull of the
extreme points of Q, and C := {x €¢ R" | Ax <07 }.
If rank A = n then
Q=P+C={xeR"|x=u+v forsomeu € P andv e C}
In other words, every polyhedron (that has at least one
extreme point) is the sum of a polytope and a polyhedral cone

@ Proof by induction on the rank of the subsystem matrix A
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Convexity of sets

Representation Theorem, Il

@ Central in Linear Programming. Can be used to establish:
Optimal solutions to LP problems are found at extreme points!

—

x2

() (b)
Figure: lllustration of the Representation Theorem (a) in the
bounded case, and (b) in the unbounded case
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Convexity of sets

Separation Theorem, |

@ “If a point'y does not lie in a closed and convex set C, then
there exists a hyperplane that separates 'y from C"

@ Suppose that the set C C R” is closed and convex, and that
the point 'y does not lie in C. Then there exist & € R and
7 # 0" such that 'y > o and #¥x < «a for all x € C

@ Proof later—requires existence and optimality conditions

@ Consequence: A set P is a polytope if and only if it is a
bounded polyhedron. [<= trivial, = constructive]
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Convexity of sets

Separation Theorem, |l

® A finitely generated cone has the form
cone {vl, .. v} i={Avi4 AT [ A, A >0

@ A convex cone is finitely generated iff it is polyhedral
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Convexity of sets

Separation Theorem, IlI

Figure: lllustration of the Separation Theorem: the unit disk is separated
from y by the line {x € R? | x; + % =2}
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Convexity of sets
Farkas' Lemma

@ Let A€ R™" and b € R™. Then, exactly one of the systems

Ax = b, (1)
x>0",
and
Atm <0, (1
bir >0,

has a feasible solution, and the other system is inconsistent

@ Farkas' Lemma has many forms. “Theorems of the
alternative”

@ Crucial for LP theory and optimality conditions; used these
days also to analyze and correct computer code!
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Convexity of sets
*Relations between theorems

@ Alg. Repr. of Extreme Pnts. (3.17) = Repr. Thm. (3.22)

@ Repr. Thm. (3.22) + Sep. Thm. (3.24) =
“P polytope <= P bounded polyhedron” (3.26)

@ “Convex cone C finitely generated <= convex cone C is a
polyhedron” (3.28): = from (3.26), <= from (3.22)

@ Sep. Thm. (3.24) = Farkas Lemma (3.30)

@ Farkas Lemma (3.30) will later on be established much more
simply by utilizing linear programming duality theory
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Convexity of functions

Overview

© Convexity of functions
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Convexity of functions

Convexity of functions, |

@ Suppose that S C R” is convex. A function
f:R" - RU{+oc} is convex at x € S if

xeS

A e (0,1) } = F(AX + (1 — A)x) < M(X) + (1 — A)F(x)

@ The function f is convex on S if it is convex at every X € S

@ The function f is strictly convex on S if < holds in place of
< above for every x # X
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Convexity of functions
Convexity of functions, Il

@ A convex function is such that a linear interpolation never is
lower than the function itself. For a strictly convex function
the linear interpolation lies above the function

@ (Strict) concavity of f <= (strict) convexity of —f
@ The below figure illustrates a convex function

f(xh)

Py
L 4

x1 Axt 4 (1 - A)x? X2 X

Figure: A convex function
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Convexity of functions
Convexity of functions, Il

@ The function f : R” — R defined by f(x) := ||x|| is convex on
R™;, f(x) := ||x||? is strictly convex in R”

. . o T _ n
o Let c € R". The linear function x — f(x) := ¢*x =} ; ¢X
is both convex and concave on R”
® The below figure illustrates a non-convex function
x1 Axt 4 (1 — N\)x? x2 X

Figure: A non-convex function
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Convexity of functions

Convexity of functions, IV

@ Sums of convex functions are convex
@ Composite function: x — f(g(x))

@ Suppose that S CR" and P C R. Let furtherg:S — R be a
function which is convex on S, and f : P — R be convex and
non-decreasing (y > x = f(y) > f(x)) on P. Then, the
composite function f(g) is convex on the set
{xeR"[g(x) e P}

@ The function x — — log(—g(x)) is convex on the set
{xeR"|g(x) <0}
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Convexity of functions

Epigraphs, |

@ Characterize convexity of a function on R” by the convexity of
its epigraph in R"T1. [Note: the graph of a function
f :R" — R is the boundary of epi f]

epif
\/f

X

Figure: A convex function and its epigraph

@ The epigraph of a function f : R” — R U {+o0} is the set

epif :== {(x,0) e R™! | f(x) < a}
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Convexity of functions

Epigraphs, Il

@ Connection between convex sets and functions; in fact the
definition of a convex function stems from that of a convex
set:

@ The function f : R" — R U {+o0} is convex on R" if, and
only if, its epigraph is a convex set in R"t!
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Convexity of functions

Convexity characterizations in C?, |

@ Cl: Differentiable once, gradient continuous

o Let f € C! on an open convex set S
(a) f is convex on S <= f(y) > f(x) + VF(x)T(y — x),
xX,yeS
(b) f is convex on
S« [VFf(x) - VF(y)]T(x—y)>0,x,yeS

@ (a): “Every tangent plane to the function surface lies on, or
below, the epigraph of f", or, that “a first-order
approximation is below f”

e (b) Vf is “monotone on S." [Note: when n =1, the result
states that f is convex if and only if its derivative f’ is
non-decreasing, that is, that it is monotonically increasing]

@ Proofs use Taylor expansion, convexity and the Mean-value
Theorem
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Convexity of functions

Convexity characterizations in C*, Il

@ The below figure illustrates part (a)

F(x) + () = %)

Figure: A tangent plane to the graph of a convex function
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Convexity of functions
Convexity characterizations in C?

o Let f bein C? on an open, convex set S C R"
(a) f is convex on S <= V?f(x) is positive semidefinite for
allxe S
(b) V2f(x) is positive definite for all x € S == f is strictly
convex on S

@ Note: n=1, S is an open interval: (a) f is convex on S if
and only if f”(x) > 0 for every x € S; (b) f is strictly convex
on S if f”(x) > 0 for every x € S

@ Proofs use Taylor expansion, convexity and the Mean-value
Theorem

@ Not the direction <= in (b)! [f(x) = x* at x = 0]

@ Difficult to check convexity; matrix condition for every x

@ Quadratic function: f(x) = (1/2)xTQx — q™x convex on R”
iff Q is psd (Q is the Hessian of f, and is independent of x)
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Convexity of functions

Convexity of feasible sets, |

o Let g: R" — R be a function. The level set of g with respect
to the value b € R is the set

levg(b) :={xe€R" | g(x) < b}

@ The below figure illustrates a level set of a convex function

leve(b) X

Figure: A level set of a convex function

@ Suppose that the function g : R" — R is convex. Then, for
every value of b € R, the level set levg(b) is a convex set. It
is moreover closed
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Convexity of functions
Convexity of feasible sets, Il

@ Notice from Lecture 1 that feasible sets often are described in
terms of sets of vectors x satisfying gj(x) < 0 and h;(x) = 0;
the above then shows an instance when the convexity of a
feasible set can be tested

@ We speak of a convex problem when f is convex
(minimization) and for constraints gj(x) < 0, the functions g;
are convex; and for constraints h;(x) = 0, the functions h; are
affine
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